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Preface

This book is more than a textbook on electric circuits. 
It is a veritable learning reference that presents electric 
circuit analysis in a simplified manner, without sacrific-
ing rigor and thoroughness. The book is a sequel to the 
author’s Electric Circuits and Signals, CRC Press, 2008. 
The electric signal material has been omitted and circuit 
analysis is treated in a more simplified and expanded 
form. The book differs from other textbooks on electric 
circuits in its pedagogy and organization, as expounded 
later, particularly in the following respects:

 1. Strong emphasis on (a) simple, clear, careful, 
and comprehensive explanations of the basic 
concepts in circuit analysis (simplicity is not to 
be construed as superficiality; what is meant is 
simple and clear, but in-depth, explanations); 
(b) a sound understanding of fundamentals, 
enhanced by physical and insightful interpre-
tations of circuit behavior; and (c) extensive 
use of PSpice® (OrCAD, PSpice, SPECTRA for 
OrCAD, and Cadence are registered  trademarks 
of Cadence Design Systems, Inc., San Jose, 
California), as detailed later in a section on 
PSpice simulations.

 2. Effective problem solving based on (a) a sys-
tematic, logical, and imaginative approach, 
having the acronym ISDEPIC, formulated by 
the author and refined over the past several 
years through interaction with students, and (b) 
presenting a variety of topics and examples that 
foster problem-solving skills by encouraging 
the student to view a problem in different ways, 
particularly fresh and original ways, founded 
on a sound understanding of fundamentals. 
The author firmly believes that a course on elec-
tric circuits provides an excellent opportunity 
to nurture problem-solving skills, as a central 
objective of quality engineering education. That 
is why some topics, such as exploitation of sym-
metry in electric circuits, are included, although 
they are of limited practical importance.

 3. Substantive application of the substitution the-
orem and of duality to facilitate circuit analy-
sis and enhance the understanding of circuit 
behavior.

 4. Some original contributions to circuit analysis 
by the author, such as (a) using the substitution 
theorem to replace dependent sources by inde-
pendent sources when applying superposition, 

which greatly simplifies analysis of circuits that 
include dependent sources; (b) circuit equiva-
lence, as a unifying concept that encompasses 
a variety of topics, ranging from simple series–
parallel combinations of resistances to source 
transformation and Thevenin’s theorem; and 
(c) the concept of effective magnetic flux, which 
allows dealing with leakage flux simply and 
conveniently, rather than skirt this seemingly 
awkward issue.

P.1 Pedagogy

The underlying theme throughout the book is present-
ing circuit analysis logically, coherently, and justifiably, 
yet simply and clearly, and not as a set of procedures 
that are to be followed without really understanding the 
“why?” in terms of critical thinking, logical reasoning, 
and sound understanding of fundamentals.

The following features exemplify this approach to 
 circuit analysis:

 1. It is emphasized from the very beginning that 
circuits obey two universal conservation laws: 
conservation of energy and conservation of 
charge, which imply, respectively, conserva-
tion of power and conservation of current. 
Kirchhoff’s laws are simply an expression of 
these conservation laws and not some sacro-
sanct laws that are peculiar to electric circuits. 
They are convenient to apply in lieu of the more 
fundamental conservation laws because they 
are linear in voltage and current.

 2. The rationale behind the node-voltage and 
mesh-current methods is explained as having 
Kirchhoff’s voltage law automatically satisfied 
by the assignment of node voltages and having 
Kirchhoff’s current law automatically satisfied 
by the assignment of mesh currents.

 3. Circuit simplification techniques and effective 
 problem-solving methodologies are strongly 
emphasized to help the student analyze electric 
circuits intelligently, understand their behavior, 
and gain insight into this behavior. These topics 
are thoroughly discussed before the node- voltage 
and mesh-current methods—because in the 
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author’s experience, once students learn these rou-
tine, general methods, they tend to preferentially 
apply them to all circuits, even simple ones. This 
deprives students of the opportunity to under-
stand circuit behavior and to foster their problem-
solving skills. Another reason for deemphasizing 
the node-voltage and mesh-current methods is 
that these methods were originally developed to 
facilitate analysis of more complicated circuits. 
But the responses of such circuits are more conve-
niently derived nowadays by PSpice simulation.

 4. In conformity with conventional practice, prac-
tically all the main circuit concepts and proce-
dures are presented for the dc state to begin 
with. Some textbooks then discuss the transient 
behavior of RC, RL, and RLC circuits before the 
sinusoidal steady state. In this book, the sinu-
soidal steady state is discussed immediately 
following the dc state. The reason for this is 
that phasor analysis is presented as a means of 
allowing direct application of all the concepts 
and techniques developed for the dc state to the 
sinusoidal steady state. It is only logical, there-
fore, to consider the sinusoidal steady state 
immediately following the dc state.

 5. Magnetic coupling is discussed in a comprehensive, 
realistic, and not oversimplified manner, using 
the concept of effective flux. Magnetic flux link-
age is properly made use of as a basic quantity. It 
is emphasized that ideal transformers, irrespective 
of the number of windings and how they are inter-
connected, obey two fundamental, general princi-
ples: (a) the same volts/turn are induced in every 
winding, and (b) zero, net mmf acts on the core.

 6. Duality is emphasized as a means of unifying 
in many respects the analysis of (a) series and 
parallel circuits of all types and (b) capacitive 
and inductive circuits.

 7. Simplified and generalized methods are pre-
sented for deriving the responses of first-order 
and second-order circuits in the time domain.

 8. The role of the transient response is clearly 
explained as a means of providing a smooth 
transition from the initial value of a given 
response to its steady-state, final value. 

 9. The basic, noninverting, and inverting op amp 
configurations are discussed in terms of the 
very fundamental concept of feedback. It is 
explained very simply and clearly how nega-
tive feedback, but not positive feedback, allows 
stable operation at any point in the linear region 
of the input–output characteristic of the op 
amp. It is stressed that this requires some  circuit 

connection between the op amp output and the 
inverting input, a feature that is present in all 
non-switching-type op amp circuits.

 10. The four basic types of frequency responses 
(low-pass, high-pass, bandpass, and bandstop) 
are all derived from a series RLC circuit to high-
light the interrelations between these responses. 
It is emphasized that second-order, passive RC 
circuits cannot have a Q larger than 0.5, corre-
sponding to critical damping.

 11. The rationale for Butterworth and active filters 
is clearly explained.

 12. Complex power and maximum power transfer 
under general conditions are included in Part II, 
after considering power due to periodic func-
tions. The conservation of complex power is 
simply and clearly explained.

 13. The impulse and step responses of RC, RL, and 
RLC circuits are discussed systematically and 
logically, with physical interpretations.

 14. The concepts of equivalent capacitance and 
equivalent inductance are applied in a simple 
and imaginative manner to derive the responses 
of capacitive and inductive circuits to sudden 
changes, with or without initial energy storage.

 15. Convolution is treated as an operation in the 
time domain that is important in its own right 
and that follows directly from the impulse 
response. The physical interpretation and signif-
icance of convolution are emphasized, particu-
larly the special cases of convolution of staircase 
functions and convolution with the impulse and 
step functions.

 16. Responses to periodic inputs, the Laplace trans-
form, the Fourier transform, and two-port cir-
cuits are covered rather comprehensively.

 17. Numerous references are made,  whenever 
appropriate, to MATLAB® commands as a very 
useful aid to circuit analysis.

P.2 Organization

The book is divided into two parts. Part I covers what is 
conventionally considered as basic electric circuit anal-
ysis and constitutes a first course on electric circuits. 
Part II consists of a number of additional topics that can 
be selectively added in a second course. Operational 
amplifiers are not included in Part I, because they are 
not considered part of basic electric circuits. They are 
included as the first chapter of Part II in connection with 
active filters, where they belong. They could be added to 
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a first course on electric circuits, if desired. Some sections 
and examples in both Parts I and II are marked with a 
star to indicate that they may be skipped in a more lim-
ited coverage of the material.

More than 430 exercises are included at the ends of 
most sections of chapters, or within sections. These 
exercises are of two types: (1) Primal exercises that are 
simple, straightforward applications of the main con-
cepts discussed and are intended to allow students to 
practice direct applications of concepts and help them 
gain some self-confidence in doing so and (2) exercises 
that are not labeled “Primal” and that serve to extend 
some aspects of the topics discussed, or to verify some 
simple assertions made in the text, and not discussed 
in detail for the sake of brevity or avoidance of tedious 
repetition.

More than 175 solved examples are included through-
out the book to illustrate the topic being discussed. In 
almost all examples, a PSpice simulation is added after 
the solution, followed by problem-solving tips, when-
ever appropriate, to emphasize some useful problem-
solving techniques.

A “Learning Checklist” is added at the end of the main 
body of every chapter so as to serve both as a summary 
and as a check on the understanding of the main con-
cepts and ideas presented in the chapter. The Learning 
Checklist is followed by a list of all the problem-solving 
tips in the solved examples of the chapter.

More than 1500 problems are included at the ends 
of chapters for students to test their understanding 
of the material and apply the problem-solving skills 
they have acquired. Some of these are of the “short-
solution” type that test for the understanding of a 
specific concept, without involving much  calculation. 
Other problems are of the “long-solution” type that 
require the logical formulation of a number of sequen-
tial calculation steps in order to obtain the required 
results. In general, the exercises and problems are 
ordered in increasing level of “challenge.” Design-type 
problems are included as a group at the ends of some 
chapters, wherever appropriate. Another group of 
problems, labeled “Probing Further,” are added at the 
ends of some chapters in order to examine some more 
advanced or specific topics. Answers are given follow-
ing all exercises and problems that are not intended to 
verify or prove something.

P.3 PSpice Simulations

More than 100 PSpice simulations are included in the 
book, as listed after the Preface. The simulations are 
used to verify the results of analytical solutions and 

to graphically illustrate these results, wherever appli-
cable. The simulation procedure is described in every 
case. The circuit, as entered, is shown, the entries in 
the simulation profile are indicated, and the graphi-
cal or analytical results are presented. An appendix 
on PSpice simulation is included, which is more than 
adequate for the simulations covered in a course on 
electric circuits. The appendix includes much useful 
information on PSpice simulations that is not found 
in any single reference on PSpice simulations that the 
author is aware of.

The PSpice program used is OrCAD 16.6 Lite version. 
PSpice Lite can be downloaded by students from the 
Cadence web page, free of charge. The simulation files 
of the PSpice simulations listed after the Preface can 
be downloaded from the book’s web page that can be 
accessed at: https://www.crcpress.com/ to enable stu-
dents to actually perform the simulations. Additional files 
will be made available at this website in the future for the 
PSpice simulation of problems at the ends of chapters.

P.4  Solutions Manual and 
Classroom Presentations

A solutions manual for all exercises and problems, as 
well as Class Presentations, are available to qualifying 
instructors adopting this book, and may be requested 
through the CRC Press website. The Class Presentations 
consist of a Microsoft Word® file for every chapter 
that presents, in the form of colored, bulleted text 
and figures, the main ideas and concepts discussed 
in the given chapter, together with the solved exam-
ples. The files are intended for projection in the class-
room by instructors for use as a basis for explaining 
the material. The advantages of using Word files are 
the following: (1) the files can be easily modified by 
instructors as they deem appropriate for their own 
purposes and (2) top and bottom margins can be hid-
den, which allows seamless scrolling, up and down, 
through the whole file.

MATLAB® is a registered trademark of The MathWorks, 
Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

http://www.mathworks.com
https://www.crcpress.com
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xxxi

Convention for Voltage and Current Symbols

The following convention for current and voltage sym-
bols is adhered to in this book as much as possible:

• Capital letter with capital subscript denotes dc, 
or average, quantity. Example: VO.

• Capital letter with lowercase subscript denotes 
rms value of an alternating quantity, its Fourier 
transform, or its Laplace transform. In some 
cases, the capital subscript is used, as when 
referring to a circuit element to avoid confusion 
with nodes or terminals. Examples: Io, Vi(ω), 
IC(s), VTh(s).

• Capital letter with m subscript denotes the peak 
value of a sinusoidal quantity. Example: Im sin ωt.

• Lowercase letter with capital subscript denotes 
a total instantaneous quantity. Example: vSRC.

• Lowercase letter with lowercase subscript 
denotes a small signal of zero average value. 
Example: iy.

• Boldface, not italicized, symbol of voltage, cur-
rent, or power denotes a phasor. Example: Vb.

• Double subscript in a voltage symbol denotes 
a voltage drop from the node or terminal des-
ignated by the first subscript to the node or 
terminal designated by the second subscript. 
Example: Vab. Nodes or terminals are denoted 
by lowercase subscripts or numbers.

• Double subscript in a current symbol denotes 
a current flowing from the node or terminal 
designated by the first subscript to the node or 
terminal designated by the second subscript. 
Example: iab.

• Non-italic subscripts are used for denoting 
phases in three-phase systems, for “rms,” 
“max,” and “min” in subscripts.
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Objective and Overview

This chapter introduces some basic notions on electric 
circuits before embarking on circuit analysis in the fol-
lowing chapters.

The chapter begins by explaining what electric circuits 
are, what they are used for, and what conservation laws 
they obey. The primary circuit variables of current and 
voltage are defined with reference to a useful and easy-
to-follow, hydraulic analogy. The significance of direc-
tion of current and polarity of voltage is emphasized 
because of the key roles these play in circuit analysis. 
The relation of current and voltage to power and energy 
is derived, and active and passive circuit elements are 
characterized by the way they handle energy. The three 
passive circuit parameters of resistance, capacitance, 
and inductance are justified as accounting for three 
basic attributes of the electromagnetic field, namely, 
energy dissipation and energy storage in the electric and 
magnetic fields. The chapter concludes with an exami-
nation of the idealizations and approximations made in 
the circuits approach.

1.1  What Are Electric Circuits 
and What Are They Used For?

Definition: An electric circuit is an interconnection of com-
ponents that affect electric charges in some characteristic 
manner.

An example is a battery connected to a heater 
through a switch, as illustrated diagrammatically in 
Figure 1.1. Figure 1.2 is the corresponding circuit dia-
gram in terms of symbols for the three components. 
When the switch is in the closed position, as shown, 
it allows electric charges to flow through the heater. 
In doing so, the charges impart some of their energy 
to the heater, thereby generating heat and raising the 
temperature of the heater metal. The battery restores 
energy to the electric charges, thereby allowing them 
to flow continuously through the circuit. Opening the 
switch interrupts the flow of charges and turns off the 
heater. Electrical installations in buildings provide 
many other examples of electric circuits, including 
lighting, air conditioning, alarm, and remote control 

systems. Electronic circuits, consisting of electrical and 
electronic components, are at the heart of electronic 
equipment of all kinds.

Electric circuits are used in two ways:

 1. To perform some useful task, as in the case of 
the heater of Figure 1.1 or in the case of elec-
trical installations in buildings or in the case of 
electronic equipment

 2.  To model or emulate the behavior of some com-
ponent or system, as explained in Section  1.8. 
The modeling is not restricted to electric or 
electronic components or systems but can be 
applied to mechanical, thermal, and fluidic 
systems.

1
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FIGURE 1.1
An electric circuit.

+

–
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charge
HeaterBattery

Switch

FIGURE 1.2
Circuit diagram for Figure 1.1.
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1.2  What Laws Govern the Behavior 
of Electric Circuits?

Concept: The behavior of electric circuits is governed by two 
fundamental conservation laws: conservation of energy and 
conservation of charge.

Energy is conserved in the sense that it can neither be 
created out of nothing nor be destroyed into nothing. It 
can only be converted from one form to another. A solar 
cell converts light energy to electric energy. An electric 
motor converts electric energy to mechanical energy. 
Strictly speaking, the universal conservation law is for 
mass + energy, but since conservation of mass does not 
play a role in the behavior of electric circuits, it is energy 
alone that is conserved.

Similarly, electric charges can be neither created nor 
destroyed. Materials or objects in their natural state are 
electrically neutral, that is, they contain equal quantities 
of positive and negative charges. These can be separated 
through expenditure of energy. In a battery, for example, 
energy-consuming reactions detach electrons from their 
parent atoms and raise their energies so that they flow 
through an external circuit connected to the battery. 
Because they are conserved, electric charges always flow in 
closed paths. If they did not flow in a closed path, then 
charges will start at a location where they are being cre-
ated and end up in a location where they are destroyed, 
in violation of conservation of charge.

In principle, it is possible to analyze the behavior of 
electric circuits in terms of energy and charge. However, 
this is seldom done in practice. It is much more con-
venient, as explained in Section 2.7, to analyze electric 
circuits using two common circuit variables, namely, 
electric current and voltage.

1.3  What Is Electric Current?

To explain the meaning of electric current, a useful 
hydraulic analogy can be invoked. Consider water flow-
ing down from a reservoir aboveground through some 
form of a water-driven turbine connected to a mechani-
cal load (Figure 1.3). A motor-driven pump recirculates 
the water from the turbine outlet back to the reservoir. 
The system of Figure 1.3 can be described as a “hydrau-
lic circuit” and is analogous to the electric circuit of 
Figures 1.1 and 1.2. The pump and reservoir are analo-
gous to the combination of battery and switch. The pump 
raises the potential energy of water and can be used to 
turn the flow on and off. The reservoir stores water at 
a higher potential energy with respect to ground level. 
As a power-consuming load, the turbine and its load are 
analogous to the heater. In flowing from the reservoir 

through the turbine, the potential energy of water is 
converted to kinetic energy, which in turn is converted 
by the turbine to mechanical energy. The pump, driven 
from a source of energy, such as the electricity supply 
or an internal combustion engine, utilizes this energy to 
raise the potential energy of the water back to the level 
of the reservoir.

A close analogy exists between the flow of water in 
Figure 1.3 and the flow of electric charge in Figure 1.2. 
More specifically, the volume of water that flows past a 
designated location in Figure 1.3, such as the outlet of 
the reservoir, over a specified interval is analogous to 
the quantity of charge that flows past a designated loca-
tion in Figure 1.2, such as a terminal of the battery, 
over the same interval. The rate of flow of water in the 
hydraulic case is analogous to the rate of flow of charge 
in the electric circuit. The rate of flow of electric charge 
is the value of the electric current, or simply the current. 
In general, current is defined as follows.

Definition: The current at any given point in an electric cir-
cuit and at a specified instant of time is the rate of flow of 
electric charge past the given point at that instant.

To express this relation quantitatively, the units of 
charge and current must be specified. The unit of charge 
in the standard SI (Système International, in French, 
Appendix A) units is the coulomb, denoted by the sym-
bol C, and the   standard unit of current is the ampere, 
denoted by the symbol A, where a current of one ampere 
is a rate of flow of one coulomb per second.

If the flow of water in Figure 1.3 is steady, that is, it 
is not changing with time, the rate of flow is constant. 
Under these conditions, the volume of water that crosses 
any given location in the hydraulic circuit increases 
 linearly with time:

 Volume of flow Constant rate of flow Time= ( )´  (1.1)

Mechanical
load

Ground level

Reservoir

Turbine

Pump

FIGURE 1.3
Hydraulic analogy.
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where the volume of flow is, say, in liters, the rate of 
flow is in liters/second, and time is in seconds.

Similarly, if the rate of flow of charge in the electric 
circuit of Figure 1.2 is steady, the current is constant, 
and the quantity of charge that crosses any given point 
in the circuit increases linearly with time, as illustrated 
in Figure 1.4a. A current that is constant with respect to 
time is a direct current, or dc current.

In general, the rate of flow of charge may vary with 
time, in which case an instantaneous current is defined 
at any particular instant of time as the slope of the charge 
vs. time graph at that instant. That is,

 
i

dq
dt

=
 

(1.2)

In Figure 1.4b, for example, where q is shown to vary 
arbitrarily with time, the current i1 at the instant of time t1 
is the slope, dq/dt, of the q vs. t graph at t = t1. In Figure 1.4a, 
the slope is constant and is equal to the dc current I.

By convention, dc currents are denoted by italic  capital 
letters and instantaneous currents by italic small letters, 
with capital subscripts in both cases, as may be required 
(Convention for Voltage and Current  Symbols, p. xxxi). 
Thus, IO and ISRC are dc currents, whereas iO and iSRC are 
instantaneous currents.

1.4  What Is the Direction of Current?

Convention: It is assumed in circuit analysis that the 
 direction of current is the same as that of the flow of positive 
electric charges. This assigned positive direction is indicated 
by an arrow associated with the current symbol.

The reason for this convention is purely historical. 
It was postulated in the eighteenth century at a time 
when the nature of current carriers was not known. 
By current carriers is meant the charges whose rate of 
flow equals the current. It is now known that in most 
 metals, current carriers are primarily negative charges, 
in the form of conduction electrons, that is, electrons 
that have detached from their parent atoms and are free 
to move under the influence of an applied electric field. 

In semiconductors and some metals, current carriers can 
be what are effectively positive charges, or holes, as they 
are called. In a conducting liquid, or electrolyte, cur-
rent carriers are positively charged ions and negatively 
charged ions. In a gas, current carriers are positively 
charged ions, negatively charged ions, or electrons. 
Nevertheless, the convention in circuit analysis is that 
the direction of current is that of the flow of assumed posi-
tive electric charges, irrespective of the sign of the charges that 
actually carry the current. This is convenient and does not 
cause any confusion if applied consistently. If negatively 
charged current carriers flow in a given direction, then 
we can simply consider the current to be due to an equal 
flow of positive charges in the direction opposite to that 
of the flow of the negatively charged current carriers. 
This is explained more fully in Example 1.1.

Unless explicitly stated otherwise, it will henceforth 
be assumed that current carriers are positive charges and 
that the direction of current is that of the flow of positive 
electric charges, as indicted in Figure 1.2. It should be 
emphasized that current always has a direction, just as 
hydraulic flow has a direction. It is meaningless to specify 
a current without indicating its direction.

Example 1.1: Steady Flow of Electric Charges

(a) Consider positive electric charges flowing continu-
ously in the positive x-direction in a conducting medium 
of cross-sectional area A, as illustrated in Figure 1.5. If the 

Time, t

I is dc

(a) (b)

Charge, q Charge, q

Time, t
t1

i1= slope

q1 dt
dq

I=dq/
dt=co

nsta
nt

t=t1

FIGURE 1.4
(a) Constant rate of flow of charge and (b) varying rate of flow of charge.

x

x

x-direction

Cross-sectional
area A

Flowing positive
charges

FIGURE 1.5
Figure for Example 1.1.
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rate of flow is constant at 0.5 C/s, what is the current in 
amperes and in milliamperes (mA), both in magnitude 
and direction? (b) If the positive electric charges flow at a 
constant rate of 0.5 C/s in the negative x-direction, what 
is the current in the positive x-direction? (c)  If negative 
charges flow in the positive x-direction at a constant rate 
of 0.5 C/s, what is the current in the positive x-direction?

Solution:

 (a) According to the discussion of Section 1.3, q is the 
quantity of charge that flows past a specified loca-
tion in the pathway of flow, such as the plane xx′ 
in Figure 1.5 and in Figure 1.6a. If the rate of flow 
is constant at 0.5 C/s, then q increases linearly with 
time, that is, q = 0.5t, in accordance with Equation 
1.1 and as illustrated in Figure 1.4a. According to 
Equation 1.2, the current is constant and is equiva-
lent to a dc current of Ipx+ = dq/dt = 0.5 A. Its direc-
tion is that of the flow of positive charge, that is, 
in the positive x-direction, as indicated by the cur-
rent arrow in Figure 1.6a. To convert this current to 
mA, it is multiplied by the number of mA in 1 A, 
which is 103. Thus, Ipx+ = (0.5 A) × mA/A. The ‘A’ 
unit cancels out, giving Ipx+ = 0.5 × 103 ≡ 500 mA.

 (b) Let the required current in the positive x- direction, 
due to positive charges flowing in the nega-
tive x-direction, be denoted as Ipx− (Figure  1.6b). 
Suppose we add to this flow another flow of posi-
tive charges in the positive x-direction at a con-
stant rate of 0.5 C/s, equivalent to the current Ipx+ 
(Figure 1.6b). As a result, there is no net flow of 
charge in either direction past the reference loca-
tion  xx′ in Figure 1.6b. This means that q is zero 
and the total current in the positive x-direction is 
zero. That is, Ipx+ + Ipx−  =  0 so that Ipx−  =  −Ipx+. In 
other words, the current in the positive x-direction 
due to positive charges moving in the negative 
x-direction at a constant rate of 0.5 C/s is −0.5 A.

 (c) Let the required current in the positive x- 
direction due to the flow of negative charges in 
this direction be denoted as Inx+ (Figure 1.6c). 
Suppose that we add to this flow an equal flow 
of positive charges also in the positive x- direction 
at the same rate of 0.5 C/s,  equivalent to the cur-
rent Ipx+ (Figure 1.6c). It can now be argued that 
the equal quantities of positive and negative 
charges  flowing in the same direction at equal 
rates will completely neutralize one another. This 
means that there will be no net flow of charge in 
either direction past the reference location  xx′ in 
Figure  1.6c. The total current is therefore zero. 
That is, Ipx+ + Inx+ = 0 so that Inx+ = −Ipx+. In other 
words, the current due to the flow of negative 
charges in the positive x-direction at a constant 
rate of 0.5 C/s is −0.5 A.

The three currents are indicated in Figure 1.6d. The 
 following should be noted:

 1. In terms of assignment in the positive x- direction, 
Ipx+, Ipx−, and Inx+ are all in the same direction, as 
symbols. But in terms of numerical values, Ipx+ has 
a positive value, whereas Ipx− and Inx+ have nega-
tive values. This means that the conventional 
current, due to the flow of positive  charges, 
is in the positive x-direction in the case of Ipx+ 
and in the negative x-direction in the  case of 
Ipx− and Inx+.

 2. Both Ipx− and Inx+ have been arbitrarily assigned a 
positive direction in the positive x-direction, as stip-
ulated in this example. Had they been assigned a 
positive direction in the negative x-direction, the 
current values of Ipx− and Inx+ would be +0.5  A 
instead of −0.5 A.

Alternatively, it could be argued that q in case (a) is 
due to the movement of positive charge in the posi-
tive x- direction, which makes q positive. By the same 
token, q in both cases (b) and (c) is negative. According 

x

(a)

(b)

+ + + + + + + + + + + + + + + + 0.5 C/s

0.5 C/s

x

x

x

x

q

0.5 C/s

0.5 C/s

Inx+

0.5 C/s

Ipx–x

(c)

(d)

Ipx+ = 0.5 A Ipx– = –0.5 A Inx+ = –0.5 A

Ipx+ = 0.5 A

Ipx+ = 0.5 A

Ipx+ = 0.5 A

x

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

– – – – – – – – – – – – – – – –

FIGURE 1.6
(a) Positive charges flowing in the positive x-direction, (b) upper trace, 
positive charges flowing in the negative x-direction; lower trace as 
in (a), and (c) upper trace, negative charges flowing in the positive 
x-direction; lower trace as in (a).
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to Equation  1.2, the value of the resulting current is 
negative so that the currents Ipx− and Inx+ have negative 
values.

Problem-Solving Tip

• Always check the units on both sides of an equa-
tion, and always specify the units of the results of 
calculations.

Primal Exercise 1.1

What is the current in the positive x-direction in the 
 preceding example if negative charges move in the neg-
ative x-direction at a constant rate of 0.5 C/s?

Ans. 0.5 A.

Since i is the slope of the q vs. t graph, in accordance 
with Equation 1.2, it follows from this equation that

 
q idt= ò  

(1.3)

In other words, q is the area under the i vs. t graph. 
In Figure 1.7a, for example, q increases linearly from 0 at 
t = 0 to a peak value of 6 μC at t = 1 ms and then decreases 
linearly back to zero at t = 1.5 ms. The current, being the 
slope of the q vs. t graph, is constant at a positive value 
of 6 μC/1 ms, or 6 mA, during the interval from 0 to 1 ms 
(Figure 1.7b). The current then reverses direction and 
becomes −6 μC/0.5 ms = −12 mA during the interval from 
1 to 1.5 ms. The current returns to zero at t = 1.5 ms. The 
area under the i vs. t graph increases linearly from zero at 
t = 0 and reaches a peak value of 6 mA × 1 ms = 6 μC at 
t = 1 ms. The area is negative during the interval from 1 to 
1.5 ms and subtracts from the positive area. At t = 1.5 ms, 
the positive and negative areas are equal in magnitude 
so that the net area is zero, corresponding to a q of zero 
at t > 1.5 ms. The negative current is in a direction oppo-
site to that of the positive current so that at t = 1.5 ms as 
much charge has flowed in one direction as in the oppo-
site direction, and the net flow of charge is zero.

Primal Exercise 1.2

Rework the example of Figure 1.7, assuming that the 
charge increases linearly from zero to 15 mC in 0.5 ms 
and then decreases linearly to zero at t = 2 ms.

Ans. i = 30 A, 0 < t < 0.5 ms, and i = −10 A, 0.5 < t < 2 ms.

Primal Exercise 1.3

The current i through a device varies with time as 
shown in Figure 1.8. Determine the charge that passes 
through the device between t = 0 and t = 1.25 s in the 
direction of i.

Ans. 0.75 C.

★Example 1.2: Time-Varying Flow of Electric Charges

Suppose that the flow of charge is given by q = (1 – cost) C, 
0 ≤ t ≤ 2π s, as illustrated in Figure 1.9a. It is required to 
 follow q and i over the interval from t = 0 to t = 2π s.

t, ms

t, ms

i, mA

21

q, µC

6
1

6

–6

0

0

–12

(a) (b)

2

FIGURE 1.7
Relation between current and charge. (a) Variation of charge with time 
and (b) corresponding variation of current with time.

1
2

i, A

1
t = 1.25 s

–1

t, s

FIGURE 1.8
Figure for Primal Exercise 1.3.

★ Sections and Examples whose titles are marked with this symbol 
may be skipped in a more limited coverage of the material.
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2
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FIGURE 1.9
(a) Variation of charge with time and (b) corresponding variation of 
current with time.
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Analysis: Recall that q is the quantity of charge that flows 
past an arbitrary location xx′ in the positive x-direction 
between a time t = 0 and a time t > 0.

 1. 0  ≤  t  ≤ π/2  s: Charge starts to flow at t = 0 in the 
positive x-direction and q increases with time 
(Figures  1.9a and 1.10a). The rate of flow, equal 
to the slope dq/dt of the q vs. t graph, is the cur-
rent i, where i = dq/dt = sint increases from 0 at t = 0 
to a maximum positive value of 1  A at t  =  π/2  s 
(Figure 1.9b). The direction of i is that of the flow, 
that is, in the positive x-direction.

 2. π/2 ≤ t < π s: Charge continues to flow in the posi-
tive x-direction, and q continues to increase, but 
at a decreasing rate of flow, so dq/dt decreases in 
magnitude but remains positive. Current continues 
to be in the positive x-direction but its magnitude 
decreases from its maximum positive value of +1 A 
toward zero (Figures 1.9b and 1.10a).

 3. t  =  π s: The flow stops momentarily, dq/dt = i  =  0 
(Figures 1.9b and 1.10b), and q reaches its maximum 
value of 2 C. The maximum quantity of charge has 
passed xx′ in the positive x-direction.

 4. π < t ≤ 3π/2 s: q decreases, which means that charge 
now flows in the negative x-direction so as to reduce 
the net quantity of charge that has flowed in the posi-
tive x-direction past xx′ (Figure 1.10c). The magni-
tude of the rate of flow in the negative x-direction, 

|dq/dt|, increases with time, reaching a maximum 
at t = 3π/2 s. Since dq/dt is negative, the current is in 
the negative x-direction and its magnitude increases 
to a maximum of 1 A at t = 3π/2 s (Figure 1.9b).

 5. 3π/2 ≤ t < 2π s: Charge continues to flow in the nega-
tive x-direction but at a decreasing magnitude of the 
rate of flow. The current continues to be in the nega-
tive x-direction but its magnitude decreases from 
its maximum positive value of +1  A toward zero 
(Figures 1.9b and 1.10c).

 6. t = 2π s: q is back to zero, which means that as much 
charge has flowed in the negative x-direction past 
xx′ as has flowed in the positive x-direction. Since 
dq/dt = 0 at this instant, i = 0.

q starts at zero at t = 0 and ends at zero at t = 2π s, which 
means that a quantity of charge moves in the positive 
x-direction past xx′ during the time between t = 0 and 
t = π s, and this same quantity moves back in the negative 
x-direction between t = π and t = 2π s. Because there is no 
net flow of charge in the negative x-direction at any time, 
q does not go negative. There is current during charge 
movement, the current i having a positive value when 
charge moves in the positive x- direction and a negative 
value when charge moves in the positive x-direction.

Note that the arrow associated with i in Figure 1.10 is 
in the positive x-direction, which means that the assigned 
positive direction of i is in the positive x-direction. 
However, i has a positive value when positive charges 
flow in the positive x-direction and a negative value 
when positive charges flow in the negative x-direction.

The area under the i vs. t graph increases from zero at 
t = 0 and reaches a maximum at t = π, in accordance with 
the q graph. As t increases beyond π, a negative area is 
added to the positive area of the positive half-cycle of i, 
so the net positive area decreases and becomes zero at 
t = 2π s, when q is zero again.

★Example 1.3: Expression for Current 
through a Conducting Medium

Consider a conducting medium of cross-sectional area 
A  m2 through which positively charged particles are 
flowing, as illustrated in Figure 1.5 and reproduced 
in Figure 1.11. The concentration of particles is n par-
ticles/m3, each particle having a charge e C and mov-
ing at a constant speed of u m/s. It is required to (a) 
derive an expression for the current I flowing through 
the conductor and (b) determine I if n = 105 particles/
cm3, A = 1 cm2, e = ±1 μC, and u = ±10 cm/s, consider-
ing all possible sign combinations.

Solution:

 (a) If the particles are assumed to be moving in the 
positive x-direction, then u = dx/dt in the positive 

x

i > 0

(a)

q

x
(b)

(c)
x

0 < t <

< t < 2

t = i = 0

i < 0

x

x

x

x

x

x

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

 s

 s

 s

FIGURE 1.10
(a) Positive charges flowing in the positive x-direction, 0 < t < π s, 
(b) charge flow stops momentarily at t = π s, and (c) positive charges 
flowing in the negative x-direction, π < t < 2π s.
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x-direction. Consider a disk of thickness dx = udt m 
that lies immediately in front of the plane xx′ 
(Figure 1.11). The volume of the disk is Audt m3, 
and the charge enclosed by the disk is

 

dq e
C

n Audt

enAudt

= æ
è
ç

ö
ø
÷´

æ
è
ç

ö
ø
÷´

=

Particle
Particles

m
m3

3( )

C  (1.4)

Note that “particle” and “m3” cancel out in the 
middle part of Equation 1.4, leaving the unit of 
charge C on the right-hand-side (RHS). In a time 
dt, the charges move a distance dx  =  udt so that 
all the charge dq enclosed by the disk will move 
past the plane  xx′. The charge that moves past the 
plane  xx′ per second is dq/dt. Dividing both sides 
of Equation 1.4 by dt, it follows from Equation 1.4 
that the current I is

 
I

dq
dt

Aneu= =
 

(1.5)

 (b) Substituting positive numerical values, with cm units 
converted to m units, and microcoulomb con verted to 
coulomb, I = (10−4 m2)(105 × 106  particles/m3)(10−6 C/
particle)(10 × 10−2 m/s) = 1 A.  The positive numerical 
value of I is in accordance with the convention that if 
positive electric charges flow in the positive x-direc-
tion, the conventional direction of current is also in 
the positive x- direction. If positive electric charges 
flow at a constant rate in the negative x-direction 
and u = −10 cm/s, I = 1 × 105 × 10−6 × (−10) = −1 A. 
The negative value of I signifies that the current is 
in the negative x-direction, as expected. If the par-
ticles are negatively charged, that is, e = −1 μC, and 
u = 10 cm/s, I = 1 × 105 × (−10−6) × (10) = −1 A. This 
is in accordance with the conclusion in Example 1.1, 
part (c), that if negative electric charges flow in the 
positive x-direction, the current is in the negative 
x- direction. Finally, if both e and u are negative, then 
the current is in the positive x-direction.

★ Exercise 1.4

The concentration of conduction electrons in a 1  mm 
diameter copper wire is 8.4  ×  1028 electrons/m3, the 
charge of an electron being −1.6  ×  10−19 C. Determine 
the current if the net velocity of electrons in the positive 
x-direction is 0.02 cm/s. What is the direction of current?

Ans. −2.11  A, the negative sign indicating that the 
 current is in the negative x-direction.

1.5  What Is Voltage?

Consider a volume Λ of water at a height h aboveground, 
where h is measured between the ground and the center 
of mass of Λ (Figure 1.12a). The potential energy of this 
volume of water with respect to the assumed ground 
level is

 PE = ( )Lr hg (1.6)

where 
ρ is the density of water so that Λρ is the mass of the 

volume Λ of water
g is the acceleration due to gravity (9.81 m/s2 at sea 

level)

The potential energy per unit volume is then

 

PE
L

ræ
è
ç

ö
ø
÷ = hg

 
(1.7)

which is in fact the pressure, above atmospheric, at 
the assumed ground level due to a column of water of 
height h. The larger the PE/Λ, the greater is the amount 
of work that the volume of water Λ can do in falling 

Area A
x

u

x-direction

x

dx = udt

FIGURE 1.11
Figure for Example 1.3.

h

––––
(a) (b)

+q
A

B

+Q

–Q

+ + + +

V hg

Ground level

FIGURE 1.12
Analogy for voltage. (a) Volume of water Λ at a height h above ground 
and (b) a charge +q close to a positively charged body ‘A’.
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through the height h. The work could be used to per-
form some useful task, such as driving a turbine, as in 
Figure 1.3.

In a similar manner, a quantity of charge +q, analogous 
to the volume Λ, located close to a positively charged 
body ‘A’ of charge +Q and some distance away from a 
negatively charged body ‘B’, of charge −Q, possesses 
electric potential energy (Figure 1.12b). The reason for 
this electric potential energy is that work must be done 
in bringing +q close to the positively charged body ‘A’, 
against the repulsion by this body and the attraction by 
the negatively charged body ‘B’. This work is stored as 
potential energy in the system. If unconstrained, the 
charge +q will move away from ‘A’ toward ‘B’, because 
of the repulsion by ‘A’ and the attraction by ‘B’. Similarly, 
the volume of water Λ, if unconstrained, will fall toward 
ground level under the influence of gravity. In both cases, 
unconstrained Λ and +q move from a region of higher 
potential energy to a region of lower potential energy 
and can do useful work in the process through conver-
sion of the loss of potential energy to another form of 
energy. Dividing the electric potential energy of a given 
charge by the charge gives a quantity denoted as voltage 
and is analogous to the pressure ρhg in the case of water.

Definition: The voltage between two points is the change in 
electric potential energy of a charged particle as it moves from 
one of these points to the other, divided by the charge of the 
particle.

The unit of voltage in SI units is the volt, denoted 
by the symbol V, and is such that if a particle having a 
charge of +1 C moves down a voltage of 1 V, it loses 1 J 
of electric potential energy.

Equation 1.6 can be more generally expressed as a 
product:

 

Gravitational potential energy difference between 

two pointts Volume Pressure difference 

between the two points

= ´

 

By analogy,

 

Electric potential energy difference between 

two points Ch= aarge Voltage difference 

between the two points

´

 

It follows that if a particle of charge +1 C moves 
through a voltage difference v V, the change in electric 
potential energy (PE) of the particle is directly propor-
tional to the voltage difference, that is, change in PE = 
(1  C) × (v V) = v J; if a particle of charge δq C moves 
through a voltage difference v V, the change in potential 

energy of the particle is also directly proportional to the 
charge of the particle, that is, δw = vδq, or v = δw/δq. In 
the limit, as δq approaches zero,

 
v

dw
dq

=
 

(1.8)

If w varies linearly with q, such as w = kq, where k is 
a constant, then dw/dq  =  w/q  =  k. If, however, w var-
ies nonlinearly with q, as for q vs. t in Figure 1.4b, then 
Equation 1.8 defines v at a particular value of q in this 
more general case.

If a particle of charge +q C moves to a point that is v V 
higher in voltage, it gains qv J in potential energy, and 
the voltage is (+qv J)/(+q) = v V. On the other hand, if 
a particle of charge −q C moves to a point v V higher in 
voltage, it loses qv J in potential energy. The change in 
potential energy is Δw = (final PE – initial PE) = −qv J, 
and the voltage is (−qv J)/(−q) = v V, independent of the 
sign of the charge.

A voltage that is constant with respect to time is a dc 
voltage; dc voltages are denoted by italic capital letters 
and instantaneous voltages by italic small letters, with 
capital subscripts in both cases, as may be required. 
Thus, VO and VSRC are dc voltages, whereas vO and vSRC 
are instantaneous voltages.

Potential energy is expressed with respect to some 
chosen reference that is assigned an arbitrary value, 
usually zero. For example, gravitational poten-
tial energy may be expressed relative to a reference 
value of zero at sea level. Similarly, voltage is always 
expressed with respect to some reference, usually that 
of the earth, which is assigned a voltage of zero. In 
electric circuits, what is of interest is the voltage dif-
ference between two points in the circuit. A battery 
voltage of 3 V, for example, means that the voltage dif-
ference between the positive and negative terminals of 
the battery is 3 V. It is meaningless in an electric circuit to 
speak of the voltage at a certain point without specifying the 
point with respect to which this voltage is assigned. When 
the circuit is connected to ground at some point, this is 
indicated by the ground symbol shown in Figure 1.13a, 
as in PSpice. If the circuit is not grounded, the refer-
ence point for voltages in the circuit is commonly indi-
cated by the triangle symbol shown in Figure 1.13b. 
Table 1.1 lists the electrical quantities discussed so far 
and their counterparts in the hydraulic analogy.

(a) (b)

FIGURE 1.13
(a) Ground symbol and (b) symbol for voltage reference other than 
ground.
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1.6  What Is Voltage Polarity?

Just as current has direction, voltage, or more correctly 
the voltage difference between two points, has a polarity 
that indicates which of the two points is at a more posi-
tive voltage with respect to the other point. In the case of 
a battery, for example, the positive (+) and negative (−) 
terminals are marked on the battery in some appropri-
ate manner. Similarly in an electric circuit, a plus sign 
next to a point and a minus sign next to another point, 
as in Figure 1.14, indicate that point ‘a’, having the + 
sign, is assigned a more positive voltage than point ‘b’ 
having the − sign. Again, it is meaningless to specify a volt-
age between two points in a circuit, such as vX in Figure 1.14 
without indicating the polarity or direction of the voltage. vX 
in Figure 1.14 is assigned the positive polarity indicated. 
According to this assignment, then in going from ‘a’ to 
‘b’, a voltage drop vX is encountered, whereas in going 
from ‘b’ to ‘a’, a voltage rise vX is encountered. If the 
numerical value of vX is a positive number, point ‘a’ is 
in fact positive with respect to point ‘b’. If the numerical 
value of vX is a negative number, point ‘b’ is in fact posi-
tive with respect to point ‘a’.

Primal Exercise 1.5

Assume that vX = −5 V in Figure 1.14. (a) In which direc-
tion is the actual voltage drop, and (b) in which direction 
is the actual voltage rise?

Ans. (a) Actual voltage drop from ‘b’ to ‘a’; (b) actual 
voltage rise from ‘a’ to ‘b’.

Primal Exercise 1.6

(a) If a charge of +0.1 C moves to a point that is 3  V 
higher in voltage, by how much does its electric poten-
tial energy increase or decrease? (b) If a charge of −0.2 C 
moves to a point that is 5 V higher in voltage, by how 
much does its electric potential energy increase or 
decrease? (c) Are the movements in (a) and (b) those of 
an unconstrained particle, or do they require expendi-
ture of energy on the particle?

Ans. (a) Electric potential energy of the particle increases 
by 0.3  J; (b) electric potential energy of the particle 
decreases by 1 J; (c) energy is expended on the particle in 
(a), whereas the motion in (b) is that of an unconstrained 
particle.

1.7  How Are Energy and Power Related 
to Voltage and Current?

It is seen from the preceding discussion that current car-
riers can possess two types of energy: potential energy 
that depends on the voltage and kinetic energy that 
depends on the current, that is, the rate of flow of the 
carriers, and hence their velocity. More will be said 
about this in future chapters.

Power p is defined as the rate at which energy w is 
generated or expended:

 
p

dw
dt

w pdt= = òor
 

(1.9)

Substituting from Equations 1.8 and 1.2,

 
p

dw
dt

dw
dq

dq
dt

vi= = ´ =
 

(1.10)

with v in volts and i in amperes, p in Equation 1.10 is in 
joules per second, or watts, denoted by the symbol W. 
The physical interpretation of Equation 1.10 is that a 
current of i A represents a flow of charge of i C/s. As 
each 1  C moves through a voltage difference v V, its 
electric potential energy changes by v J/C. The change 
in electric potential energy of the total charge in J/s is 
(v J/C) × i(C/s) = vi J/s, which is the power in watts.

What does conservation of energy in a circuit mean? 
It means that at any instant of time, the total energy 
delivered by sources of energy in the circuit, such as 
batteries, must be equal to the total energy absorbed in 
energy-absorbing elements in the circuit, such as heat-
ing  elements or lamps:

 w w tdelivered absorbed= at every instant  (1.11)

TABLE 1.1

Hydraulic Analogy

Electrical Quantity Hydraulic Quantity

Quantity of charge Volume of flow
Current Rate of flow
Voltage Pressure

+

–
vX

Electric circuit

a

b

FIGURE 1.14
Voltage polarity.
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Otherwise, if the energy delivered at any instant of 
time exceeds, say, that absorbed, then at least in prin-
ciple, the system can be stopped at that instant, result-
ing in an excess of energy delivered over that absorbed. 
This means that energy can be extracted from the sys-
tem at no energy cost, which violates conservation of 
energy.

Conservation of energy implies conservation of power. For 
if the power delivered or absorbed during a time inter-
val Δt is p, the corresponding energy is pΔt. Substituting 
in Equation 1.11,

 p t p tdelivered absorbed( ) = ( )D D  (1.12)

Canceling out Δt,

 p pdelivered absorbed=  (1.13)

Power is conserved in the circuit as a whole at every 
instant of time.

Example 1.4: Power Delivered or Absorbed

Assume that the lamp in Figure 1.15 is rated at 0.75 W, 
3 V, that is, it absorbs 0.75 W when a voltage of 3 V is 
impressed across its terminals. This is the total power 
that is converted primarily to light but also to some heat 
that is inevitably generated in the process. It is required 
to determine (a) the current through the lamp and its 
direction based on power absorption, (b) the power 
delivered by the battery, and (c) the direction of current 
through the battery based on power delivery.

Solution:

 (a) Since terminals ‘a’ and ‘b’ of the battery are directly 
connected to terminals a′ and b′ of the lamp, respec-
tively, by a wiring connection, the voltage across 
the lamp is also 3 V, the same as the battery voltage. 
Because the lamp absorbs 0.75 W, it follows from 
Equation 1.10 that I = (0.75 W)/(3 V) = 0.25 A. The 
direction of I is that of the voltage drop from a’ to 
b’ because power absorption by the lamp implies 
that the assumed positive charges that carry I lose 
energy as they flow through the lamp. They must 

therefore flow through the lamp from terminal a’ 
that is at a higher voltage to terminal b’ that is at a 
lower voltage.

 (b) By conservation of power in the circuit as a whole, 
the battery must deliver 0.75 W, neglecting the insig-
nificant power dissipated in the connecting wires 
between ‘a’ and a′ and between ‘b’ and b′. Power dis-
sipation in the connecting wires is always neglected 
in electric circuits, unless explicitly stated otherwise.

 (c) As the assumed positive charges that carry I flow 
through the battery, they must regain the energy 
that was lost in flowing through the lamp. Hence, 
they must flow in the battery from the negatively 
charged terminal toward the positively charged 
terminal, that is, in the direction of a voltage rise 
through the battery.

Problem-Solving Tip

• Always mark on the circuit diagram the directions 
of all currents and the polarities of all voltages.

The argument made in the preceding example concern-
ing power absorption and delivery underlies an impor-
tant, general concept, usually referred to as the passive 
sign convention:

Concept: If power is absorbed in a given circuit element, or 
component, current flows through that element in the direc-
tion of a voltage drop across the terminals of the given ele-
ment, whereas if power is delivered by a given circuit element, 
current flows through that element in the direction of a volt-
age rise across the terminals of the given element.

The physical justification is simply that positive 
charges flowing through a circuit element, or com-
ponent, in the direction of a voltage drop lose electric 
potential energy as they flow through the element, as 
illustrated in Figure 1.16a. This loss of energy implies 
absorption of power in the circuit element. Conversely, 
positive charges flowing through a circuit element in 
the direction of a voltage rise (Figure 1.16b) gain electric 
potential energy as they flow through the element. This 
gain of energy implies delivery of power by the circuit 
element to the rest of the circuit.

I

+

–
3 V

a

b

a

b
I

II

+

–

3 V

FIGURE 1.15
Figure for Example 1.4.
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Circuit elements

FIGURE 1.16
Positive charges flowing through a circuit element in the direction of a 
voltage drop (a) and in the direction of a voltage rise (b).
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1.7.1  Positive and Negative Values 
of Circuit Variables

It will be seen in future chapters that before a circuit is 
analyzed, it is necessary to assign voltages and currents in 
various parts of the circuit, even though the actual direc-
tions of these voltages and currents are not yet known. 
What is done, therefore, is that the directions of these volt-
ages and currents are assigned arbitrarily, using appropri-
ate symbols, and subject to constraints imposed by circuit 
laws and the v–i relations of the circuit elements, as will be 
explained later. After the circuit is analyzed, if the numer-
ical value of a given voltage or current is positive, then the 
actual direction of that voltage or current is the same as 
that assumed. On the other hand, if the numerical value 
of a given voltage or current is negative, the actual direc-
tion of that voltage or current is opposite to that assumed. 
Hence, negative values of voltages and currents are per-
fectly natural in electric circuits. This notion is not at all 
unusual. Suppose, for example, that the voltage of a bat-
tery needs to be measured but the battery terminals are 
unmarked. In this case, the positive lead of a voltmeter is 
connected arbitrarily to one of the battery terminals and 
the negative lead of the voltmeter to the other terminal 
of the battery. If the voltmeter reads a positive voltage, 
the positive terminal of the battery is that connected to 
the positive lead of the voltmeter. If the voltmeter reads 
a negative voltage, the positive terminal of the battery is 
that connected to the negative lead of the voltmeter.

Similarly, a negative value of power absorbed by a given 
element means that this element actually delivers power, 
and a negative value of delivered power by a given ele-
ment means that this element actually absorbs power.

To summarize, consider Figure 1.17a, which shows 
the assigned positive direction of current IA through an 
element ‘A’, and the assigned positive polarity of the 
voltage VA across ‘A’. IA is arbitrarily assigned in the 
direction of a voltage drop VA. The implication is that 
in the expression for power, PA  =  VAIA, positive values 
of VA and IA make PA positive. Since IA is in the direction 
of a voltage drop VA, then in accordance with the pas-
sive sign convention and its physical interpretation, a 
positive PA is power absorbed by ‘A’. Thus, if IA = 2 A 
and VA = 9 V (Figure 1.17b), then PA = +18 W of power 
absorbed by ‘A’. On the other hand, if either VA = −9 V or 

IA = −2 A (Figure 1.17c and d), then the power absorbed 
by ‘A’ is PA = −18 W, which means that ‘A’ actually deliv-
ers 18 W, since the power absorbed is negative.

On the other hand, suppose that the assigned positive 
direction of IA is reversed to that of a voltage rise across 
‘A’ (Figure 1.18a). Then a positive value of PA = VAIA is 
power delivered, in accordance with the passive sign con-
vention and its physical interpretation. Thus, if IA = 2 A 
and VA = 9 V (Figure 1.18b), then PA = +18 W is power 
delivered by ‘A’. On the other hand, if either VA = −9 V 
or IA = −2 A (Figure 1.18c and d), then the power deliv-
ered by ‘A’ is PA = −18 W, which means that ‘A’ actually 
absorbs 18 W, since the power delivered is negative.

Primal Exercise 1.7

Consider Example 1.4 and Figure 1.15. (a) What is the 
current that flows from terminal ‘a’ to terminal ‘b’ 
through the battery or from terminal b′ to terminal a′ 
through the lamp? (b) What is the voltage drop from ter-
minal ‘b’ to terminal ‘a’ or the voltage rise from terminal 
‘a’ to terminal ‘b’? (c) How much is the power delivered 
by the lamp and that absorbed by the battery?

Ans. (a) −0.25 A; (b) −3 V; (c) −0.75 W.

Primal Exercise 1.8

The instantaneous power p absorbed by a device is 
shown in Figure 1.19. Determine the average power 
absorbed by the device over the interval 0–5  s. (Note: 
The average of a waveform over a specified interval is 
the net area under the graph of the function over the 
given interval divided by the interval.)

Ans. 0.5 W.
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FIGURE 1.17
Power absorbed related to current and voltage. (a) Assigned positive 
direction of current through a circuit element ‘A’ is that of a voltage 
drop across ‘A’. According to numerical values, the element actually 
absorbs power in (b) and delivers power in (c) and (d).
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FIGURE 1.18
Power delivered related to current and voltage. (a) Assigned positive 
direction of current through a circuit element ‘A’ is that of a voltage 
rise across ‘A’. According to numerical values, the element actually 
delivers power in (b) and absorbs power in (c) and (d).
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FIGURE 1.19
Figure for Primal Exercise 1.8.
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Primal Exercise 1.9

The voltage across a device and the current through it in 
the direction of a voltage drop is as shown in Figure 1.20. 
Determine (a) the power absorbed or delivered by the 
device during the intervals 0 <  t < 1  s and 1 <  t < 2  s 
and (b) the energy absorbed or delivered by the device 
 during the intervals 0 < t < 1 s, 1 < t < 2 s, and 0 < t < 2 s.

Ans. (a) 6  mW absorbed, 6  mW delivered; (b) 6  mJ 
absorbed, 6 mJ delivered, 0.

1.8  What Are Ideal Circuit Elements 
and How Do They Handle Energy?

In circuit analysis, a fundamental conceptual step of great 
importance is taken, namely, that of representing physical 
or “practical” electric components, such as the battery and 
heater in Figure 1.2, in terms of a limited set of idealized, 
or “abstract”, circuit elements. These ideal circuit ele-
ments can be divided into two general categories, active 
and passive, depending on how they handle energy.

Definition: Active circuit elements are capable of delivering 
energy to an electric circuit through conversion of energy, ulti-
mately from some nonelectrical source of energy. Passive circuit 
elements are incapable of doing so.

The battery in Figure 1.2 can be represented by an 
active circuit element because it delivers energy to the 
heater through conversion of the energy of chemical 
reactions to electric energy. A solar cell or an electro-
mechanical generator can be represented by an active 
circuit element because they convert solar energy and 
mechanical energy, respectively, to electric energy. All 
these active circuit elements can be represented using 
ideal sources, as discussed in detail in Chapter 2.

On the other hand, passive circuit elements are inca-
pable of delivering energy in an electric circuit through 

conversion from another source of energy. Instead, they 
can absorb energy for one of the following purposes:

 1. Energy consumption or conversion of energy in 
the  electric circuit to nonelectric energy, which 
could be, for example, heat, light, sound, or 
mechanical energy. Energy-consuming devices 
can often be conveniently represented in electric 
circuits by ideal resistors, which dissipate electric 
energy as heat, as in the case of the heater in Figure 
1.2. The property that allows a resistor to dissipate 
energy is the resistance, denoted by the symbol R.

 2. Temporary storage in the form of electric energy or, 
more specifically, potential energy of current car-
riers. The circuit element that stores this energy 
is an ideal capacitor, and the property associated 
with this electric energy storage is the capaci-
tance, denoted by the symbol C (note that italic C 
is capacitance, whereas nonitalic C is coulomb).

 3. Temporary storage in the form of magnetic 
energy or, more specifically, kinetic energy of 
current carriers. The circuit element that stores 
this energy is an ideal inductor, and the prop-
erty associated with this magnetic energy stor-
age is the inductance, denoted by the symbol L.

Resistance, capacitance, and inductance are referred 
to as circuit parameters. Figure 1.21 illustrates the clas-
sification of the ideal circuit elements, and the circuit 
symbols for an ideal resistor, capacitor, and inductor. 
The designation “circuit element” will henceforth exclu-
sively refer to an ideal circuit element.

The three passive circuit elements are “ideal” in the 
following respects:

 1. Each element performs its designated function 
only. Thus, ideal resistors only dissipate energy. 

Basic ideal circuit elements

Energy storing

Resistor

Electric energy Magnetic energy

Sources

Capacitor Inductor

Active Passive

Energy dissipating 

FIGURE 1.21
Basic circuit elements.
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FIGURE 1.20
Figure for Primal Exercise 1.9.
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They neither store electric energy nor store mag-
netic energy. Ideal capacitors only store electric 
energy. They neither dissipate energy nor store 
magnetic energy. Ideal inductors only store mag-
netic energy. They neither dissipate energy nor 
store electric energy. Practical circuit elements 
are not ideal in this sense. For example, a practi-
cal inductor made from a coil of wire dissipates 
energy because of the finite resistance of the wire. 
Moreover and because the function performed 
by each of the ideal  passive circuit elements is of 
a fundamentally different nature from that per-
formed by the other two elements, none of the 
three ideal circuit elements can be represented 
in terms of the other two. In this sense, the ideal 
circuit elements are also described as basic.

 2. The circuit parameters R, L, and C in a given 
circuit are constant, independent of any current 
or voltage with which they are associated, and 
are also independent of time. It will be shown 
later that the constancy of R, L, and C implies 
linearity of the governing relations for these 
elements. Because of this, basic electric circuits 
comprising ideal circuit elements are referred to 
as  linear time-invariant (LTI) circuits.

It is quite legitimate to question the usefulness of work-
ing with such ideal elements. The justification is that 
consideration of idealized models is a central first step in 
the engineering approach, which has proved so success-
ful in advancing technology. These idealized models, or 
“equivalent circuits”, as they are often referred to in elec-
trical engineering, employ ideal elements to reproduce, 
as a first approximation, the essential behavior of the 
system under consideration, without extraneous details 
that would otherwise hamper unnecessarily the analy-
sis of system behavior. This is the second application of 
electric circuits mentioned in Section 1.1. For example, 
if we are only interested in the current and power in the 
circuit of Figure 1.15, we need not consider the chemi-
cal reactions in the battery, nor the electric field inside 
the battery and how it varies from one terminal to the 
other, nor the internal resistance or the opposition to the 
flow of current carriers through the battery, etc. As a first 
approximation, we can simply represent the battery as 
an ideal voltage source of the same voltage as that mea-
sured between the terminals of the battery. Similarly, if 
the lamp is a light-emitting diode (LED), we need not 
consider how light is produced in the semiconductor, 
nor the intensity of the light and its spectral distribution, 
nor the heat generated in the process, etc. As a power-
absorbing device, the LED may be replaced by an ideal 
resistor that absorbs the same power.

Such idealized models may be used to investigate and 
improve the behavior of the system under consideration. 

If a model does not reproduce the actual behavior of the 
system accurately enough under certain conditions, it is 
refined in order to do so. For example, the resistance of a 
practical inductor can be accounted for, at low frequen-
cies, by adding an ideal resistor; a practical transformer 
or an operational amplifier can be represented by equiv-
alent circuits composed of ideal circuit elements, and 
the behavior of circuits that include these elements can 
be analyzed using their equivalent circuits, as will be 
discussed in future chapters. These equivalent circuits 
can be modified to account for various imperfections in 
transformers or operational amplifiers or to emulate the 
behavior of these components at high  frequencies, for 
example.

It is seen that the study of circuits composed of ideal 
circuit elements is a crucial first step in understanding 
the behavior of various electrical and electronic systems. 
This will be our main concern in this book. Such under-
standing is essential for designing systems that perform 
desired tasks and for improving the performance of 
these systems.

★1.9  Why Resistance, Capacitance, 
and Inductance?

This section explains the significance of the three circuit 
parameters in terms of fundamental attributes of the 
electromagnetic field.

Fundamentally, an electric field is associated with 
electric charges at rest or in motion, and a magnetic 
field is associated with moving electric charges, that is, 
electric current. A rigorous analysis of systems involv-
ing electric charges and currents should therefore be 
 carried out in terms of electromagnetic fields. This, how-
ever, is a daunting task even for relatively simple cases. 
Circuit analysis provides a much easier but nevertheless 
approximate solution that is adequate for a great num-
ber of cases encountered in practice. The nature of these 
approximations is examined in the following section.

If circuit analysis is to solve some electromagnetic 
 problems, even in an approximate manner, it must 
account for some basic attributes of electromagnetic 
fields. Once launched by some source of electro-
magnetic energy, the electromagnetic field has three 
basic attributes, namely, (1) energy dissipation due to 
energy losses in the medium through which the field 
 propagates; (2) electric energy stored in the electric 
component of the electromagnetic field, which repre-
sents the energy expended in establishing the electric 
field; and (3) magnetic energy stored in the magnetic 
component of the electromagnetic field, which repre-
sents the energy expended in establishing the magnetic 
field. In an electric circuit, these three attributes can be 
accounted for, respectively, by the circuit parameters of 
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resistance, capacitance, and inductance. This implies 
that an  electrical or electronic component or system can 
be represented, or modeled, by means of an appropriate 
electric circuit that includes these elements.

★1.10  What Are the Approximations 
Implicit in Basic Electric Circuits?

This section explains the nature of two main approxima-
tions implicit in basic electric circuits, when modeling 
physical systems, namely, the lumped-parameter repre-
sentation and the neglect of wave propagation in a circuit.

In order to appreciate the nature of the approximations 
implicit in basic electric circuits, consider a cylindrical 
rod of resistive material, one end of which is connected 
to a battery of voltage VB and the other end connected to 
ground (Figure 1.22a). A current I flows under the influ-
ence of the battery voltage. The hydraulic analogy is a 
narrow pipe through which water is driven. One end 
of the pipe is connected to a pump, the other end of the 
pipe being open to the atmosphere, above an open reser-
voir, say. The pipe would present considerable resistance 
to water flow because of friction, mainly between water 
and the inner walls of the pipe. Hence, the pump applies 
some hydraulic pressure at one end of the pipe in order 
to overcome this friction and drive water through the 
pipe. The pressure applied by the pump is analogous 
to the battery voltage, and the friction along the pipe is 
analogous to the resistance along the rod, this resistance 
being uniformly distributed along the length of the rod. 
The energy applied by the pump to overcome friction 
is analogous to the energy delivered by the battery to 
overcome the resistance of the rod. The power input to 
the rod is p = VBI and is dissipated as heat in the rod.

Just as the pressure drops along the pipe, from that 
established by the pump at one end to zero at the open 
end, the voltage along the rod, with respect to ground, 
drops from VB at one end of the rod to zero at the end 
connected to ground. Associated with this voltage is an 
electric field between the rod and ground that progres-
sively decreases with the voltage along the rod, as illus-
trated in Figure 1.22a. The energy stored in the electric 
field between the rod and ground can be represented in 
circuit terms by a capacitance that is distributed along 
the rod. There will also be some energy in the electric 
field due to the voltage drop along the rod itself, but 
this can be generally neglected compared to the energy 
stored in the electric field between the rod and ground 
when the voltage drop along the rod is not too large.

In addition, there will be a magnetic field along the 
length of the rod due to the current I, as illustrated in 
Figure 1.22b. The energy stored in the magnetic field can 
be represented in circuit terms by an inductance that is 
uniformly distributed along the rod. The question arises 
as to how can the distributed resistance, capacitance, 
and inductance be represented along the rod and taken 
into consideration when analyzing the flow of current 
through the rod.

Mathematically, an infinitesimal length dx of the 
rod can be considered to have infinitesimal resistance, 
inductance, and capacitance (Figure 1.23a). A differ-
ential equation is then written for current or voltage 
and the system analyzed accordingly. However, this 
is rather complicated, because the resulting differen-
tial equation is a partial differential equation involv-
ing both time and distance. Hence, this approach is 
not used in basic circuit analysis but is used in more 
advanced treatments, as in the case of transmission 
lines and waveguides. Instead, the rod can be divided 
into a number of segments, say, three, and each segment 

(a)

I I

I

I

+

_
– – – – –

VB
Electric

field

(b)

+

–

Magnetic field

+ + + + + + + + + + + + + +

FIGURE 1.22
Current flow through conducting rod. (a) Current flow through elec-
tric rod grounded at one end, showing the electric field between the 
rod and ground and (b) magnetic field due to current in the rod.
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FIGURE 1.23
Approximations to distributed circuit parameters. (a) Infinitesimal 
segment of rod, (b) rod divided into three sections, and (c) approxi-
mate circuit representation of rod.
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is represented by a lumped resistance, capacitance, and 
inductance representing, respectively, the total power 
dissipation, the total energy stored in the electric field, 
and the total energy stored in the magnetic field, in each 
segment (Figure 1.23b). Because of this lumping, rep-
resentations such as that of Figure 1.23b are referred 
to as lumped-parameter representations. This is in 
contrast to distributed-parameter representations that 
take into account the distributed nature of resistance, 
capacitance, and inductance. Evidently, the larger the 
number of segments in Figure 1.23b, the better is the 
approximation of the lumped-parameter representa-
tion to the distributed-parameter representation, but 
the more complicated is the analysis. As a first approxi-
mation, the resistive rod can be represented by a single 
resistance and inductance, with capacitance at each end 
(Figure 1.23c). Moreover, if the electric and magnetic 
stored energies are small compared to the energy dis-
sipation, the resistive rod can be represented by a single, 
ideal resistor.

Another aspect of the circuit approximation that is 
implicit in Figure 1.22a is that the electromagnetic field 
takes a finite time to propagate from one end of the 
rod to the other. That is, if the battery is suddenly con-
nected to one end of the rod in Figure 1.22a, it takes a 
finite time before the effects of the electric and magnetic 
fields are felt at the other end of the rod (see Problem 
P1.2). The propagation delay due to the wave nature of 
the electromagnetic field is neglected in basic circuit 
analysis, which is tantamount to assuming that when 
an excitation is applied at one end of a circuit, its influ-
ence is immediately felt at the other end. This is justified 
as long as the propagation delay is small compared to 
the period of the voltage or current signal, where the 
period is the reciprocal of the signal frequency. This is 
tantamount to assuming that the physical dimensions 
of the circuit under consideration are small compared to 
the wavelength of the electromagnetic wave, where the 
wavelength is the ratio of the speed of propagation of 
the electromagnetic wave to the signal frequency. If the 
frequency is, say, 1 GHz (109 Hz), which is of the order 
of frequencies used in many communication systems, 
and assuming that the speed of propagation is nearly 
half that of the speed of light in vacuum (3 × 108 m/s), 
depending on the electric and magnetic properties of the 
medium, the wavelength is 15 cm. If the longest dimen-
sion of the circuit exceeds, say, one-tenth of this, or 
1.5 cm, then the lumped-circuit representation can intro-
duce a significant error. On the other hand, the wave-
length at a frequency of 50 Hz is 6000 km, assuming the 
electromagnetic field propagates at the speed of light 
along overhead power lines in air. The lumped-circuit 
representation would generally be acceptable in this 
case for overhead power lines of a few hundred kilome-
ters in length.

Learning Checklist: What Should 
Be Learned from This Chapter

• An electric circuit is an interconnection of com-
ponents that affect electric charges in some 
characteristic manner.

• Electric circuits are used in two ways: (1) to per-
form some useful task, as in the case of the heater 
of Figure 1.1 or in the case of electrical installa-
tions in buildings, or (2) to model or emulate the 
behavior of some component or system.

• The behavior of electric circuits is governed by 
two fundamental conservation laws: conserva-
tion of energy and conservation of charge.

• The current at any given point in an electric cir-
cuit and at a specified instant of time is the rate 
of flow of electric charge past the given point at 
that instant.

• According to the hydraulic analogy,

 Volume of water Quantity of charge«  

 Rate of flow of water Current«  
• In general, instantaneous current is defined as 

i = dq/dt, where q is in coulombs, t is in seconds, and 
i is in amperes. The instantaneous current at a par-
ticular instant of time is the slope of the graph of 
charge vs. time at that instant. Conversely, charge 
is the area under the graph of current vs. time.

• A current that is constant with respect to time 
is as a dc current.

• It is assumed in circuit analysis that the direc-
tion of current is that of the flow of positive 
electric charges, irrespective of the sign of the 
charges that actually carry the current.

• Current always has a direction, indicated by an 
arrow that points in the assigned positive direc-
tion of current. That is, positive charges flowing 
in the assigned positive direction represent a 
current having a positive numerical value.

• A negative value of current arises either from pos-
itive charges moving in the direction opposite to 
that of the assigned positive direction of current or 
from negative charges moving in the same direc-
tion as the assigned positive direction of current.

• The voltage between two points is the change in 
electric potential energy of a charged particle as 
it moves from one of these points to the other, 
divided by the charge of the particle. The volt-
age is independent of the sign of the charge.

• According to the hydraulic analogy,

 Pressure Voltage«  
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• In general, voltage is defined as v = dw/dq and 
is a voltage difference between two points. 
A voltage that is constant with respect to time 
is a dc voltage.

• Voltage always has a polarity, or direction, indi-
cated by a plus sign next to the point that is 
assigned a higher, or more positive, voltage rela-
tive to the point that is assigned a lower, or less 
positive or more negative, voltage, indicated by 
a negative sign next to this point.

• Current carriers can possess two types of energy: 
potential energy that depends on the voltage 
and kinetic energy that depends on the current.

• Power p is defined as the rate at which 
energy is generated or expended. In general, 
p = dw/dt = vi.

• Conservation of energy implies conservation of 
power in the circuit as a whole, which means 
that the total power delivered in the circuit is 
equal to the total power absorbed in the circuit 
at every instant of time.

• According to the passive sign convention, if 
power is absorbed in a given circuit element, 
current flows through that element in the direc-
tion of a voltage drop across the terminals of the 
given element, whereas if power is delivered by 
a given circuit element, current flows through 
that element in the direction of a voltage rise 
across the terminals of the given element.

• Negative values of current, voltage, and power 
are quite natural in circuit analysis and indicate 
that the direction of current, polarity of voltage, 
and direction of power flow are, respectively, 
opposite to that assumed to be positive.

• Active circuit elements are capable of supplying 
energy to an electric circuit through conversion 
of energy, ultimately from some nonelectrical 
source of energy. Passive circuit elements are 
incapable of doing so.

• In electric circuits, active circuit elements are 
represented by ideal sources, whereas energy-
consuming devices may be represented by ideal 
resistors. Ideal resistors, capacitors, and induc-
tors are passive circuit elements.

• The properties of resistance, inductance, and 
capacitance are referred to as circuit parameters.

• Idealized models employ ideal circuit elements 
to reproduce, as a first step, the essential behav-
ior of the system under consideration, with-
out extraneous details. They can be refined to 
reproduce more accurately the behavior of the 
system under some specified conditions.

• The properties of resistance, capacitance, and 
inductance represent, respectively, the three 
basic attributes of the electromagnetic field, 
namely, energy dissipation, energy stored in 
the electric field, and energy stored in the mag-
netic field. Each of these ideal, passive circuit 
elements represents exclusively one of the fun-
damental attributes of the electromagnetic field.

• Ideal circuit elements are basic in the sense 
that none of these elements can be represented 
in terms of the other ideal circuit elements. 
Moreover, the values of resistance, capacitance, 
and inductance are independent of voltage or 
current and are constant with respect to time. 
Hence, circuits in which all resistances, capaci-
tances, and inductances have constant values 
are referred to as LTI circuits.

• Basic circuits involve two main approxima-
tions: (1) the distributed nature of resistance, 
capacitance, and inductance is ignored, and (2) 
propagation delay of the electromagnetic field 
is ignored, which is justifiable as long as the 
dimensions of the circuit are small compared 
to the wavelength of the electromagnetic wave.

Problem-Solving Tips

 1. Always check the units on both sides of an equa-
tion, and always specify the units of the results 
of calculations.

 2. Always mark on the circuit diagram the direc-
tions of currents and the polarities of voltages.

Problems

Current

P1.1 A belt that is 75 cm wide is moving at a speed of 10 m/s 
and has a surface charge of 4 μC/m2. Determine the 
current carried by the belt.

 Ans. 30 μA.

P1.2 A lamp assembly is connected to a battery and a switch 
by a wire 2 m long and 1 mm2 cross section. If a current of 
1 A flows in the wire, determine the time it takes a conduc-
tion electron to travel along the 2 m length of wire from 
the switch to the lamp assembly, assuming the concentra-
tion of conduction electrons in the wire is 8.4 × 1028/m3 
and the charge on an electron is −1.6 × 10−19 C (refer to 
Equation 1.5). Note that the delay in the turning on of the 
lamp assembly after the switch is closed does not depend 
on the time it takes a conduction electron to travel from 
the switch to the lamp assembly, since these electrons are 
present all along the wire at any given time. The delay 
depends on how fast the electric field propagates, after 
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the switch is closed, so as to act on the conduction elec-
trons at the end of the wire in contact with the lamp 
assembly. The speed of propagation of the electric field 
along the wire is of the order of the speed of light.

 Ans. 7 h and 28 min.

P1.3 A steady beam of alpha particles (nuclei of helium 
atoms) having a uniform cross section carries a current 
of 0.5 μA, each alpha particle having a positive charge 
that is twice the magnitude of the charge on an electron 
(i.e., +3.2 × 10−19 C). (a) If the beam is directed perpen-
dicular to a flat surface, determine the number of alpha 
particles that strike the surface every second. (b) If the 
velocity of the alpha particles is 1.5 × 107 m/s and the 
cross section of the beam is 2 cm2, determine the concen-
tration of particles in the beam (refer to Equation 1.5).

 Ans. (a) 1.563 × 1012 particles; (b) 5.21 × 108 particles/m3.

P1.4 A fuse is rated at 1 A. (a) What is the minimum steady 
rate of flow of conduction electrons per second that 
will blow the fuse? Assume the charge per electron is 
−1.6 × 10−19 C. (b) Is the direction of flow relevant, con-
sidering that the heating effect of current is proportional 
to the square of the current value? (c) If the concentra-
tion of conduction electrons in the metal of the fuse is 
1028 electrons/m3 and the cross-sectional area of the fuse 
wire is 0.0025 mm2, what is the average velocity of con-
duction electrons that will give the rate of flow in (a)?

 Ans. (a) 6.25 × 1018 electrons/s; (b) no; (c) 0.25 m/s.

P1.5 In a one-dimensional flow of current through a semi-
conductor, positively charged holes move in the posi-
tive x-direction at a steady rate of 5 1018´ holes/min, and 
electrons move in the negative x-direction at a steady 
rate of 2 5 1018. min´ electrons/ . Determine the total cur-
rent in mA in (a) the positive x-direction and (b) the 
negative x-direction. (c) What would be the current if 
the holes and electrons move in the same direction? 
Note that a hole carries a single electronic unit of posi-
tive charge (1.6 × 10−19 C).

 Ans. (a) 20 mA; (b) −20 mA; (c) 20/3 mA in the direc-
tion of movement.

P1.6 In electroplating an object with silver, the object is made 
the cathode and a silver plate the anode. Silver ions in 
solution are attracted to the cathode, gain electrons 
from the cathode, and are deposited on the object as sil-
ver atoms (Figure P1.6). (a) How many silver atoms are 
deposited by a current of 10 A flowing for 1 h? (A silver 
ion carries a single electronic unit of positive charge of 
1.6 × 10−19 C.) (b) If a gram molecular weight of silver is 
0.1079 kg and contains 6.025 × 1023 atoms (Avogadro’s 
number), what is the mass of silver deposited?

 Ans. (a) 22.5 × 1022 silver atoms; (b) 40.3 g.

P1.7 The charge q along a wire varies with time as shown in 
Figure P1.7, where q = 2sin(πt/2) C, 0 ≤ t ≤ 1 s. Determine 
the variation of the current i with time.

 Ans. i(t) = πcos(πt/2) A, 0 ≤ t ≤ 1 s; i(t) = 0, 1 ≤ t ≤ 2 s; 
i(t) = −2 A, 2 ≤ t ≤ 4 s; i(t) = 1 A, 4 ≤ t ≤ 6 s.

P1.8 Consider that Figure P1.8 represents the variation with 
time of the current i in A through a wire. Determine 

the variation of q as a function of t during each inter-
val and verify the values at the end of each interval by 
 calculating the area involved.
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Voltage

P1.9 Given an electric field ξ  V/m that is constant in the 
x-direction and a charge +q C located at the origin and 
free to move in the x-direction (Figure P1.9), (a) what is 
the magnitude and direction of the force F acting on q? 
(b) If q moves under the influence of F a distance d m, 
how much work is done by F? (c) Assuming the voltage 
at the origin to be zero, what is the voltage Vd at x = d m, 
bearing in mind that ξ = −dv/dx? (d) How is the loss in 
electric potential energy related to the work done by F? (e) 
Assuming the charge has a mass m kg and zero velocity 
at the origin, show that the kinetic energy of the charge at 
x = d is equal to the loss in electric potential energy.

 Ans. (a) F = qξ N in the positive x-direction; (b) Fd J; 
(c) Vd = −ξd V; (d) they are both equal to qξd J.
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P1.10 An electron is released at the origin of the x-axis with 
a velocity of 1.33 × 106 m/s in the positive x-direction. 
If a uniform electric field of 200 V/m is directed along 
the x-axis, as in Figure P1.9, determine the value of x at 
which the electron comes to rest. Assume an electron has 
a charge of −1.6 × 10−19 C and a mass of 9.1 × 10−31 kg.

 Ans. 2.52 cm.

P1.11 Electrons are emitted from a heated metal plate ‘A’ 
at a constant rate of 6 25 1014. ,´ electrons/s  with zero 
kinetic energy. They are accelerated toward a paral-
lel metal plate ‘B’ that is separated from ‘A’ by 5 mm. 
Plates ‘A’ and ‘B’ are connected to an external power 
supply that maintains ‘B’ at a constant voltage of +10 V 
with respect to ‘A’. (a) How much potential energy 
does an electron gain or lose in going from ‘A’ to ‘B’? 
(b)  What happens to this potential energy? (c) What 
is the  velocity of the electron when it arrives at ‘B’? 
Assume an electron has a charge of −1.6 × 10−19 C and 
a mass of 9.1 × 10−31 kg.

 Ans. (a) Loses potential energy of 1 6 10 18. ´ - J; (b) it is 
converted to kinetic energy; (c) 1 88 106. ´ m/s.

P1.12 Consider Problem P1.11. (a) What is the total kinetic 
energy of the electrons that arrive at ‘B′ during 1 s? 
(b) The accelerated electrons are “collected” at ‘B’, where 
they flow through plate ‘B’ to the positive plate of the 
battery. What is the magnitude and direction of the 
resulting current through the power supply? (c)  What 
happens to the kinetic energy of the electrons once they 
are collected at ‘B’? (d) How much power is expended by 
the power supply in order to keep the voltage between 
‘A’ and ‘B’ at 10 V? (e) How is this power related to the 
kinetic energy given up by the electrons?

 Ans. (a) 1 mJ; (b) 100 mA, in the direction of a voltage 
rise through the power supply; (c) converted to heat; 
(d) 1 mW; (e) the power is equal to the rate at which 
kinetic energy is given up in J/s.

P1.13 Consider the system of Figure P1.13, where the voltage 
VAB V between the two metal plates is maintained con-
stant by the battery. Let there be a mechanism for mov-
ing positive charge from the lower plate to the upper 
plate. (a) How much work, W, is done in moving an 
amount of charge +q C? (b) What is the graph of W vs. q?

 Ans. (a) W = qVAB J; (b) a straight line of slope VAB pass-
ing through the origin.

P1.14 Suppose that the battery in Figure P1.13 is removed 
(Figure P1.14), but that positive charge is still moved 
from the lower plate to the upper plate. It is required 
to determine the work done in moving a quantity of 
charge qF that establishes a voltage VAB  =  KqF, where 
K is a constant. Assume that when the charge on the 
upper plate is +q C, with an equal and opposite charge 
−q C on the lower plate, the voltage between the plates 

is v = Kq V. Let an infinitesimal charge dq be moved, 
where dq is small enough to keep v approximately con-
stant while dq is moved. (a) What is the work dW that 
is done in moving the charge dq? (b) Substitute Kq for 
v and determine W by integrating between 0 and qF. 
(c) Express W as a function of VAB. (d) What is the graph 
of W vs. q in this case?

 Ans. (a) dW = vdq J; (b) W KqF=
1
2

2 J; (c) W V KAB=
1
2

2 / J;
 

(d) parabola centered at the origin.

P1.15 If q in Problem P1.14 varies sinusoidally with time as 
q(t) = qmsinωt C, determine the time variations of i, v, and w.

 Ans. i t q tm( ) =w wcos A; v t Kq tm( ) = sinw ; w t( ) = 
K

q tm
4

1 22 -( )cos w J.

Power and Energy

P1.16 How much energy does a 100 W lamp consume in 1 h?

 Ans. 360 kJ.

P1.17 The voltage v across an element ‘A’ is a rectangular 
waveform of 5 V amplitude and 4  s duration (Figure 
P1.17). The current i through ‘A’ in the direction of the 
voltage drop v is a biphasic pulse that has an amplitude 
of +2 A, 0 < t < 2 s and an amplitude of −2 A, 2 < t < 4 s. 
Determine the power delivered or absorbed by ‘A’ dur-
ing each 2 s interval. What is the total charge that has 
passed through ‘A’ at t = 4 s? How is this related to the 
net power delivered or absorbed?

 Ans. 0 < t < 2 s, ‘A’ absorbs 10 W; 2 < t < 4 s, ‘A’ delivers 
10 W; 0 charge, and hence zero net power delivered or 
absorbed.

P1.18 The voltage drop across a certain device and the current 
through it in the direction of the voltage drop (Figure  
P1.18) are given by

 v(t) = sinπt/2 V,
 i(t) = cosπt/2 A 
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 (a) Determine whether the device absorbs or delivers 
power during each of the quarter cycles of one period. 
(b) Derive the power at any instant as a function of 
time. How do you interpret positive values and nega-
tive values of power? What is the maximum magnitude 
of instantaneous power? What is the average power 
over a 4 s period?

 Ans. (a) Power is absorbed during the intervals 
0 ≤ t ≤ 1 s and 2 ≤ t ≤ 3 s, and power is delivered during 
the intervals 1 ≤ t ≤ 2 s and 3 ≤ t ≤ 4 s. (b) p(t) = sinπt/2 
cosπt/2 W = 0.5sinπt W; p > 0 is power absorbed and 
p < 0 is power delivered; maximum is 0.5 W and aver-
age is zero.

P1.19 An A-size, 1.5 V battery is rated at 3 ampere-hours (Ah). 
During continuous use, with the battery supplying a 
current of 100  mA, the battery voltage stays substan-
tially constant at 1.50 V for the first 20 h. During the next 
10 h, the voltage drops linearly to 1.25 V, while the cur-
rent drops linearly to 80 mA (Figure P1.19). At this point, 
the battery is no longer considered useful. (a) What was 
the useful Ah capacity of the battery, and (b) how much 
energy was delivered by the battery during the 30 h?

 Ans. (a) 2.9 Ah; (b) 15.26 kJ.

P1.20 The voltage drop across a certain device and the cur-
rent through it in the direction of the voltage drop 
are shown in Figure P1.20. Determine (a) the charge q 
through the device at the end of each 1 s interval from 

t = 0 to t = 6 s, (b) the instantaneous power p(t) during 
the aforementioned intervals, and (c) the total energy 
consumed by the device.

 Ans. (a) 0 at 1 s, 2.5 mC at t = 2 s, 5.5 mC at t = 3 s, 8.5 
mC at t = 4 s, 11 mC at t = 5 s and at t = 6 s; (b) 0 ≤ t ≤ 1 s: 
p(t) = 0; 1 ≤ t ≤ 2 s: p t t t t t( ) = +( ) = +2 1 2 22 mW; 2 ≤ t ≤ 
3 s: p t t t( ) = ´ =2 3 6 mW; 3 ≤  t  ≤ 4  s: p t t( ) = - +( )´2 12  
3 6 36= - +t mW ; 4 ≤  t  ≤  5  s: p t t t( ) = - +( ) - +( ) =2 12 7  
2 26 842t t- + mW; 5 ≤ t ≤ 6: p(t) = 0; (c) 45.3 mJ.

P1.21 The voltage drop across a certain device and the cur-
rent through it in the direction of the voltage drop are 
given by 

 v t t i t t t( ) = + ( ) = - < <2 1 4 2 0 4V mA s, ,

 v and i are zero elsewhere.
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Sketch the variation of v(t) and i(t) with time. (a) At 
what instant of time is maximum instantaneous power 
absorbed by the device? (b) At what instant is it zero? 
(c) What is the energy delivered to the element at t = 2 s 
and at t = 4 s? (d) Over what time interval does the 
device absorb power and over what time interval does 
it deliver power?

 Ans. (a) 0.75 s; (b) 2 s; (c) 9.3 mJ, −21.3 mJ; (d) power is 
absorbed by device for t ≤ 2 s and is delivered by device 
for 2 ≤ t ≤ 4 s.

P1.22 The voltage drop v V across a certain device and the 
current i A through it in the direction of the voltage 
drop are related by 

 i v v= - £ £8 2 0 22 , V
 i v v= £ ³0 0 2, and V

 (a) Determine the power absorbed by the load when 
v = 1 V and when v = 2 V; (b) at what value of v is the 
instantaneous power a maximum? (c) If v t e t( ) = -2 V , 
t ³ 0 s, what is the total charge that passes through the 
device from t = 0 to t = 2 s?

 Ans. (a) 6 W, 0; (b) 2 3 3/ V; (c) 12.07 C.

P1.23 The voltage v(t) across a device and the current i(t) 
through the device are as shown in Figure P1.23. 
Determine the largest value of the magnitude of the 
energy absorbed or delivered by the device during the 
interval 0 < t < 3 s.

 Ans. 1 J delivered.

P1.24 The current i(t) through a circuit element ‘A’ and the 
voltage v(t) across it are as shown in Figure P1.24. 
(a)  Determine the total charge passing through ‘A’; 
(b) derive p(t), sketch it, and indicate in which intervals 
is power absorbed or delivered; (c) determine the total 
energy absorbed or delivered by ‘A’ for −1 s ≤ t ≤ 1 s.

 Ans. (a) 2 C; (b) p(t)  =  2t – 4t2, power is absorbed 
for 0  ≤  t  ≤  0.5  s and is delivered for −1  s  ≤  t  ≤  0 and 
0.5 s ≤ t ≤ 1 s; (c) 8/3 J delivered.
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Objective and Overview

This chapter introduces (1) the two ideal circuit ele-
ments of dc circuits, namely, resistors and sources; (2) 
the two basic circuit laws, namely, Kirchhoff’s current 
law (KCL) and Kirchhoff’s voltage law (KVL); and (3) 
the two basic connections between circuit elements, 
namely, series and parallel connections.

The nature of electrical resistance is first explained 
using a simplified model, following which, the very 
basic Ohm’s law defining an ideal resistor is presented. 
Ideal, independent and dependent, voltage and cur-
rent sources are then discussed, with emphasis on their 
defining and essential properties.

Kirchhoff’s laws are introduced as laws derived from 
conservation of charge and conservation of energy, but 
which provide a much simpler means of analyzing cir-
cuit behavior. Series and parallel connections of circuit 
elements are then discussed and linked to Kirchhoff’s 
laws. 

PSpice simulations are introduced in this chapter 
and are included in all numerical examples, whenever 
appropriate, to illustrate and verify the results of analyt-
ical solutions. This chapter concludes with a very help-
ful problem-solving approach and illustrating it with 
examples.

★2.1  Nature of Resistance

Concept: Resistance is fundamentally due to impediments 
to the movement of current carriers in a conductor under the 
influence of an applied electric field.

A sample of a metallic conductor typically consists of a 
large number of crystals in which the rest positions of the 
metal atoms at 0 K are arranged in a regular manner that 
is characteristic of the type of crystal. At   temperatures 
above 0  K, (1) the crystal atoms vibrate, in randomly 
oriented directions, about their rest positions, with an 
amplitude of vibration that increases with temperature, 
and (2) some electrons, referred to as conduction elec-
trons have sufficient energy to detach from their par-
ent atoms and move freely in the crystal, in randomly 
oriented directions, at thermal velocities of the order of 
107 cm/s at room temperature. Because of this random-
ness, there is no net current in any particular direction 

over a long enough interval of time, in the absence of an 
applied voltage.

When a voltage is applied to a conductor, an electric 
field is established in the conductor, which exerts a force 
on the conduction electrons. Quantum mechanics pro-
vides a rigorous basis for describing the movement of 
electrons in a crystal in terms of the wave nature of elec-
trons and the scattering of these waves by the vibrating 
crystal atoms.

For our purposes, we will use a simpler, much less rig-
orous description based on considering conduction elec-
trons as particles that are accelerated by the electric field 
due to the applied voltage. In moving under the influ-
ence of the electric field, conduction electrons “collide” 
with the vibrating crystal atoms. This is illustrated dia-
grammatically in Figure 2.1 for an electric field ξ applied 
in the negative x-direction at zero time. A conduction 
electron experiences a force −qξ, where q is the magnitude 
of the electronic charge, and the negative sign accounts 
for the negative charge of electrons. Being in the nega-
tive x-direction, ξ has a negative value, which means that 
the force −qξ on an electron is in the positive x-direction. 
The conduction electron will therefore move in the posi-
tive x-direction with an acceleration −qξ/m*, where m* 
is an effective electron mass that takes into account the 
forces exerted by the crystal on the conduction electron. 
In the absence of collisions, the velocity of the conduc-
tion electron increases linearly with time, theoretically 
without limit, as indicated by the dashed line through 
the origin. The current due to the total movement of 
conduction electrons will be in the negative x-direction, 
in terms of the conventional, assumed flow of positive 
charges, and will also theoretically increase without 
limit. No resistance to movement will be experienced by 
conduction electrons under these conditions. However, 
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as a conduction electron moves in the crystal, it collides 
with a crystal atom. Consequently, the conduction elec-
tron loses kinetic energy and hence velocity. After the 
collision, the conduction electron picks up velocity due 
to acceleration by the electric field until it collides again 
with a crystal atom, and so on (Figure 2.1). The collisions 
occur at random intervals and their net effect is that 
they prevent the velocities of conduction electrons from 
increasing without limit. Instead, there will be an average 
velocity of conduction electrons in the direction opposite 
to that of the electric field, referred to as a drift velocity. 
This drift velocity results in a corresponding drift cur-
rent in the direction of the electric field, that is, in the 
negative x-direction in Figure 2.1. For currents normally 
encountered in practice, the drift velocity is quite small, 
less than a fraction of a centimeter per second, super-
posed on the much larger, random thermal velocity.

It is seen that this “collision model” provides a simple 
explanation for electrical resistance in a conductor as 
being due to the limiting of the increase in the velocities 
of conduction electrons, and hence the current, because 
of collisions between vibrating crystal atoms and con-
duction electrons moving under the influence of an 
applied voltage.

In addition, the collision model can explain two 
phenomena associated with current flow in a conduc-
tor: (1) the increase of resistance with temperature and 
(2) the heating effect of current. A rise in temperature 
increases the amplitude of vibration of crystal atoms, 
which increases the probability of collisions. The aver-
age interval between successive collisions is reduced, 
and the increase in velocity between collisions is thereby 
reduced, which decreases the average increase in the 
velocities of conduction electrons. This is reflected as a 
reduction in current, for a given applied voltage, and 
hence an increase in resistance. Moreover, when con-
duction electrons collide with crystal atoms, they lose 
kinetic energy while crystal atoms gain kinetic energy. 
The amplitude of vibration of crystal atoms therefore 
increases, which is reflected as a rise in temperature of 
the conductor. The heating of the material that is associ-
ated with current flow is referred to as Joule heating.

2.2  Ideal Resistor

Definition: An ideal resistor is a purely dissipative circuit 
element that obeys Ohm’s law.

As mentioned in Section 1.8, an ideal resistor only 
dissipates energy. It does not store electric or magnetic 
energy. According to Ohm’s law, the voltage drop across 
an ideal resistor is directly proportional to the current 
through the resistor. Thus,

 v Ri=  (2.1)

where R is the resistance of the given resistor. When v is 
in volts and i is in amperes, R is in ohms and is denoted 
by Ω, the Greek capital omega. For an ideal resistor, R is 
a constant, independent of voltage, current, time, and 
temperature.

According to Equation 2.1, the plot of v against i is 
a straight line of slope R passing through the origin, 
irrespective of the magnitude or direction of current 
(Figure  2.2a). The graphical symbol for a resistor is 
illustrated in Figure 2.2b together with the direc-
tion of i that is associated with the polarity of v in 
Equation  2.1. It is important to note that the current 
through an ideal resistor is always in the direction of the 
voltage drop across the resistor, so as to give a posi-
tive value of R in Equation 2.1. Thus, with v and i in 
Equation 2.1 assigned the positive directions indicated 
in Figure 2.2b, a positive value of i is in the direction of 
a positive value of voltage drop v, which gives a posi-
tive value of R in Equation 2.1. This is also in accor-
dance with the passive sign convention (Section 1.7); 
when the assumed positive charges flow down a volt-
age drop, they lose electric potential energy, which is 
converted to heat dissipation in the resistor.

Equation 2.1 may be written as

 
i

R
v Gv= =1

 
(2.2)

where G  =  1/R is the reciprocal of resistance, or con-
ductance. The reciprocal of one ohm is one siemens, 
denoted by the symbol S.

The power dissipated in a resistor can be derived from 
Equation 1.10, by substituting for v from Equation 2.1, 
or for i from Equation 2.2, in the expression p  =  vi. 
This gives

 
p vi Ri

v
R

Gv= = = =2
2

2

 
(2.3)
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FIGURE 2.2
(a) v–i relation for an ideal resistor and (b) assigned positive directions 
of v and i for an ideal resistor.
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When v is in volts, i is in amperes, R is in ohms, and G 
is in siemens, p is in watts.

R for a metal increases somewhat with temperature, 
the temperature coefficient of resistance for metal-
lic conductors being approximately 0.004/°C, which 
means that the resistance increases by about 0.4% per °C 
rise in temperature.

It should be noted that whereas an increase in resis-
tance with temperature is true of all conductors, the 
number of current carriers in metals does not increase 
significantly with temperature. On the other hand, the 
number of current carriers in semiconductors, such 
as silicon, increases very rapidly with temperature. 
As a result, the current, at a given voltage, markedly 
increases with temperature in semiconductors, which 
is reflected as an apparent decrease in resistance with 
temperature.

Example 2.1: Cold and Hot Resistance 
of Heating Element

Consider a 120 W, 12 V, heating element. It is required 
to determine (a) the resistance and conductance of 
the element at the rated voltage of 12  V, (b) the cur-
rent under these conditions, and (c) the resistance 
of the element at room temperature (20°C), assum-
ing that the  working temperature of the element is 
1200°C and  its  temperature coefficient of resistance 
is 0.0045/°C.

Solution:

 (a) Applying Equation 2.3, 120 = (12)2/R, which gives 
R = 1.2 Ω and G = 1/1.2 = 0.83 S.

 (b) I = 120 W/12 V = 10 A. As a check, RI2 = 1.2 × (10)2 = 
120 W.

 (c) The variation of resistance with temperature can 
be expressed as R2 = R1[1 + αm (T2 – T1)], where 
αm is the temperature coefficient of resistance and 
R1 and R2 are the resistances at temperatures T1 
and T2, respectively, with T2 > T1. Substituting R2 = 
1.2  Ω, T1 = 20°C, T2 = 1200°C, and αm 0.0045/°C 

gives
 

R1
1 2

1 0 0045 1200 20
0 19=

+ -
=.

. ( )
. W at 20°C, 

which is about one-sixth of the resistance at 
1200°C.

Primal Exercise 2.1

A heater element draws 3 A at 24 V. Determine the resis-
tance of the heater element, its conductance, and the 
power dissipated.

Ans. 8 Ω, 0.125 S, 72 W.

Primal Exercise 2.2

A 5 Ω resistor dissipates 180 W. Determine the current 
through the resistor and the voltage across it. Check that 
using the power relations of Equation 2.3 in terms of 
V, R, and G give 180 W.

Ans. 6 A, 30 V.

Primal Exercise 2.3

A current having the waveform shown in Figure 2.3 is 
applied to a 5 Ω resistor. Determine (a) the total energy 
dissipated in the resistor and (b) the average power dis-
sipated in the resistor.

Ans. (a) 70 J; (b) 14 W.

2.3  Short Circuit and Open Circuit

Definition: A short circuit is a connection of zero resis-
tance, or infinite conductance. An open circuit has infinite 
 resistance, or zero conductance.

When R = 0, Ohm’s law gives v = Ri = 0 for all finite i. 
In other words, the voltage across a short circuit is zero 
for all valid, that is finite, values of current through the 
short circuit. Hence, a plot of v against i for a short cir-
cuit is a horizontal line that coincides with the i-axis 
(Figure  2.4a). In fact, all wiring connections between 
circuit elements in a circuit diagram are implicitly 

t, s

2

1
–1

2 3 4 50

1

i, A

FIGURE 2.3
Figure for Exercise 2.3.

R = 0, G
i

+ –v = 0 

(a) (b)

v

i
0

FIGURE 2.4
(a) v–i relation for a short circuit and (b) symbol for a specified short 
circuit.



26 Circuit Analysis with PSpice: A Simplified Approach

assumed to be short circuits. When a short circuit is to 
be explicitly indicated, it will be represented as a wiring 
connection between two terminals (Figure 2.4b). When 
R = 0, G = 1/R → ∞.

When G = 0, Ohm’s law gives i = Gv = 0 for all finite v. 
In other words, the current through an open circuit is 
zero for all valid, that is finite, values of voltage across 
the open circuit. Hence, a plot of i against v for an open 
circuit is a horizontal line that coincides with the v-axis 
(Figure 2.5a). When an open circuit is to be explicitly 
indicated, it will be represented as an absence of any 
connection between two terminals (Figure 2.5b). When 
G = 0, R = 1/G → ∞.

Short circuits and open circuits are useful idealiza-
tions representing limiting values of resistance (R → 0 
and R → ∞) that can only be approximated in practice.

Primal Exercise 2.4

What is the power dissipated in (a) a short circuit 
and (b) an open circuit? Justify your answer using 
Equation 2.3.

Ans. (a) 0; (b) 0.

Primal Exercise 2.5

Determine RL that gives the largest voltage across termi-
nals ‘ab’ in Figure 2.6.

Ans. RL → ∞, that is, terminals ‘ab’ open circuited.

2.4  Ideal, Independent Voltage Source

Definition: An ideal, independent voltage source maintains 
a specified voltage vSRC between its terminals, irrespective of 
the current through the source, where vSRC is independent of 
any voltage or current in the circuit.

A battery denoted by the symbol used in Figures 1.2 
and 1.15 is an example of a dc, ideal, independent volt-
age source. The “ideal” attribute in the definition refers 
to vSRC being maintained irrespective of the current 
through the source, and the “independent” attribute 
refers to vSRC being independent of any voltage or cur-
rent in the circuit.

The fact that an ideal voltage source maintains a speci-
fied voltage vSRC across its terminals irrespective of the 
current through the source means that the plot of v as a 
function of i for the source is a horizontal line displaced 
by vSRC from the i-axis (Figure 2.7a). Ideal, independent 
voltage sources are conventionally represented by a cir-
cle symbol, as in Figure 2.7b, including dc, ideal, inde-
pendent sources. But we will retain the battery symbol 
for the latter, as in PSpice, for clarity when using dc volt-
age sources. As in the case of the battery, the plus and 
minus signs indicate the assigned positive direction of 
source voltage in Figure 2.7b.

Two important considerations should be emphasized 
in connection with ideal, independent voltage sources. 
The first is that, according to Figure 2.7a, either vSRC or i 
can be positive, negative, or zero. In Figure 2.8a, the 
12 V battery is connected to a variable resistor Rvar, that 
is, a resistor whose resistance can be varied, as symbol-
ized by the arrow. As Rvar is varied, the current I through 
the battery varies in accordance with Ohm’s law, but 
the ideal battery maintains a voltage of VSRC  =  12  V 
between its terminals for all values of I, such as I = 2 A, 
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as indicated in Figure 2.8a. The power delivered by the 
battery is VSRC × I = 12 × 2 = 24 W. With v and i both 
positive, power is delivered by the battery, as indicated 
in the first quadrant in Figure 2.7c. VSRC is maintained 
at 12 V when I = 0, that is, when the resistor is discon-
nected from the battery. In Figure 2.8b, the polarity of 
the battery is reversed, without reversing the assigned 
positive directions of VSRC and I. The numerical val-
ues of VSRC and I are both negative, in accordance with 
Ohm’s law, so that  current actually flows into the bat-
tery at the negative terminal. On the v–i graph, both 
v and i assume negative values, but as Rvar is varied, 
the battery voltage is maintained at 12 V magnitude. 
Moreover, with both v and i reversed, the product vi 
does not change sign; the battery still delivers power, 
as indicated in the third quadrant in Figure 2.7c.

In Figure 2.8c, the battery, assumed to be rechargeable, 
is connected to a charging circuit. The current through 
the battery is now reversed, so I assumes a negative 
value, considered in Figure 2.8c to be −2 A, but VSRC is 
still maintained at 12 V.

It should be clarified that in Figure 2.8a through c, 
the  assigned positive directions of I and VSRC are the 
same, with I being in the direction of a voltage rise 
through the battery. This means that, in terms of the 
symbols VSRC and I, the product P = VSRCI is the power 
delivered by the battery in the three cases, in accor-
dance with the passive sign convention (Section 1.7). 
When numerical values are substituted, VSRC  =  12  V 
and I  =  2  A in Figure 2.8a. The product is +24  W, so 
that this power is actually delivered by the battery. 
In Figure 2.8b, VSRC = −12 V and I = −2 A. The product 

is again +24  W, which signifies that the battery actu-
ally delivers this power. In Figure 2.8c, VSRC = 12 V and 
I = −2 A. P is now equal to −24 W, which means that the 
battery actually absorbs 24 W.

It should be noted, in accordance with Figure 2.8, that 
whereas the voltage of an ideal, independent voltage 
source is that specified for the source and is indepen-
dent of the rest of the circuit, the magnitude and sign of 
the source current depend on both the source voltage and the 
circuit to which the source is connected.

The second important consideration is that ideal, 
independent voltage sources are in general time vary-
ing. This is illustrated for a sinusoidally varying volt-
age in Figure 2.9a and for a pulse voltage in Figure 2.9b. 
Note that although the variation of vSRC vs. t can be 
quite arbitrary, depending on the type of source under 
consideration, the variation of v vs. i for all ideal volt-
age sources is a horizontal line, as in Figure 2.7a. For 
example, if vSRC = 10sint V (Figure 2.9a), where t is in 
seconds, then the vSRC line in Figure 2.7a will move up 
or down in accordance with the value of vSRC at any par-
ticular instant of time. This is illustrated in Figure 2.10, 
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where some values of 10sint are shown for correspond-
ing values of t. Thus, at t = 0, vSRC = 0, and the vSRC line 
coincides with the horizontal axis. As t increases dur-
ing the positive half-cycle, the vSRC line moves upward, 
is at 4.8 V at t = 0.5, and at the peak value of 10 V at 
t = π/2 ≅ 1.6 s. It then moves downward, is at −5.3 V at 
t = 3.7 s, and at −10 V at t = 3π/2 ≅ 4.7 s, and so on. At 
any instant of time, vSRC is independent of the source cur-
rent. When the value of vSRC is positive, then according 
to the assigned positive direction of vSRC in Figure 2.7b, 
the terminal of the voltage source adjacent to the plus 
sign is at a positive voltage with respect to the terminal 
adjacent to the minus sign; the converse is true when 
the value of vSRC is negative.

It is important to note that if in Figure 2.7a, vSRC = 0, 
then the vSRC line coincides with the horizontal axis, so 
that Figure 2.7a becomes identical to Figure 2.4a for a 
short circuit. It follows that when vSRC = 0, an ideal voltage 
source is equivalent to a short circuit. In other words, an 
ideal voltage source is set to zero by replacing it with a 
short circuit.

An ideal, independent voltage source is said to pro-
vide an electromotive force (emf) that provides a kind 
of “driving force” for the current by doing work on the 
assumed positive charges as they flow in the direction of 
a voltage rise through the source. The emf is equal to the 
source voltage. Thus, a 6 volt battery is said to provide 
an emf of 6 V.

Primal Exercise 2.6

Given an ideal, independent voltage source of 12  V 
having a source current of 2 A, determine the power 
and whether it is delivered or absorbed by the source 
when the source current is in the direction of (a) a volt-
age rise across the source or (b) a voltage drop across 
the source.

Ans. (a) 24 W delivered; (b) 24 W absorbed.

Primal Exercise 2.7

A 24 V battery, when being recharged, draws a current 
of 5 A from the charging circuit. Determine the power 
that is (a) absorbed by the battery, (b) delivered by the 
charging circuit, (c) delivered by the battery, and (d) 
absorbed by the charging circuit.

Ans. (a) and (b) 120 W; (c) and (d) –120 W.

2.5  Ideal, Independent Current Source

Definition: An ideal, independent current source maintains 
a specified current iSRC through the source irrespective of the 
voltage across the source, where iSRC is independent of any 
voltage or current in the circuit.

The “ideal” attribute refers to iSRC being maintained 
irrespective of the voltage across the source, and the 
“independent” attribute refers to iSRC being independent 
of any voltage or current in the circuit.

Although not as common as voltage sources, indepen-
dent current sources can be derived from independent 
voltage sources using electronic circuits such as opera-
tional amplifiers (Chapter 13). A current source can be 
approximated by a voltage source in series with a large 
resistance (Section 3.6).

The fact that an ideal current source maintains the 
specified current iSRC through the source irrespective of 
the voltage v across the source means that the plot of i 
as a function of v for the source is a horizontal line dis-
placed by iSRC from the v-axis (Figure 2.11a). The conven-
tional symbol for an ideal, independent current source is 
a circle with an arrow that points in the assigned posi-
tive direction of source current iSRC (Figure 2.11b); that 
is, if the value of iSRC is a positive quantity, iSRC is in the 
direction of the arrow. The symbol of Figure 2.11c will 
be used in this book for a dc, ideal, independent current 
source, for clarity when using such sources. The polarity 
of the battery in the source symbol is that of a voltage 
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FIGURE 2.11
Ideal, independent current source. (a) i–v relation, (b) the symbol for an ideal, independent current source, (c) symbol for an ideal, independent, 
dc current source, and (d) power delivered or absorbed by an ideal, independent current source based on the relative signs of iSRC and v.
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rise in the direction of the arrow, which is appropriate 
for power delivery.

The following features of an ideal, independent cur-
rent source are exactly analogous to those of an ideal, 
independent voltage source:

 1. iSRC, and the voltage v across the source, can be 
positive, negative, or zero.

 2. For a given iSRC, the value and sign of v depend 
on both iSRC and the circuit to which the source 
is connected.

 3. An ideal current source can deliver or absorb 
power, depending on the relative directions of 
iSRC and v (Figure 2.11d).

 4. iSRC is in general a function of time but is  constant 
with respect to the voltage across the source. 
That is, at any instant of time, iSRC is independent 
of the voltage across the source, even though iSRC 
may be time varying.

In a manner analogous to the case of a voltage source, 
if Figure 2.11a is compared with Figure 2.5a, it is seen 
that when iSRC = 0, an ideal current source is equivalent to an 
open circuit. In other words, an ideal current source is set 
to zero by replacing it with an open circuit.

Fundamentally, a voltage source excites a circuit by 
raising the electric potential energy, that is, the volt-
age, of current carriers. On the other hand, a current 
source excites a circuit by imparting kinetic energy, that 
is, velocity, to current carriers, since current is the rate 
of flow of electric charges, which depends on velocity. 
Short-circuiting a voltage source results in infinite cur-
rent, since the source voltage appears across the zero 
resistance of the short circuit. The resulting current is, 
from Ohm’s law, VSRC/0  →  ∞. Hence, short-circuiting 
an ideal voltage source is invalid. The hydraulic anal-
ogy is moving water in a reservoir at a height h above 
ground level instantly down to ground level, which 
would involve infinite rate of flow, or velocity.

Similarly, open-circuiting a current source results in 
infinite voltage, since the source current flows through 
an open circuit of zero conductance. The resulting 
voltage is, from Ohm’s law, ISRC/0 → ∞. Hence, open- 
circuiting an ideal current source is invalid. The hydrau-
lic analogy is instantly blocking the flow of water that is 
issuing from a pump that forces water to flow at a cer-
tain velocity, corresponding to ISRC. This would involve 
an infinite force, corresponding to an infinite voltage.

Primal Exercise 2.8

A 0.1 A current source is connected to a 9 V battery as 
shown in Figure 2.12. Determine (a) the current through 

the battery, both in magnitude and direction; (b) the volt-
age across the current source, both in magnitude and 
polarity; (c) the power delivered or absorbed by the 
current source; and (d) the power delivered or absorbed 
by the battery. Repeat (a) through (d) with the polarity 
of the current source reversed.

Ans. (a) 0.1  A directed from the + terminal to the − 
 terminal of the battery; (b) 9 V of the same polarity as 
the battery; (c) current source delivers 0.9 W; (d) battery 
absorbs 0.9 W; (a′) 0.1 A directed from the ‘−’ terminal 
to the ‘+’ terminal of the battery; (b′) 9 V of the same 
polarity as that of the battery; (c′) current source absorbs 
0.9 W; (d′) battery delivers 0.9 W.

Primal Exercise 2.9

Given an ideal, independent current source having 
iSRC = 4sint A, t is in s, the voltage across the source being 
VS = 10 V dc. The directions of iSRC and VS are as indicated 
in Figure 2.11b. Determine the value of (a) the maximum 
instantaneous power delivered by the source; (b) the 
maximum instantaneous power absorbed by the source, 
specifying the times at which they occur; and (c)  the 
 average power delivered or absorbed by the source over 
a period.

Ans. (a) 40 W delivered at the positive peaks of the sinu-
soid, t = π/2 s plus an integer multiple of 2π s; (b) 40 W 
absorbed at the negative peaks of the sinusoid, t = 3π/2 s 
plus an integer multiple of 2π s; (c) 0.

2.6  Ideal, Dependent Sources

Concept: Dependent sources behave exactly like independent 
sources in all respects except that the value of a dependent 
source is specified as a linear function of a voltage or a current 
in the circuit, other than that of the source itself.

Dependent sources are invariably encountered in the 
equivalent circuits of electronic devices, such as opera-
tional amplifiers (Chapter 13) and transistors.

Ideal, dependent sources are represented by a  diamond 
symbol.

+

–
0.1 A 9 V

FIGURE 2.12
Figure for Exercise 2.8.
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2.6.1 Ideal, Dependent Voltage Sources

Depending on whether the source value is specified 
in terms of a voltage or a current, a dependent voltage 
source can be (1) a voltage-controlled voltage source 
(VCVS) or (2) a current-controlled voltage source 
(CCVS). Figure 2.13 illustrates a circuit having two 
dependent voltage sources. The value of the VCVS is 
specified as twice the voltage VX across the 6 Ω resistor, 
and the value of the CCVS is specified as three times 
IY, the current through the 1.5 Ω resistor. In both cases, 
the plus and minus signs indicate the assigned positive 
direction of the source voltage, as in the case of indepen-
dent voltage sources.

It should be noted that being ideal sources, the speci-
fied source voltage of an ideal, dependent voltage source is 
independent of the current through the source itself, as in 
Figure  2.7a. That is why in the case of the CCVS in 
Figure 2.13, for example, the source voltage depends 
on the current elsewhere in the circuit, such as IY. It 
should not depend on the current through the source 
itself, because this would violate the definition of an 
ideal voltage source as having the source voltage inde-
pendent of the current through the source. If the source 
voltage of a CCVS depends on the current through 
the source, it can be shown (Section 4.5) that such a 
“source” is not really a source and can be replaced by 
a resistor. Similarly, if VX in Figure 2.13 is the voltage 
across the VCVS of source voltage 2VX, then VX = 2VX, 
which makes VX = 0, so that the source is equivalent to 
a short circuit. On the other hand, if the source value is 
VX, and there is no other VX in the circuit except across 
the source, then the source is in fact an independent 
source of value VX.

Primal Exercise 2.10

Given IY = 2.4 A and VX = 1.8 V in Figure 2.13, determine 
(a) the magnitude and direction of the current through 
the 6 Ω resistor; (b) the magnitude and polarity of the 
voltage across the 1.5 Ω resistor; (c) the power delivered 

or absorbed by the battery and by the VCVS; (d) the 
total power dissipated in the resistors; (e) the power 
delivered or absorbed by the CCVS, considering that 
power is conserved in the circuit as whole; and (f) the 
magnitude and direction of current through the CCVS. 
(g) Is charge conserved at the upper and lower junctions 
of three  elements in the circuit? Justify your answer.

Ans. (a) 0.3  A in the direction of the voltage drop VX; 
(b) 3.6 V drop in the direction of IY; (c) 2.7 W delivered 
by the battery, 8.64  W absorbed by VCVS; (d) 9.18  W; 
(e) 15.12 W delivered by the CCVS; (f) 2.1 A in the direc-
tion of a voltage rise through the CCVS. (g) Yes; the 
number of coulombs entering the junction per second is 
equal to the number of coulombs leaving the junction per 
second.

2.6.2  Ideal, Dependent Current Sources

Depending on whether the source value is specified 
in terms of a voltage or a current, a dependent cur-
rent source can be (1) a voltage-controlled current 
source (VCCS) or (2) a current-controlled current 
source (CCCS). Figure  2.14 illustrates a circuit having 
two dependent current sources. The value of the VCCS 
is specified as twice VX across the 1 Ω resistor, and the 
value of the CCCS is specified as three times IY, the cur-
rent through the 2 Ω resistor. In both cases, the arrows 
indicate the assigned positive direction of the source, as 
in the case of independent current sources.

It should be noted that being ideal sources, the specified 
source current of an ideal, dependent current source is inde-
pendent of the voltage across the source itself, as in Figure 
2.11a. The specified source current should not depend 
on the voltage across the source itself, as this would vio-
late the definition of an ideal current source as having 
the source current independent of the voltage across the 
source. If the source current of a VCCS depends on the 
voltage across the source, it can be shown (Section 4.5) 
that such a “source” is not really a source and can be 
replaced by a resistor.
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Ideal, dependent voltage sources.
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Fundamentally, independent sources excite a circuit by 
delivering energy through conversion from some non-
electrical source of energy, such as solar energy or chemi-
cal energy of batteries, or mechanical energy from prime 
movers. On the other hand, dependent sources do not con-
vert energy from nonelectrical sources. They can deliver 
or absorb energy, just like independent sources, but they 
are incapable of exciting a circuit on their own, without 
the presence of independent sources somewhere in the 
circuit (Section 4.1). They affect the voltages and currents 
in a circuit, thereby altering the power distribution in the 
circuit, by effectively modifying the values of some resis-
tances in the circuit (Section 5.1). But the ultimate source 
of energy is the independent sources in a circuit, which 
convert energy from some nonelectrical source to poten-
tial energy or kinetic energy of current carriers.

Figure 2.15 summarizes the classification of ideal sources.

Primal Exercise 2.11

Given IY = 2.7 A and VX = 3.6 V in Figure 2.14, determine 
(a) the magnitude and direction of the current through 
the 1 Ω resistor, (b) the magnitude and polarity of the 
voltage across the 2 Ω resistor, (c) the power delivered or 
absorbed by each source, and (d) the power dissipated 
in each resistor. (e) Is energy conserved in the circuit as 
whole? Is charge conserved at the upper and lower junc-
tions of the four elements connected to these junctions?
Ans. (a) 3.6  A in the direction of the voltage drop VX; 
(b) 5.4 V drop in the direction of IY; (c) battery delivers 
32.4 W, VCCS delivers 38.88 W, CCCS absorbs 43.74 W; 
(d) 12.96 W in the 1 Ω resistor and 14.58 W in the 2 Ω 
resistor; (e) yes, yes.

Exercise 2.12

Argue as was done in connection with Figure 2.13 that 
IY cannot be the current through the CCCS itself in 
Figure 2.14.

Ans. If IY is the current through the CCCS, then IY = 3IY, so 
that IY = 0, and the CCCS is equivalent to an open circuit.

2.7  Nomenclature and Analysis 
of Resistive Circuits

Before considering the analysis of resistive circuits, 
some nomenclature should be explained.

A node is the electrical junction, or connection point, 
between a number of circuit elements. Because the term 
is quite general, it is sometimes necessary to distin-
guish between two types of nodes: an inessential node 
between just two circuit elements and an essential node 
between three or more circuit elements. In Figure 2.16, 
for example, ‘a’, ‘b’, and ‘c’ are nodes, but ‘a’ is an ines-
sential node, whereas ‘b’ and ‘c’ are essential nodes. 
Note that ‘b’ and b′ are one and the same node, the con-
nection bb′ being a short circuit. Similarly, ‘c’, c′, and c′′ 
are one and the same node, the connection c′cc′′ being 
a short circuit. Short-circuit wiring connections are used 
in electric circuit diagrams for clarity.

A path is a set of one or more adjoining circuit ele-
ments that may be traversed in succession without pass-
ing through the same node more than once. A branch is 
a path that connects two nodes, whereas an essential 
branch is the set of adjoining circuit elements traversed 
in going from one essential node to an adjacent essen-
tial node, without passing through another essential 
node. In Figure 2.16, all the individual circuit elements 
are branches. Each of the current source and the 3  Ω 
resistor is an essential branch between essential nodes 
‘b’ and ‘c’. The combination of the battery and the 6 Ω 
resistor is also an essential branch between nodes ‘b’ 
and ‘c’.

A closed path in a circuit is a loop. A loop may enclose 
other loops, but if it doesn’t, it is referred to as a mesh. 
In Figure 2.16, the battery, the 6 Ω resistor, and the 3 Ω 
resistor constitute a mesh, as do the 3 Ω resistor and the 
current source. The path consisting of the battery, the 6 Ω 
resistor, and the current source is a loop that encloses the 
two meshes.

Ideal sources

Voltage Current

Independent Dependent IndependentDependent

VCVS CCVS VCCS CCCS

FIGURE 2.15
Classification of ideal sources.
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Analysis of resistive circuits means, in general, deter-
mining the voltages and currents in a circuit, given the 
values of the sources and resistances in the circuit or given 
some specified conditions in the circuit. In Figure 2.16, 
the values of the resistances, the voltage source, and the 
current source are specified. It is required to determine 
the values of the remaining currents and voltages in the 
circuit. Once I1 and I2 are known, the voltages readily 
follow from Ohm’s law. Thus, the voltage drop across 
the 6 Ω resistor is 6I1 in the direction of I1, where I1 is also 
the current through the battery. The voltage drop across 
the 3 Ω resistor is 3I2 in the direction of I2 and is also the 
voltage across the current source.

In principle, I1 and I2 can be determined from two 
simultaneous equations in these variables. It can be read-
ily shown (Problem P2.61) that conservation of charge at 
the essential nodes provides one equation, whereas con-
servation of power in the circuit provides another equa-
tion. However, the power equation is quadratic in I1 and 
I2. This is generally the case, because the power dissipated 
in a resistor is proportional to the square of the current 
through the resistor, or the square of the voltage across 
the resistor. Consequently, using power as a primary cir-
cuit variable results in nonlinear equations that are rather 
awkward to work with, particularly in more complicated 
circuits. It is advantageous, therefore, to be able to write 
circuit equations that are linear in current and voltage. 
This is provided by Kirchhoff’s current and voltage laws, 
which are discussed in the following section.

Primal Exercise 2.13

Given the circuit of Figure 2.17, specify (a) the number 
of nodes, (b) the number of essential nodes, (c) the num-
ber of branches, (d) the number of essential branches, 
(e) the number of meshes, and (f) the number of loops, 
other than meshes.

Ans. (a) 7; (b) 4; (c) 9; (d) 6; (e) 3; (f) 4.

2.8  Kirchhoff’s Laws

2.8.1  Kirchhoff’s Current Law

Statement: At any instant of time, the sum of currents 
entering a node is equal to the sum of currents leaving the 
node.

KCL is illustrated at a node ‘n’ in Figure 2.18a, where 
the current values indicated may be obtained through 
analysis, simulation, or measurement at node ‘n’. These 
values are in accordance with KCL, since the sum of 
 currents entering the node is 1 + 4 = 5 A and the sum 
of currents leaving the node is 2 + 3 = 5 A.

KCL is simply an expression of conservation of 
current, at any instant of time and at every node in 
a given circuit. It is a direct consequence of conserva-
tion of charge. The charge entering a node during an 
interval Δt is
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where the summation is over all the currents entering 
the node. The charge leaving the node during the inter-
val Δt is
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where the summation is over all the currents leaving the 
node. From conservation of charge, the charge entering 
the node during the interval Δt equals the charge leav-
ing the node during the same time interval. Equating 
the right-hand sides of Equations 2.4 and 2.5 and cancel-
ling Δt gives the statement of KCL:

 Entering Leaving
å å=i i

 
(2.6)
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Figure for Primal Exercise 2.13.
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It will be noted that just as conservation of energy 
implies conservation of its time derivative, which is 
power (Section 1.7), so does conservation of charge 
imply conservation of its time derivative, which is 
current.

KCL applies not only to known current values at a 
node, as in Figure 2.18a, but also to unknown currents at 
a node having arbitrarily assigned directions. Suppose, 
for example, that unknown currents are assigned as 
all  entering node ‘n’ (Figure 2.18b). Then, according 
to KCL,

 i i i i1 2 3 4 0+ + + =  (2.7)

But when the numerical values of the currents are 
determined, these values will satisfy KCL. It may be 
found, for example, that i1 = 1 A, i2 = −2 A, i3 = −3 A, and 
i3 = 4 A. Substituting in Equation 2.7,

 1 2 3 4 0 1 4 2 3– – + = + = +or  (2.8)

as before.
Because it is an expression of conservation of charge, 

KCL applies to whole circuit elements and to combi-
nations of circuit elements. It is always assumed that 
the current that enters a circuit element is equal to the 
current that leaves it. This applies to sources, resistors, 
inductors, and whole capacitors. It would not apply to 
only one of the plates of a capacitor, because charge can 
accumulate on one plate, while the other plate acquires 
an opposite, induced charge. So there will be a conduc-
tion current, due to motion of current carriers, entering 
one plate but no conduction current leaving this plate. 
But KCL applies to the whole capacitor, including both 
plates, as explained in more detail in Section 7.1.

KCL can also be usefully applied to whole circuits or 
to any combination of circuit elements that are part of 
a circuit, as will be illustrated in future examples. For 
now, consider the two interconnected circuits ‘A’ and ‘B’ 
in Figure 2.19a. If one of the circuits is enclosed by a sur-
face ‘S’, then KCL requires that the total current entering 
‘S’ must be equal to the total current  leaving ‘S’. If ‘A’ 
has two connections, the current entering ‘A’ through 

one connection must be equal in magnitude but oppo-
site in direction to the current leaving ‘A’ through the 
other connection (Figure 2.19a). If either of these cur-
rents is zero, the current in the other connection must 
be zero. If there is only one connection between the 
two circuits, the current in the connection must be zero 
(Figure 2.19b).

Primal Exercise 2.14

If in Figure 2.18b i1 = 1.5 A, i2 = −2 A, and i3 = 1.25 A, 
determine i4 that satisfies KCL.

Ans. −0.75 A.

2.8.2  Kirchhoff’s Voltage Law

Before illustrating KVL, it should be emphasized that 
voltages along a path add algebraically. This is consis-
tent with the definition of voltage as electric potential 
energy per unit charge, and the fact that changes in 
potential energy can be added algebraically. Consider, 
for example, the path from ground to node ‘c’ in 
Figure 2.20. Suppose that a small positive charge +δq 
C is moved along the path, where δq is small enough 
so as not to significantly disturb the circuit. If the 
charge is moved from ground, where the voltage and 
potential energy are assumed to be zero, to node ‘a’ 
through the 6 V source, the electric potential energy of 
δq at ‘a’ is 6δq J. If moved to node ‘b’ through a volt-
age rise of 4 V across the resistor, the potential energy 
of δq increases by 4δq J to become 10δq J. The voltage 
at node ‘b’ is 10δq/δq = 10 V, with respect to ground, 
consistent with the voltage at node ‘b’ being the sum 
of 6 V and 4 V. If moved to node ’c’ through a voltage 
drop of 2 V across the resistor, the potential energy of 
δq decreases by 2δq J to become 8δq J. The voltage at 
node ‘c’ is 8δq/δq = 8 V, with respect to ground, con-
sistent with the voltage at node ‘c’ being the algebraic 
sum (6 + 4 – 2) V of the  voltages across the individual 
branches along the path.

(a) (b)

A B

i

i

S

A
i = 0

B

S

FIGURE 2.19
Kirchhoff’s current law applied to a closed surface S.
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KVL can be stated as follows:

Statement: At any instant of time, the sum of voltage rises 
around any loop is equal to the sum of voltage drops around 
the loop.

KVL can be illustrated by a mesh in a circuit, as in 
Figure 2.21. The currents in the resistors are indicated, 
and the resistance values are assumed to give the voltage 
differences shown. Which of these voltage differences 
are voltage rises and which are voltage drops depends 
on the sense in which the mesh is traversed, clockwise or 
anticlockwise, but this does not affect KVL. If the mesh 
is traversed clockwise, starting at node ‘b’, there are two 
voltage rises, 3.5 and 4 V, and four voltage drops, 2.5, 3, 
0.5, and 1.5 V. To satisfy KVL, the sum of the voltage rises 
around the mesh must be equal to the sum of the voltage 
drops. Thus, 3.5 + 4 = 7.5 V = 2.5 + 3 + 0.5 + 1.5.

The interpretation of KVL follows from conservation 
of energy. Suppose a small charge +δq is taken around 
the mesh, where δq is small enough so as not to sig-
nificantly affect the currents and voltages in the mesh. 
The work done in taking δq around the mesh is δq mul-
tiplied by the sum of all the voltage rises around the 
mesh, whereas the work done by δq is δq multiplied by 
the sum of all the voltage drops around the mesh. By 
conservation of energy, these must be equal; otherwise, 
energy either just vanishes in the mesh or can be con-
tinuously extracted from the mesh at no energy cost. For 
example, if the sum of all the voltage rises around the 
mesh in Figure 2.21 is 7.5 V, but the sum of all the volt-
age drops around the mesh is, say 9 V, a net amount of 
energy equal to 1.5δq can be extracted from the circuit in 
each traversal of the mesh, which violates conservation 
of energy. It follows that

 d dq qå = åVoltage rises Voltage drops (2.9)

Cancelling δq from both sides of Equation 2.9 gives the 
statement of KVL.

It must not be assumed that KVL alone is an expres-
sion of conservation of energy, because the currents that 
produce the voltage rises and voltage drops across the 
circuit elements around the mesh must satisfy KCL. 
Hence, KCL and KVL together are an expression of conserva-
tion of energy in a circuit.

Although KVL was illustrated in the preceding dis-
cussion using a mesh, the same argument applies to any 
loop in the circuit.

To minimize the possibility of error in writing KVL 
around a mesh or a loop, the following procedure is help-
ful and will be illustrated with reference to Figure 2.21:

 1. Choose a node as the starting point and as the end-
point in traversing the loop, such as node ‘n’ at the 
bottom of the loop.

 2. Decide on the sense in which the loop is to be tra-
versed, say clockwise.

 3. Traverse the loop in the chosen direction proceeding 
through all the circuit elements in succession.

 4. As each circuit element is crossed, record the volt-
age across the circuit element, assigning it a positive 
sign if it is a voltage rise and a negative sign if it is a 
voltage drop.

 5. Set the algebraic sum of the recorded voltages equal 
to zero.

Thus, in Figure 2.21, starting at node ‘n’ and going 
clockwise, the first voltage encountered is a 4 V rise, so 
it is recorded as +4. The next voltage encountered is a 
2.5 voltage drop, so it is recorded as −2.5. Proceeding in 
this manner around the loop and setting the algebraic 
sum equal to zero,

 + + =4 2 5 3 0 5 1 5 3 5 0– . – – . – . .  (2.10)

It is seen that this is equivalent to writing 4 + 3.5 = 
2.5 + 3 + 0.5 + 1.5, as before, and is in accordance with 
the statement of KVL.

KVL can also be applied to an open path in a circuit 
to determine the voltage between the two ends of the 
path. In Figure 2.22, for example, current and resistance 
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values are such that the voltages across the resistors are 
as indicated. Starting at node ‘a’ and going clockwise, 
KVL gives

 + + =6 2 4 0– –Vda  (2.11)

so that Vda = 4 V. It should be noted that by convention, 
a voltage with a double subscript, such as Vda, is the 
 voltage drop from the node denoted by the first subscript 
to the node denoted by the second subscript. Evidently, 
Vda is equally a voltage rise from the node denoted by 
the second subscript ‘a’ to the node denoted by the first 
subscript ‘d’. In going from node ‘d’ to node ‘a’, the volt-
age drop is Vda and is entered with a negative sign in 
Equation 2.11.

Primal Exercise 2.15

Verify KCL at the six nodes in Figure 2.21.

Primal Exercise 2.16

Suppose that in Figure 2.21, the currents are doubled, 
which doubles the voltages across the resistors. Verify 
KVL when going around the circuit, (a) clockwise and 
(b) counterclockwise.

Primal Exercise 2.17

Determine in Figure 2.23 (a) I, (b) VS, and (c) the power 
delivered or absorbed by each source.

Ans. (a) −1 A; (b) −10 V; (c) 12 V source absorbs 12 W, 
2 V source delivers 2 W, current source delivers 10 W.

Example 2.2: Verification of KCL and KVL

It is required to simulate the circuit of Figure 2.24 and to 
verify KCL and KVL.

Simulation: Appendix C explains the basics of using 
the educational version of PSpice in an introductory 
course on electric circuits. The circuit is entered in the 

Schematic page of PSpice as illustrated in Figure 2.25. 
The battery is entered as VDC from the SOURCE library, 
and the resistors are entered as R from the ANALOG 
library. In the Simulation Settings, ‘Bias Point’ is selected 
under ‘Analysis type’ and then ‘General Settings’ under 
‘Options’. After the simulation is run, pressing the ‘I’ 
button displays the currents, as in Figure 2.26, in which 
the nodes have been labeled for clarity. The I blocks 
can be dragged to more convenient locations, which 
also displays dotted-line connections between each 
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circuit element and the I block that indicates the current 
through that element. The location of a dotted line at 
one terminal of a circuit element signifies that current 
enters the circuit element at that terminal. Thus, the 
1.5 A current flows through the battery in the direction 
‘de’ and through R1 in the direction ‘ea’. It is seen that 
1.5 A enter node ‘a’ and leave this node through R2 and 
R6, in accordance with KCL. Similarly, KCL is satisfied 
at every other node in the circuit. Pressing the ‘V’ button 
displays the node voltages with respect to a ground volt-
age of zero, as indicated in Figure 2.27. The voltage drop 
across each resistor, which is equal to the difference 
between the node voltages at the ends of the resistor, has 
been added for clarity. The circuit has three meshes, and 
KVL is satisfied around each mesh. Thus, if mesh d–e–
a–b–d is traversed clockwise, the algebraic sum of the 
voltage rises and the voltage drops is 12 − 3 – 3 − 6 = 0. 
The same is true of the other meshes b–a–c–b and d–b–
c–d. KVL is also satisfied around any loop in the circuit, 
such as d–e–a–c–b–d. The algebraic sum of the voltage 
rises and voltage drops around this loop is 12 − 3 − 5 + 
2 − 6 = 0.

Pressing the ‘W’ button displays the power absorbed in 
each circuit element as in Figure 2.28, where ‘W’ is the 
symbol for power in PSpice. A positive value of power 

is power absorbed, which means that power delivered 
by a source is negative, as indicated by the −18 W for 
the battery. It is seen that the total power absorbed by 
the resistors is +18 W, in accordance with conservation 
of power.

Problem-Solving Tips

• The solution to any circuit problem can be checked 
by making sure that Ohm’s law is satisfied for 
every resistor, KCL is satisfied at every node, and 
KVL is satisfied around every mesh.

• If a circuit has N essential nodes, then after writing 
KCL for (N − 1) essential nodes, KCL at the remain-
ing node should automatically be satisfied if KCL 
was written correctly at the other nodes. This is a 
useful check on KCL.

The second problem-solving tip of the preceding 
example can be illustrated for the circuit of Figure 2.24 
by labeling the branch currents, as in Figure 2.29. There 
are four essential nodes: ‘a’, ‘b’, ‘c’, and ‘d’. KCL for the 
first three nodes gives the following: node ‘a’: I1 = I2 + I3; 
node ‘b’: I3 = I4 + I5; and node ‘c’: I2 + I4 = I6.

When these three equations are added, I2, I3, and I4 
cancel out, leaving I1 = I5 + I6, which is KCL for node ‘d’. 
Thus, N = 4, and N − 1 = 3, so that only three indepen-
dent KCL equations can be written. KCL for the remain-
ing node is not an independent equation but can be used 
as a check on the KCL equations for the other nodes. The 
number of independent KCL and KVL equations that can 
be written for any circuit is derived in Problem P2.62.

Primal Exercise 2.18

Refer to the circuit of Figure 2.17. Specify (a) the number 
of independent KCL equations and (b) the number of 
independent KVL equations that can be written for the 
circuit. Verify the relation of Problem P2.62.

Ans. (a) 3; (b) 3; 6 = 3 + (4 − 1).
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Example 2.3: Application of Ohm’s Law, KCL, and KVL

It is required to determine VO in Figure 2.30.

Solution:

VO can be obtained by a step-by-step application of 
Ohm’s and Kirchhoff’s laws without introducing any 
additional, unknown circuit variables.

Step 1: Because the output terminals between which 
VO is specified are open-circuited, no current 
flows in or out at these terminals (Figure 2.31).

Step 2: From KCL at node ‘a’, the current flowing 
through the 10 Ω resistor is 2 A.

Step 3: From Ohm’s law, the voltage drop from 
node ‘a’ to node ‘c’ is 2 × 10 = 20 V.

Step 4: From KCL at node ‘c’, the current through 
the 20 Ω resistor is 0. This can also be deduced by 
enclosing the 2 A source and 10 Ω resistor by a 
 surface, as in Figure 2.19a, and noting that since 
no current enters this surface at node ‘a’, then no 
current leaves this surface at node ‘c’.

Step 5: From Ohm’s law, the voltage across the 20 Ω 
resistor is zero.

Step 6: Applying KVL in going through nodes ‘b’, ‘d’, 
‘c’, ‘a’, and back to ‘d’: −8 + 0 + 20 − VO = 0, which 
gives VO = 12 V.

We could continue and apply Ohm’s law to the 2  Ω 
resistor to determine that 4 A flow through this resistor 
in the direction of the voltage drop of 8 V. From KCL at 
node ‘d’ or node ‘b’, the current in the 8 V source is 4 A 
in the direction of a voltage rise through the source.

Simulation: The circuit is entered as in Figure 2.32. 
After selecting ‘Bias Point’ under ‘Analysis type’ in the 
Simulation Settings and running the simulation, press-
ing the I and V buttons displays the currents and volt-
ages indicated in Figure 2.32. The zero current in the 
20 Ω resistor is indicated as 266.5E–18 A, which denotes 
266.5×10−18 A.

Problem-Solving Tip

• Always mark on the circuit diagram the directions 
of currents of interest and the polarities of volt-
ages of interest, bearing in mind that the current 
through an ideal resistor is in the direction of the 
voltage drop across the resistor.

2.9  Series and Parallel Connections

2.9.1  Series Connection

The four elements ‘A’, ‘B’, ‘C’, and ‘D’ in Figure 2.33a are 
connected in series. Geometrically, the most salient feature 
of the series connection is that the elements are connected in 
succession, end to end, without branching at any of the nodes 
between the elements, as diagrammatically illustrated by the 
long, thick arrow in Figure 2.33a. Electrically, the nodes 
between the elements are inessential nodes ‘a’, ‘b’, and ‘c’. 
Conservation of charge requires that the current entering 
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an inessential node is the same as the current leaving it. 
It follows that the same current flows through all the series-
connected elements as illustrated in Figure 2.33a.

A simple test for elements in series is to check that 
the elements can be traversed in succession along an 
unbranched path, as is the case with elements ‘A’, 
‘B’, ‘C’, and ‘D’ in Figure 2.33a. In contrast, elements 
‘A’, ‘B’, ‘C’, and ‘D’ in Figure 2.33b are no longer in series, 
because the path through these elements divides at node 
‘b’ into two branches as shown. Node ‘b’ is now an essen-
tial node at which the current i divides into i1 and  i2. 
However, elements ‘A’ and ‘B’ in Figure 2.33b are still in 
series, as are elements ‘C’ and ‘D’, as well as ‘E’ and ‘F’.

Note that the series connection has the following 
features:

 1. Because the current through series-connected 
elements is the same, KCL is automatically satis-
fied in a series connection.

 2. Voltages add algebraically along the path through 
series-connected elements. In Figure 2.34a, for 
example, the two resistors and the 6 V battery are 
connected in series, the current through the ele-
ments being assumed to be 1 A. With the voltage 
of node ‘a’ considered 0, the voltage of node ‘c’ is 

5 + 3 = 8 V, and the voltage of node ‘d’ is 8 − 6 = 2 V. 
KVL can be written as 5 + 3 − 6 − Vda = 0, as in 
Figure 2.22, which gives Vda = 2 V.

 3.  If one of the series-connected elements is removed 
from the circuit, the current in the series connec-
tion is zero. This is because when an element is 
removed from the series connection, the  element 
is replaced by an open circuit, as in Figure 2.34b.

Figure 2.35a shows three lamps connected in series, as 
is often done in decorative lighting. The lamps are equiva-
lent to three resistors in series (Figure 2.35b). If a lamp is 
removed, the remaining lamps are turned off because the 
current is interrupted, that is, reduced to zero. A nonelectri-
cal example of a series connection is a number of railroad 
cars coupled together, end to end, to a locomotive. In this 
case, the analog of the same current in the series connec-
tion is the same velocity at which the whole train moves.

2.9.2  Parallel Connection

The three elements ‘A’, ‘B’, and ‘C’ in Figure 2.36a are con-
nected in parallel. Geometrically, the most salient feature 
of the parallel connection is that one end of each element, 
marked with ‘x’ in Figure 2.36a, is connected to a common node, 
‘a’, whereas the other end of each of these elements, marked with 
‘z’ in Figure 2.36a, is connected to another common node, ‘b’. 
This implies that the closed path through any two paralleled ele-
ments traverses these two elements only, and no other elements, 
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as diagrammatically illustrated by the dashed curves in 
Figure 2.36b, which is Figure 2.36a redrawn in the conven-
tional manner, for clarity. Electrically, nodes ‘a’ and ‘b’ are 
essential nodes, and the same voltage v between these nodes 
appears across each of the parallel-connected elements.

Because students often have some difficulty in identi-
fying circuit elements that are in parallel, we will elabo-
rate a little on the parallel connection. It is seen from 
Figure 2.36 that either one of the following two tests can 
be applied to identify circuit elements in parallel:

 1. Mark with ‘x’ the ends of all elements connected 
together at the same node and then mark with 
‘z’ the other end of each of the elements; if the 
z-marked ends are all connected to the same 
node, the marked elements are in parallel.

 2. Any two elements are in parallel if the closed path 
through them does not traverse any other element.

For example, suppose we wish to identify which ele-
ments in Figure 2.37a are in parallel. We may begin by 
marking with ‘x’ the ends of elements ‘A’, ‘B’, ‘C’, and 
‘D’ connected together at node ‘c’. We then mark with ‘z’ 
the other end of each of these elements and check which 
of these z-marked ends are connected to the same node. 
We note that the z-marked ends of elements ‘A’ and ‘B’ 
are connected to node ‘a’, so these elements are in par-
allel. Similarly, the z-marked ends of elements ‘C’ and 
‘D’ are connected to node ‘b’, so these elements are in 
 parallel. However, elements ‘A’ and ‘B’ are not in paral-
lel with elements ‘C’ and ‘D’, because the z-marked ends 
of ‘A’ and ‘B’ are not connected to the same node as the 
z-marked ends of ‘C’ and ‘D’, due to the presence of ele-
ment ‘E’. In the absence of this element (Figure 2.37b), 
the four elements are in parallel.

As a further check, we note that elements ‘A’ and ‘B’ 
in Figure 2.37a form a mesh that does not include any 

other element, so these elements are in parallel, as are 
elements ‘C’ and ‘D’. However, elements ‘B’ and ‘C’ are 
not in parallel, since the mesh that includes these two 
elements also includes element ‘E’. Similarly, elements 
‘A’ and ‘C’, ‘A’ and ‘D’, and ‘B’ and ‘D’ in Figure 2.37a 
are not in parallel. In Figure 2.37b, any mesh or loop 
formed by any two of the four elements does not include 
any other element, so these four elements are in parallel.

As another example, consider Figure 2.38a. Resistors 
R1 and R2 are evidently in parallel, in accordance with 
the aforementioned tests. The circuit of Figure 2.38a may 
be redrawn as in Figure 2.38b. The circuit is the same, for 
if the vertical thick line in Figure 2.38b is collapsed, the 
circuit reduces to that of Figure 2.38a. R1 and R2 are still 
in parallel. If their ends that are connected at node ‘a’ 
are marked with an ‘x’, and their other ends are marked 
with a ‘z’, the z-marked ends are connected at the same 
node ‘c’, although this connection is a ‘short’ connection 
in Figure 2.38a and is a ‘long’ connection in Figure 2.38b. 
Both connections are indicated by a thick line in the fig-
ures. They are wiring connections of zero resistance, as 
is the wiring connection between R1 and R2 at node ‘a’ in 
Figure 2.38a. Moreover, the mesh formed by R1 and R2 
does not include any other element.

The following should be noted about the parallel 
connection:

 1. In Figure 2.39, two resistors and a 1 A source are 
connected in parallel, the voltage across the par-
allel combination being assumed to be 6 V. Ohm’s 
law gives a current of 6/2 = 3 A in the 2 Ω resistor, 
and a current of 6/3 = 2 A in the 3 Ω resistor, both 
in the direction of the voltage drop of 6 V. It is seen 
that KVL is automatically satisfied in the mesh or loop 
formed by any two paralleled elements. Thus, start-
ing at node ‘a’, for example, and moving through 
any of the elements to node ‘b’, involves a voltage 
drop of 6 V. Moving back to node ‘a’ through one 
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of the other two elements involves an equal volt-
age rise of 6 V. KVL is therefore satisfied.

 2. The currents through the paralleled elements add 
algebraically at either node between which the ele-
ments are paralleled. In Figure 2.39, the current 
entering node ‘a’ from the rest of the circuit 
is 4 A and is equal to the algebraic sum of the 
branch currents, 3 + 2 − 1 = 4 A, in accordance 
with KCL, as is the 4 A current leaving node ‘b’ 
to the rest of the circuit.

 3. In order to have zero current between the end 
nodes ‘a’ and ‘b’ in Figure 2.39, all the paralleled 
elements must be removed from the circuit.

The heating elements of a multielement electric heater 
are typically connected in parallel across the mains volt-
age supply. Figure 2.40 diagrammatically illustrates 
three resistive heating elements connected to the voltage 
supply through switches that allow energizing a single 
element, or two elements, or three elements, at a time.

The series and parallel connections allow building 
circuits of any desired complexity. In Figure 2.41, for 
example, R1 and R2 are connected in series, as are R3 and 
vSRC2; iSRC is connected in parallel with these series com-
binations. The resulting series–parallel combination is 
in turn connected in series with R4 and vSRC1.

Primal Exercise 2.19

Figure 2.42 illustrates a rear window heater used for 
defogging/defrosting in some cars. It consists of nine 
resistance wires connected as shown between the battery 
terminals. Draw a circuit diagram of the heater in terms 
of resistors labeled with the same numbers as the resis-
tance wires, and describe the connection.

Ans. The circuit diagram is as shown in Figure 2.43. The 
resistance wires are connected as three sets in series, 
each set consisting of three equal resistances in parallel.

Primal Exercise 2.20

Determine VX in Figure 2.44.

Ans. 1 V.

Primal Exercise 2.21

Element ‘A’ in Figure 2.45 absorbs 4 W. Determine the 
power delivered or absorbed by the 2 A source.

Ans. 8 W absorbed.
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2.10  Problem-Solving Approach

The essence of engineering is to produce effective solu-
tions to practical problems through appropriate design 
of equipment, structures, or systems. The most effec-
tive engineering solution to a given problem is the one 
that is reached in minimum time, at minimum cost and 
effort, and which achieves the desired objectives in the 
simplest possible manner. Simplicity is crucial in engi-
neering design, because the simplest solution is almost 
invariably the most reliable, durable, and economical. 
Imagination and creativity can make a decisive differ-
ence in effective problem solving.

It is important therefore to foster the mindset and 
approach that is conducive to effective problem solving. 
Problems on electric circuits provide an opportunity 
toward this goal that should be exploited. This theme is 
emphasized throughout the book.

The steps listed here are intended as a guide to an 
effective problem-solving approach based at this stage 
on Ohm’s law, KCL, and KVL. Depending on the par-
ticular problem under consideration, not all of the steps 
may be applicable in every case. Some of these steps will 
be updated in future chapters in the light of circuit anal-
ysis concepts and methodologies introduced in each of 
these chapters. By the end of Chapter 6, all the main cir-
cuit analysis methodologies would have been presented.

Step 1—Initialize: Generally, this involves the following:
 (a) Mark on the circuit diagram all the given values 

of circuit parameters, currents, and voltages, as 
well as the unknowns to be determined, keeping 
in mind that every current must have a direction 
and every voltage must have a polarity.

 (b) Label the nodes, such as ‘a’, ‘b’, ‘c’, etc., as this is 
usually helpful.

 (c) If the solution requires that a given value of 
 current or voltage be satisfied, assume this value 
from the very beginning, as this can considerably 
facilitate the solution.

Step 2—Simplify: Try and reduce the circuit to a sim-
pler form, if possible. This may be done, for example, by 
redrawing the circuit or by replacing series and parallel 
combinations of circuit elements by an equivalent cir-
cuit element, as discussed in Chapter 3.

Step 3—Deduce: Determine any values of current or 
voltage that follow immediately from direct application of 
Ohm’s law, KCL, or KVL, without introducing any addi-
tional unknowns. The given unknowns, such as required 
outputs, as well as controlling voltages and currents of 
dependent sources, may be used in expressing Ohm’s 
law, KCL, or KVL in this step.

The results of applying Ohm’s law, KCL, and KVL 
should be entered on the circuit diagram itself, includ-
ing directions of currents and polarities of voltages. This 
way, the correctness of these circuit laws can be readily 
checked visually. Bear in mind that the current through 
an ideal resistor that obeys Ohm’s law is always in the 
direction of the voltage drop across the resistor.

KCL, KVL in Step 3 are often sufficient to solve the 
problem, as in Examples 2.3, 2.4, and 2.5. Moreover, it 
may be possible to repeat Steps 2 and 3 alternately in 
some cases. If Step 3 does not provide the solution, pro-
ceed to Step 4.

Step 4—Explore: Consider the nodes and meshes in the 
circuit to see if KCL or KVL can be expressed using a 
single, unknown current or voltage, and if this unknown can 
then be directly determined from KCL or KVL. If so, this step 
provides the solution, because once an unknown cur-
rent or voltage is determined, other required values can 
be derived using KCL, KVL, or Ohm’s law. If Step 4 does 
not provide the solution, proceed to Step 5.

Step 5—Plan: Think carefully about the problem in the 
light of circuit fundamentals and circuit analysis tech-
niques. Imagination, creativity, and experience in prob-
lem solving can play a decisive role in this step. Try to 
think of alternative solutions and select what seems to 
be the simplest and most direct solution.

Step 6—Implement: Carry out your planned solution, 
bearing in mind the following considerations:

 (a) Keep the number of unknown variables to a 
minimum, as this minimizes the likelihood of 
careless mistakes. Make use of any given vari-
ables such as an unknown variable to be deter-
mined or the controlling currents or voltages of 
dependent sources.
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 (b) Mentally ascertain the correctness of equations 
or relations as you write them or copy them, 
in order to minimize the likelihood of careless 
mistakes. If in doubt about the correctness of 
an equation or relation, check the units on both 
sides of the equation or relation or the units of 
numerators and denominators of expressions.

 (c) Keep track of units, and label all calculated 
 values with the appropriate units.

Step 7—Check your calculations and results.

 (a) Check that your results make sense, in terms of 
magnitude and sign.

 (b) Check that Ohm’s law is satisfied for every 
resistor, that KCL is satisfied at every node, and 
that KVL is satisfied around every mesh.

 (c) A good way to check your results is to seek an 
alternative solution to the problem and see if it 
gives the same results.

 (d) Whenever feasible, check your results with 
PSpice simulation. This is a valuable habit to 
acquire. For this reason, PSpice simulation is 
strongly emphasized throughout the book.

The preceding steps will henceforth be referred to by the 
acronym ISDEPIC.

Example 2.4: Illustration of ISDEPIC Approach

The circuit of Figure 2.16 is analyzed in accordance with 
ISDEPIC.

Solution:

 1. Initialize: The circuit is reproduced in Figure 2.46a, 
indicating values of all the circuit elements.

 2. Simplify: The circuit is in a simple enough form.
 3. Deduce: It is seen that 1.5 A enter the upper node 

and leave the lower node, as in Figure 2.46b. No 
more deductions can be made from immediate 
application of Ohm’s law, KCL, or KVL.

 4. Explore: KCL at either node can be expressed by intro-
ducing a single unknown variable at either node, 
which can then be determined from KVL around the 
mesh on the LHS. The variable could be the current 
in the 3 Ω resistor or in the 6 Ω resistor. If an unknown 
current IX is assigned entering the upper node through 
the 6  Ω resistor (Figure 2.46c), then from KCL, the 
current leaving the node through the 3 Ω resistor is 
(IX + 1.5) A. Ohm’s law and KVL around the mesh 
on the left allow writing an equation in IX that can 
be used for determining IX. Thus, moving clockwise 
around the mesh, starting at the negative terminal of 
the battery, KVL gives +9 − 6IX – 3(IX + 1.5) = 0, so that 
IX = 0.5 A. Once IX is known, all the other unknown 
currents and voltages can be determined.

Alternatively, an unknown voltage VX may 
be assigned to the voltage between the nodes 
(Figure 2.46d). From Ohm’s law, the current leav-
ing the node through the 3 Ω resistor is VX/3. From 
KVL, the voltage drop across the 6  Ω resistor in 
going from the upper node to the positive terminal 
of the battery is (VX − 9) V, and the current leaving 
the node through the 6 Ω resistor is (VX − 9)/6 A. 
From KCL, 1.5 = VX/3 +  (VX − 9)/6, which gives 
VX = 6 V.
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Note how much simpler is the solution compared to 
that based on conservation of power (Problem P2.61).

Simulation: The circuit is entered as in Figure 2.47. ‘Bias 
Point’ is selected under ‘Analysis type’ in the Simulation 
Settings. After the simulation is run, pressing the I and 
V buttons displays the currents and voltages indicated 
in Figure 2.47. It is seen that Ohm’s law, KCL, and KVL 
are satisfied.

Problem-Solving Tip

• Circuits having only two essential nodes can gen-
erally be analyzed by applying KCL at either node.

Primal Exercise 2.22

Show that power is conserved in the circuit of Figure 2.46 
based on the values of currents and voltages, and verify 
by PSpice simulation.

Ans. Power delivered is 4.5  W by voltage source and 
9 W by current source; power dissipated is 12 W in the 
3 Ω resistor and 1.5 W in the 6 Ω resistor.

Example 2.5: Illustration of ISDEPIC Approach

It is required to determine IX in Figure 2.48a.

Solution:

The circuit has two essential nodes, as in Example 2.4, 
but with the addition of a VCVS controlled by the volt-
age VA. It will be analyzed by applying ISDEPIC.

 1. Initialize: The circuit is already marked with given 
values and the required IX. The nodes are labeled ‘a’ 
and ‘b’.

 2. Simplify: The circuit is in a simple enough form.
 3. Deduce: 2  A and a current VA/4  A leave node ‘a’ 

(Figure 2.48b). The voltage drop across the 10  Ω 
resistor is 10IX. KCL at node ‘a’ is IX  =  2  +  VA/4. 
A second equation involving IX and VA can be 
derived from KVL around the mesh on the RHS. 
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Starting at node ‘b’ and going clockwise, KVL gives 
+10 + VA + 10IX − 5VA = 0, or 4VA − 10IX = 10. Solving 
these equations for VA and IX gives IX  =  7  A and 
VA = 20 V.

Since the circuit is a two-essential node circuit, it 
can alternatively be analyzed by writing a single KCL 
equation in one unknown. KVL can be used to express 
IX directly in terms of VA. Thus, Vab =  (10 + VA) (Figure 
2.48c). The voltage drop from node ‘a’ to the positive ter-
minal of the VCVS is Vab − 5VA = 10 + VA − 5VA = 10 − 4VA, 
and the current leaving node ‘a’ through the 10 Ω resis-
tor is (10 − 4VA)/10 = 1 − 0.4VA. From KCL at node ‘a’, 
2 + 0.25VA + 1 – 0.4VA = 0, which gives VA = 20 V. Hence, 
IX = −(1 – 0.4VA) = 7 A.

Simulation: The circuit is entered as in Figure 2.49. 
The VCVS is entered from the ANALOG library as part 
number E having four terminals: two for the voltage 
source and two for the controlling voltage. The multi-
plier for this voltage is entered by double clicking on 
the default ‘Gain  =1’ and changing the value from 1 
to 5 in the ‘Display Properties’ window. ‘Bias Point’ 
is selected under ‘Analysis type’ in the Simulation 

Settings. After the simulation is run, pressing the I and 
V buttons displays the currents and voltages indicated 
in Figure 2.49. It is seen that IX = 7 A, and the voltage 
across the VCVS is 100 V.

Problem-Solving Tip

• Controlling currents or voltages of dependent 
sources are often convenient to use as unknown 
variables in analyzing circuits.

Primal Exercise 2.23

Show that power is conserved in the circuit of Figure 2.48 
based on the values of currents and voltages, and verify 
by PSpice simulation.

Ans. Dependent source delivers 700 W, voltage source 
absorbs 50 W, and current source absorbs 60 W. Power 
dissipated is 100 W in the 4 Ω resistor and 490 W in the 
6 Ω resistor.

Example 2.6: Illustration of ISDEPIC Approach

It is required to determine R in Figure 2.50a so that 5 A 
flow in the short circuit between nodes ‘b’ and ‘d’ in the 
direction indicated.

Solution:

 1. Initialize: To determine R one should not seek to 
derive a relation between R and the current in the 
short circuit, and then set this current to 5  A to 
find R. This would be a waste of time and effort. 
Instead, the required value of current is assumed to 
begin with, and the circuit is analyzed accordingly. 
This is an example of the initialization step  1(c) 
mentioned under the general problem-solving 
approach.

 2. Simplify: The circuit configuration of Figure 2.50a 
is referred to as a lattice configuration. Because it 
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contains a crossover connection, it is not easy to 
visualize circuit behavior. The crossover connec-
tion is encountered in the zigzag path from node 
‘a’ through nodes ‘b’, ‘c’, ‘d’, and back to ‘a’. The 
crossover connection is removed by relocating the 
four nodes so as to have a straight path around the 
loop ‘abcda’ without a zigzag. The four nodes can 
be placed in a clockwise sense, as in Figure 2.50b, 
and the elements between the nodes connected 
accordingly. Note that nodes ‘b’ and ‘d’ are one and 
the same node, which means that the 12 Ω resistor is 
in parallel R and the 8 and 24 Ω resistors are in par-
allel. Moreover, the two parallel combinations are 
in series across the voltage source. Nevertheless, 
‘b’ and ‘d’ have been separated to show the 5  A 
current.

 3. Deduce: No deductions can be made from immedi-
ate application of Ohm’s law, KCL, or KVL.

 4. Explore: KCL at nodes ‘a’ or ‘c’ is not helpful 
because none of the currents at these nodes is 
known. KVL around the meshes is also not helpful 
for the same reason. KCL at node ‘b’ is not help-
ful either because assigning a single current at this 
node does not allow using KVL to determine this 
current, since R is unknown. However, if a current 
I is assigned entering at node ‘d’ from the 12  Ω 
resistor (Figure 2.50c), the current leaving node ‘d’ 
through the 8 Ω resistor is (I + 5) A. I can then be 
determined from Ohm’s law and KVL around the 
mesh on the LHS. Thus, the voltage drop across the 
12 Ω resistor is 12I V, and the voltage drop across 
the 8  Ω resistor is 8(I  +  5) V. Going around the 
mesh on the LHS in the clockwise sense, starting at 
node ‘c’, KVL gives 120 – 12I – 8(I + 5) = 0, so that 
I = 4 A. To determine R, we note that the voltage 
across the 8 and 24 Ω resistors is the same, since 
these resistors are in parallel, as noted earlier. The 
voltage across the 8  Ω resistor is 8(4  +  5)  =  72  V. 
The current through the 24 Ω resistor is therefore 
72/24 = 3 A. From KCL at node ‘b’, the current in R 
is (5 + 3) = 8 A. Since R is in parallel with the 12 Ω 
resistor, the voltage across it is 12I = 48 V. Hence, 
R = 48/8 = 6 Ω.

Simulation: The circuit is entered as in Figure 2.51. 
R is entered as 6 Ω, and the simulation is used to verify 
that a current of 5  A flows from node ‘b’ to node ‘d’. 
To make PSpice display this current, a 1 μΩ resistor is 
inserted in place of the short circuit. The value of this 
resistance is too small to significantly affect the results. 
‘Bias Point’ is selected under ‘Analysis type’ in the 
Simulation Settings. After the simulation is run, press-
ing the I and V buttons displays the currents and volt-
ages indicated in Figure 2.51.

Problem-Solving Tip

• A circuit with rather awkward-looking connec-
tions can be redrawn, after labeling of nodes, for 
easier visualization of the connections.

Learning Checklist: What Should 
Be Learned from This Chapter

• Electrical resistance is fundamentally due to 
impediments to the movement of current carri-
ers in a conductor in the presence of an applied 
electric field. According to the “collision” 
model, resistance arises because of repeated col-
lisions between the vibrating crystal atoms and 
conduction electrons moving under the influ-
ence of the applied electric field. The collision 
model can also account for (1) the increase of 
resistance with temperature and (2) the heating 
effect of electric current.

• An ideal resistor is a purely dissipative circuit 
element that obeys Ohm’s law: v = Ri, where R, 
the resistance, is a constant that is independent 
of current, voltage, time, or temperature. When 
v is in volts and i is in amperes, R is in ohms.

• Ohm’s law can be expressed as i  =  Gv, where 
G = 1/R is the conductance. When R is in ohms, 
G is in siemens.

• The current through an ideal resistor is always 
in the direction of the voltage drop across the 
resistor, so as to give a positive value of R in the 
expression for Ohm’s law.

• The power dissipated in a resistor is p = vi = 
Ri2 = v2/R = Gv2.
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• A short circuit is a connection of zero resistance, 
or infinite conductance. An open circuit has infi-
nite resistance, or zero conductance.

• An ideal voltage source, whether an indepen-
dent or a dependent, ideal voltage source, 
maintains a specified source voltage between 
its terminals, irrespective of the current through 
the source. The specified source voltage could 
be positive, negative, or zero.

 1. Whereas the source voltage is solely that 
specified for the source, the current through 
the source depends on both the source volt-
age and the rest of the circuit to which the 
voltage source is connected. The source 
current can be positive, negative, or zero.

 2. The source voltage is in general a function 
of time, but does not vary with the current 
through the source.

 3. The ideal voltage source can deliver or absorb 
power, depending on the relative directions 
of source voltage and source current.

 4. When the source voltage is zero, the ideal 
voltage source is equivalent to a short circuit.

• In an ideal, independent voltage source, the 
source voltage is specified independently of any 
voltage or current in the circuit.

• An ideal, dependent voltage source behaves 
exactly like an ideal, independent voltage 
source, except that the specified source voltage 
depends on a voltage or a current other than that 
of the source itself. There are thus two types of 
dependent voltage sources: a VCVS and a CCVS.

• An ideal current source, whether an indepen-
dent or a dependent, ideal current source, main-
tains a specified current through the source, 
irrespective of the voltage across the source. The 
specified source current could be positive, nega-
tive, or zero.

 1. Whereas the source current is solely that 
specified for the source, the source voltage 
depends on the both the source current and 
the rest of the circuit to which the current 
source is connected. The source voltage can 
be positive, negative, or zero.

 2. The source current is in general a function 
of time, but does not vary with the voltage 
across the source.

 3. The ideal current source can deliver or absorb 
power, depending on the relative directions 
of source voltage and source current.

 4. When the source current is zero, the ideal cur-
rent source is equivalent to an open circuit.

• In an ideal, independent current source, the 
source voltage is specified independently of any 
voltage or current in the circuit.

• An ideal, dependent current source behaves 
exactly like an independent current source, 
except that the specified source current depends 
on a voltage or a current other than that of the 
source itself. There are thus two types of depen-
dent current sources: a VCCS and a CCCS.

• A node is the connection point between a num-
ber of circuit elements. An inessential node is a 
node between just two circuit elements, whereas 
an essential node is a node between three or 
more circuit elements.

• A path is a set of one or more adjoining circuit 
 elements that may be traversed in succession 
without passing through the same node more 
than once. A branch is a path that connects two 
nodes, whereas an essential branch is the set of 
adjoining circuit elements traversed in going 
from one essential node to an adjacent essential 
node, without passing through another essen-
tial node.

• A loop is a closed path in a circuit. A mesh is a 
loop that does not enclose any other loop.

• Although electric circuits can be analyzed 
based on conservation of current and conser-
vation of power, this is awkward in practice 
because of the quadratic dependence of power 
on current or voltage. Kirchhoff’s laws (KCL 
and KVL) are much more convenient to apply 
because they are linear in current and voltage.

• According to KCL, the sum of currents entering 
a node at any instant of time is equal to the sum 
of currents leaving the node at that instant.

 1. KCL is a direct expression of conservation 
of current.

 2. KCL applies not only to known current 
values at a node but also to unknown cur-
rents at a node having arbitrarily assigned 
directions.

 3. KCL can also be applied to whole circuits or 
to any combination of circuit elements that 
are part of a circuit.

• Voltages along a path add algebraically. This 
is consistent with the definition of voltage as 
electric potential energy per unit charge, and 
the fact that changes in potential energy can be 
added algebraically.

• According to KVL, the sum of voltage rises around 
any loop at any instant of time is equal to the sum 
of voltage drops around the loop at that instant.
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 1. To minimize the possibility of error in writing 
KVL around a mesh or a loop, a systematic 
procedure can be followed in writing KVL.

 2. KVL can also be applied to an open path in a 
circuit to determine the voltage between the 
two ends of the path.

• KVL and KCL together are an expression of 
 conservation of energy.

• The following are the features of a series con-
nection of circuit elements:

 1. The elements are connected in succession, 
end to end, without branching at any of the 
nodes between the elements.

 2. The same current flows through all the ele-
ments, so KCL is automatically satisfied.

 3. Voltages add algebraically along the path 
through series-connected elements.

 4. If one of the series-connected elements is 
removed from the circuit, the current in the 
series connection is zero.

• The following are the features of a parallel con-
nection of circuit elements:

 1. One end of each element is connected to 
a common node, whereas the other end 
of each of these elements is connected to 
another common node.

 2. Any two paralleled elements form a mesh or 
a loop that does not include any additional 
elements.

 3. The same voltage appears across all the par-
allel-connected elements, so KVL is auto-
matically satisfied.

 4. Currents add algebraically at the nodes 
between which the elements are paralleled.

• The series and parallel connections can be 
used to build resistive circuits of any desired 
complexity.

• A problem-solving approach, ISDEPIC, can be 
applied as a series of steps that can be very help-
ful in analyzing a given circuit and arriving at 
the solution systematically and efficiently.

Problem-Solving Tips

 1. The solution to any circuit problem can be 
checked by making sure that Ohm’s law is satis-
fied for every resistor, KCL is satisfied at every 
node, and KVL is satisfied around every mesh.

 2. If a circuit has N essential nodes, then after writ-
ing KCL for (N − 1) essential nodes, KCL at the 

remaining essential node should be automati-
cally satisfied if KCL was written correctly at 
the other nodes.

 3. Always mark on the circuit diagram the direc-
tions of currents of interest and the polarities 
of voltages of interest, bearing in mind that the 
current through an ideal resistor is in the direc-
tion of the voltage drop across the resistor.

 4. Circuits having only two essential nodes can 
generally be analyzed by applying KCL at either 
node.

 5. Controlling currents or voltages of dependent 
sources are often convenient to use as unknown 
variables in analyzing circuits.

 6.  A circuit with rather awkward-looking connec-
tions can be redrawn, after labeling of nodes, for 
easier visualization of the connections.

Problems

Apply ISDEPIC and verify solutions by PSpice simulation 
whenever feasible.

Resistors

P2.1 A 1.5 MΩ resistor is rated at 1/2 W. Determine the max-
imum voltage that can be applied to the resistor with-
out exceeding its power rating.

 Ans. 866.0 V.

P2.2 Four 60 W and 120 V lamps are to be connected in par-
allel to a 240 V supply, using a resistor R to drop 120 V, 
so that the voltage across each lamp is 120 V, as illus-
trated in Figure P2.2. Determine (a) the current of each 
lamp, (b) the current through R, (c) the value of R, and 
(d) the power rating of the resistor R.

 Ans. (a) 0.5 A; (b) 2 A; (c) 60 Ω; (d) 240 W.

P2.3 The voltage across a resistor is 60sin100πt V when the 
current through it is 4sin100πt A, in the direction of a 
voltage drop. Determine (a) the resistance value, (b) the 
instantaneous power p(t) dissipated in the resistor, and 
(c) the average power dissipated in the resistor, which 
is the time integral of p(t) over a period, divided by the 
period. (d) Is the average power in the resistor equal to 
the product of the average voltage across the resistor 
and the average current through it? Explain.
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 Ans. (a) 15  Ω; (b) 120(1  −  cos200πt)  W; (c)120  W; (d) 
No. The average of the voltage and the current is zero, 
because they are alternately positive and negative in 
successive half-cycles. But negative voltage multiplied 
by negative current gives a positive value of power, so 
that the power does not average to zero.

P2.4 The voltage shown in Figure P2.4 is applied across a 
5 Ω resistor. Determine (a) the resistor current; (b) p(t), 
0 1£ £t min; and (c) the energy dissipated in the resis-
tor at t = 3 min.

 Ans. (a) t/60 A, 0 ≤ t ≤ 60 s; 1 A, 60 ≤ t < 180 s; 0, t > 80 s; 
(b) t2/720 W, t is in s; (c) 700 J.

P2.5 A voltage v t t( ) = 10 100cos p V is applied across a 10 Ω 
resistor. (a) Sketch p(t). (b) Determine the average 
power dissipated in the resistor and the energy dissi-
pated during half a cycle of v(t).

 Ans. (a) p(t) = 5(1 + cos200πt) W; (b) 5 W, 0.05 J.

P2.6 The triangular voltage waveform of Figure P2.6 is 
applied to a 100 Ω resistor. Determine (a) the resistor 
current, (b) p(t), and (c) the average power dissipation.

 Ans. (a) i(t) = 0.1t A, 0 1£ £t min, i t t( ) = - +0 1 0 2. . A,  
1 3£ £t min; i t t( ) = -0 1 0 4. . A, 3 4£ £t min; (b) 

p t
v
R

t( ) = =
2

2 W, 0 1£ £t min, p t
t( ) = - +( )10 20
100

2

W, 

1 3£ £t min, p t
t( ) = -( )10 40
100

2

W, 3 4£ £t min; (c) 
1
3

W.

P2.7 The resistance of a copper power line is 60 Ω at 20°C, 
when not carrying any current. Its resistance, when car-
rying its rated current, is 70 Ω. Determine the tempera-
ture of the conductor under these conditions, assuming 
that the temperature coefficient of copper is 0.0039/°C.

 Ans. 62.7°C.

P2.8 A pn junction diode has an exponential i–v relation 
of the  form: i e v= -( )-10 19 20 A, where v is in volts. 

Determine the diode current for (a) V = 0 7. V and (b) 
V = −0.7 V. Note that the i–v relation is highly asymmetric.

 Ans. (a) 1.20 mA; (b) −1 nA.

Sources and Kirchhoff’s Laws

P2.9 Determine the average power delivered or absorbed 
by the current source in Figure P2.9, assuming 
iSRC = 2 + 2cos100πt A.

 Ans. 2 W delivered.

P2.10 Determine the voltage across each current source and 
the current through each voltage source in Figure P2.10.

 Ans. 40 V across 5 A source, 15 V across 10 A source, 
10 A through 25 V source, 5 A through 40 V source.

P2.11 Determine VX  in Figure P2.11 and the power absorbed 
or delivered by each source.

 Ans. VX = 40 V; 50 V source delivers 250 W; dependent 
source absorbs 50 W; 5 A source absorbs 200 W.
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P2.12 Determine IX and VY in Figure P2.12 and the power 
absorbed or delivered by each source.

 Ans. IX = 5 A; VY = 10 V; 10 A source delivers 100 W; 
dependent source absorbs 50 W; −10 V source delivers 
50 W; 20 V source absorbs 100 W.

P2.13 Determine in Figure P2.13 the voltage across each 
current source, the current through each voltage 
source, and the power delivered or absorbed by each 
source.

 Ans. 5  A though 5  V source and dependent source, 
10 A through 10 V source; 45 V across 5 A source, 60 V 
across 10  A source; 600  W delivered by 10  A source, 
25 W absorbed by 5 V source, 225 W absorbed by 5 A 
source, 100 W absorbed by 10 V source, 250 W absorbed 
by dependent source.

P2.14 Determine in Figure P2.14 the voltage across each cur-
rent source, the current through each voltage source, 
and the power delivered or absorbed by each source.

 Ans. IX = 16 A, 6 A through 20 V source, 12 V across 
VCCS, and 8  V across CCVS; 20  V source delivers 

120  W; 10  A source delivers 200  W; VCCS absorbs 
192 W; and CCVS absorbs 128 W.

P2.15 Determine the total power delivered or absorbed by 
each source in Figure P2.15, assuming the voltage 
sources are 1 V each, I1 = 2 A, I2 = 1 A, and I3 = 1 A.

 Ans. V1 absorbs 2 W; V2 delivers 1 W; V3 absorbs 3 W; 
I1 neither absorbs nor delivers power; I2 delivers 2 W; 
I3 delivers 2 W.

P2.16 Determine in Figure P2.16 the voltage across each cur-
rent source, the current through each voltage source, 
and the power delivered or absorbed by each source.

 Ans. 5  A through upper 10  V source, 13  A through 
lower 10 V source, 10 V across 3 A source, 20 V across 
10 A source, and 10 V across 5 A source. Upper 10 V 
source delivers 50 W; lower 10 V source delivers 130 W; 
5 A source delivers 50 W; 10 A source absorbs 200 W; 
3 A source absorbs 30 W.

Resistive Circuits and Kirchhoff’s Laws

Avoid introducing additional unknowns whenever possible.

P2.17 Determine VO in Figure P2.17.

 Ans. 0.5 V.

P2.18 Determine ISRC that will make IS = 0 in Figure P2.18.

 Ans. 0.5 mA.
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P2.19 Determine the power delivered or absorbed by each 
source in Figure P2.19.

 Ans. Current source delivers 100  W; voltage source 
absorbs 60 W.

P2.20 Determine the power delivered or absorbed by each 
source in Figure P2.20.

 Ans. Current source absorbs 120  W; voltage source 
delivers 300 W.

P2.21 Determine IX in Figure P2.21.

 Ans. 60 A.

P2.22 Determine IX in Figure P2.22.

 Ans. 4.5 A.

P2.23 Determine VX in Figure P2.23, where R1 and R2 need not 
be specified.

 Ans. 20 V.

P2.24 Determine R in Figure P2.24.

 Ans. 6.25 Ω.

P2.25 Determine the power delivered or absorbed by the 
current source in Figure P2.25, given that the voltage 
source does not absorb or deliver power.

 Ans. 9 W delivered.
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P2.26 Determine the power delivered or absorbed by the 
voltage source in Figure P2.25, given that the current 
source does not absorb or deliver power.

 Ans. 5.4 W delivered.

P2.27 Determine the power delivered or absorbed by each 
source and the power absorbed by each resistor, in 
Figure P2.27.

 Ans. Current source delivers 2800  W; voltage source 
absorbs 1500  W. Power absorbed by 20  Ω resistor is 
500 W and that absorbed by 2 Ω resistor is 800 W.

P2.28 Determine the power delivered or absorbed by each 
source and the power absorbed by each resistor, in 
Figure P2.28.

 Ans. Current source delivers 8000  W; voltage source 
absorbs 3600  W. Power absorbed by 0.2  Ω resistor is 
2000 W and that absorbed by 1.5 Ω resistor is 2400 W.

P2.29 Determine VO in Figure P2.29.

 Ans. 1.5 V.

P2.30 Determine the power delivered or absorbed by each 
source and the power absorbed by each resistor, in 
Figure P2.30.

 Ans. Independent source delivers 100  W; dependent 
source absorbs 240 W. Power absorbed by 2.5 Ω resistor 
is 360 W and that absorbed by 15 Ω resistor is 400 W.

P2.31 Determine the power delivered or absorbed by each 
source and the power absorbed by each resistor, in 
Figure P2.31.

 Ans. Independent source delivers 600  W; dependent 
source absorbs 120  W. Power absorbed by the 7.5  Ω 
resistor is 120 W, and the power absorbed by the 10 Ω 
resistor is 360 W.

P2.32 Determine the power delivered or absorbed by the 
independent source in Figure P2.32.

 Ans. 0.5 W delivered.
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P2.33 Determine the power delivered or absorbed by the 
dependent source in Figure P2.33.

 Ans. 4 W delivered.

P2.34 Determine VX and IS in Figure P2.34.

 Ans. 2 V, 24 mA.

P2.35 Determine the power delivered or absorbed by the 
dependent source in Figure P2.35.

 Ans. The source neither delivers nor absorbs power.

P2.36 Determine I in Figure P2.36.

 Ans. −6/7 A.

P2.37 Determine IX in Figure P2.37.

 Ans. 2 A.

P2.38 Determine IX in Figure P2.38.

 Ans. 7 A.

P2.39 Determine K in Figure P2.39 so that 50 W is dissipated 
in the 2 Ω resistor.

 Ans. 2.

P2.40 Determine Vab in Figure P2.40.

 Ans. 1 V.

P2.41 Determine the power delivered or absorbed by the 
dependent source in Figure P2.41.

 Ans. 30 W absorbed.
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P2.42 Determine the power dissipated in the 4 Ω resistor in 
Figure P2.42.

 Ans. 100 W.

P2.43 Determine the power delivered or absorbed by the 
dependent voltage source in Figure P2.43.

 Ans. Absorbs 60 W.

P2.44 Determine IX and VY in Figure P2.44.

 Ans. 1/3 A, 50/3 V.

P2.45 Determine the power delivered or absorbed by the 
dependent source in Figure P2.45.

 Ans. 0.

P2.46 Determine IX in Figure P2.46.

 Ans. 2 A.

P2.47 Determine the power delivered or absorbed by the 
dependent source in Figure P2.47.

 Ans. 14 W delivered.

P2.48 Determine the power delivered or absorbed by each 
source in Figure P2.48.

 Ans. Voltage source delivers 1000  W; current source 
neither absorbs nor delivers power.

P2.49 Determine Vbc in Figure P2.49, assuming all resistances 
are 1 kΩ.

 Ans. 4 V.
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P2.50 Determine R, VX, and VY in Figure P2.50, given that the 
current in the top connection is zero.

 Ans. 3 Ω, VX = 10 V, VY = −5 V.

P2.51 Determine IO in Figure P2.51.

 Ans. 1 A.

P2.52 Determine IX in Figure P2.52.

 Ans. 0.75 A.

P2.53 Determine VX in Figure P2.53.

 Ans. 75 V.
P2.54 Determine the ratio ρ/α in Figure P2.54 in terms of R so 

that I1 = I2.

 Ans. R.

P2.55 Determine VX in Figure P2.55.

 Ans. −15 V.

P2.56 Determine VX and IY in Figure P2.56.

 Ans. VX = 0 V, IY = 3 A.

P2.57 Determine R in Figure P2.57 so that the two sources 
deliver the same power.

 Ans. 20 Ω.
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P2.58 Determine the power delivered or absorbed by the 3 V 
source in Figure P2.58.

 Ans. 3.3 W delivered.

P2.59 Determine IX in Figure P2.59.

 Ans. −2 A.

P2.60 (a) Determine iR(t), vR(t), and v(t) in Figure P2.60. (b) 
Determine p2(t), the power delivered or absorbed by 
iSRC2(t), and specify the time intervals over which this 
source delivers or absorbs power.

 Ans. Power is absorbed −0.7 ≤ t ≤ 0.7 s and is delivered 
power for −1 ≤ t ≤ −0.7 s and 1 ≥ t ≥ 0.7 s.
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Probing Further

P2.61 Referring to Figure 2.16, (a) argue that conservation 
of charge at either of the essential nodes yields the 
 equation: I1  +  1.5  =  I2; (b) deduce from conservation 
of power and Ohm’s law that 9 4 5 6 31 2 1

2
2
2I I I I+ = +. ; 

and (c) solve these equations to obtain I1 = 0.5 A and 
I2 = 2 A. Compare with Example 2.4.

P2.62 Consider the circuit of Figure P2.62 having four essen-
tial nodes (N = 4), three meshes (M = 3), and six essential 
branches (B = 6). Remove three branches so that the four 
essential nodes remain connected by three branches in 
an open path, without any loops. Clearly, B1 = N − 1, 
where B1 is the number of remaining branches, because 
N will always exceed B1 by 1 under these conditions. 
Now add the remaining (B  −  B1) branches one at a 
time, noting that each added branch forms a new loop. 
Deduce that B = M + N − 1. Try this on any other circuit. 
Note that the result is perfectly general and gives the 
number of independent KCL equations (N − 1) and the 
number of independent KVL equations (M) that can be 
written for the circuit.

FIGURE P2.62 
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Objective and Overview

Circuit equivalence is ubiquitous in circuit  analysis 
because of its usefulness, although it is often not 
 explicitly referred to as such. The chapter begins by 
defining  circuit equivalence and examining its  general 
implications. The simple case of series and paral-
lel connection of resistors is considered to begin with 
and applied to deriving the relation between resistiv-
ity and resistance and to the star–delta transformation. 
The series and parallel connections of ideal sources are 
 contrasted with those of resistors. This leads to a dis-
cussion of linear- output sources that have a resistor as 
an integral part of the source. Circuit equivalence is 
then applied to deriving the very useful transformation 
between linear- output, voltage, and current sources.

In addition to highlighting the concept of circuit 
 equivalence, this chapter presents some important 
deductions concerning circuit behavior.

3.1  Circuit Equivalence and Its Implications

Definition: Two circuits are equivalent at a given pair 
of  terminals if the circuits have the same voltage–current 
 relation at these terminals.

Circuit ‘Neq’ in Figure 3.1 is equivalent to circuit ‘N’ at ter-
minals ‘ab’ if for any arbitrary v applied between terminals 
‘ab’ to the two circuits, the resulting current i at these termi-
nals is the same in both circuits. In other words, the v–i rela-
tion at terminals ‘ab’ is the same for the two circuits. This 
implies that ‘Neq’ can be substituted for ‘N’, terminal for 
terminal, without affecting v and i at the terminals. Herein 
lies the usefulness of circuit equivalence, for ‘Neq’ can be 
simple enough so that, when substituted for ‘N’ in a circuit 
that contains ‘N’, the analysis of the circuit is considerably 
facilitated, as will be demonstrated on many occasions.

Circuit equivalence has the following implications:

 1. If v is a given function of time (Figure 3.2), then 
i is in general a different function of time but is 
the same in both circuits. This follows from hav-
ing the same v–i relation, for if i is the same in 
both circuits for a given v, then as v varies with 
time, i will vary with time in the same way in 
both circuits.

 2. The same power is delivered or absorbed at the 
terminals of equivalent circuits. This follows 
from the fact that if v and i are the same at the 
given terminals, then their product, the instan-
taneous power, is the same.

 3. Just as the product of v and i is the same at the 
given terminals, their ratio must also be the 
same. As will be clarified later, the ratio v/i can 
be interpreted as an input resistance Rin look-
ing into the given terminals if two conditions 
are satisfied: (1) the ratio is independent of time, 
as when v and i are dc quantities, for example, 
and (2) neither N or Neq contain  independent 
sources or these sources are set to zero.

3.2  Series and Parallel Connection 
of Resistors

3.2.1  Series Connection of Resistors

Figure 3.3a illustrates a series connection of three  resistors 
to which a test source voltage vT is applied, resulting in 
the flow of a test current iT in the circuit. It is of interest 
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to determine (1) the equivalent series resistance Reqs 
between terminals ‘ab’ and (2) the voltages v1, v2, and v3 
across the individual resistors in terms of vT.

To analyze the circuit, we note that KCL is automati-
cally satisfied by the series connection (Section 2.9). It 
remains to satisfy KVL and Ohm’s law. Starting from 
node ‘b’ and going clockwise, KVL gives

 v v v vT – – –1 2 3 0=

or

 v v v vT = + +1 2 3 (3.1)

Substituting from Ohm’s law for the voltage across 
each resistor,

 v R i R i R iT T T T= + +1 2 3

or

 v R R R iT T= + +( )1 2 3  (3.2)

From the definition of circuit equivalence, the 
 equivalent series resistance Reqs is such that if the same 
voltage vT is applied at the terminals of the equivalent 
resistor as at  terminals ‘ab’ of the series combination, the 
same current iT flows through the resistor (Figure 3.3b). 
That is,

 v R iT eqs T=  (3.3)

Comparing Equations 3.2 and 3.3, it is seen that

 R R R Reqs = + +1 2 3 (3.4)

If each of the resistances in Equation 3.4 is replaced by 
its reciprocal conductance,

 

1 1 1 1

1 2 3G G G Geqs
= + +

 
(3.5)

Although derived for the case of three resistors, 
Equations 3.4 and 3.5 can be readily generalized to 

any  number of resistors in series. In particular, the 
 following applies:

 1. If n identical resistors, each of resistance R, are 
connected in series, Reqs = nR.

 2. Since the resistances have positive values, it is 
evident from Equation 3.4 that Reqs is larger than 
the largest of the series-connected resistances.

Summary: In a series connection of resistors, (1) the equiva-
lent series resistance is the sum of the individual resistances, 
(2) the equivalent series resistance is larger than the largest 
individual resistance, and (3) the  reciprocal of the equivalent 
series conductance is the sum of the reciprocals of the indi-
vidual conductances.

Applying Ohm’s law to any of the individual  resistors, 
say, R1,

 v R iT1 1=  (3.6)

Dividing Equation 3.6 by Equation 3.2,
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Similarly,
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and
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In words, the ratio of the voltage across any of the 
individual resistors to the total voltage across the series 
combination is the same as the ratio of the resistance in 
question to the total resistance of the series combination.

If any two of Equations 3.7 through 3.9 are divided by 
one another, vT and (R1 + R2 + R3) cancel out so that
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(3.10)

In words, the ratio of the voltages across any two 
resistors is the same as the ratio of the resistances. This 
also follows directly from Ohm’s law, in that if the same 
current flows through any two resistors, then the ratio of 
the voltages across each resistor must be the same as the 
ratio of the resistances.

Summary: In a series connection of resistors to which a volt-
age v is applied and the voltage across any of the individual 
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resistors Rj is denoted by vj, the ratio of vj to v is the same as 
the ratio of Rj to the total series resistance.

This is a useful result known as voltage  division. 
It also follows from circuit equivalence that the same 
power p  =  vi is dissipated in Reqs as in the series 
combination.

Example 3.1: Series-Connected Resistors

Consider three resistors of 1, 2, and 3 Ω connected in 
series. It is required to (a) determine Reqs, (b) derive the 
conductance of each resistor and Geqs, (c) verify that 
the reciprocal of Geqs is Reqs, (d) determine iT assuming 
vT = 3 V, (e) verify that the power dissipated in Reqs is the 
sum of the powers dissipated in each of the three resis-
tors, and (f) determine v1, v2, and v3 using both forms 
of Ohm’s law (Equations 2.1 and 2.2) and Equations 3.7 
through 3.9. Verify that the voltages are in the ratio of 
the resistances.

Solution:

 (a) Let R1 = 1 Ω, R2 = 2 Ω, and R3 = 3 Ω. It follows from 
Equation 3.4 that Reqs = 1 + 2 + 3 = 6 Ω.

 (b) G1 = 1/1 = 1 S, G2 = 1/2 = 0.5 S, and G3 = 1/3 S, 
1
1

1
1 2

1
1 3

1+ + =
/ / Geqs

;
 
6

1=
Geqs

;
 
Geqs = 1/6 S.

 (c) 1/Geqs = 6 Ω = Reqs. For a given series connection 
of resistors, the total resistance should be the 
same whether expressed in terms of resistance or 
conductance.

 (d) Applying Ohm’s law to Reqs, 3 = 6iT, so iT = 0.5 A.

 (e) The power dissipated in Reqs is
3
6

1 5
2( )
= .  W = 6 × 

(0.5)2. The powers dissipated in R1, R2, and R3 are, 
respectively, 1 × (0.5)2 = 0.25 W, 2 × (0.5)2 = 0.5 W, 
and 3 × (0.5)2 = 0.75 W. The total power is 1.5 W, 
which is the same as the power  dissipated in Reqs.
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  It is seen that v2 = 2v1, v3 = 2v1 = 1.5v2, in the same 
ratio as the resistances.

Simulation: The circuit is entered as in Figure 3.4, 
assuming that vT = 3 V. After selecting ‘Bias Point’ under 
‘Analysis type’, in the Simulation Settings and running 

the simulation, pressing the I, V, and W buttons displays 
the currents, voltages, and powers dissipated, as indi-
cated in Figure 3.4.

Primal Exercise 3.1

Determine Reqs, G1, G2, G3, and Geqs for a series connection 
of R1 = 5 Ω, R2 = 20 Ω, and R3 = 25 Ω.
Ans. Reqs = 50 Ω, G1  =  0.2  S, G2  =  0.05  S, G3  =  0.04  S, 
Geqs = 0.02 S.

Primal Exercise 3.2

If a fourth resistor of 4 Ω is added to the resistors of 
Example 3.1, determine (a) Reqs, (b) G4 and Geqs, (c) iT 
assuming vT = 6 V, and (d) the voltages across the indi-
vidual resistors.
Ans. (a) 10 Ω; (b) G4 = 0.25 S, 0.1 S; (c) 0.6 A; (d) v1 = 0.6 V, 
v2 = 1.2 V, v3 = 1.8 V, v4 = 2.4 V.

3.2.2  Parallel Connection of Resistors

Figure 3.5a illustrates a parallel connection of three 
 resistors to which a test source current iT is applied, result-
ing in a test voltage vT across the parallel  combination. 
It is of interest to determine (1) the equivalent parallel 
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resistance Reqp and (2) the currents i1, i2, and i3 through 
the individual resistors in terms of iT.

To analyze the circuit, we note that KVL is automati-
cally satisfied by the parallel connection (Section 2.9). It 
remains to satisfy KCL and Ohm’s law. KCL at either 
essential node gives

 i i i iT = + +1 2 3 (3.11)

Substituting from Ohm’s law for the current through 
each resistor,

 i G v G v G vT T T T= + +1 2 3

or

 i G G G vT T= + +( )1 2 3  (3.12)

whereG1 = 1/R1, G2 = 1/R2, and G3 = 1/R3.
From the definition of circuit equivalence, the equiv-

alent parallel resistance Reqp is such that if the same 
 current iT flows at the terminals of the equivalent resis-
tor as at terminals ‘ab’ of the parallel combination, the 
same voltage vT appears across the resistor (Figure 3.3b). 
That is,

 i G vT eqp T=  (3.13)

where Geqp = 1/Reqp in Figure 3.5b. Comparing Equations 
3.12 and 3.13, it follows that

 G G G Geqp = + +1 2 3 (3.14)

If each of the conductances in Equation 3.14 is replaced 
by its reciprocal resistance,

  

1 1 1 1

1 2 3R R R Reqp
= + +

 
(3.15)

Although derived for the case of three resistors, 
Equations 3.14 and 3.15 can be readily generalized to 
any number of resistors in parallel. In particular, the 
 following applies:

 1. If n identical resistors, each of resistance R, are 
connected in parallel, Reqp = R/n.

 2. Since the resistances have positive values, it is 
seen from Equation 3.15 that 1/Reqp is larger than 
the largest reciprocal of the individual resistances, 
which is the reciprocal of the smallest resistance, 
say, R1. If 1/Reqp > 1/R1, then Reqp < R1, that is, Reqp 
is smaller than the smallest paralleled resistance.

Summary: In a parallel connection of resistors, (1) the 
equivalent parallel conductance is the sum of the individual 

conductances, (2) the reciprocal of the equivalent parallel 
resistance is the sum of the reciprocals of the individual resis-
tances, and (3) the equivalent parallel resistance is smaller 
than the smallest individual resistance.

Applying Ohm’s law to any of the individual resis-
tors, say, R1,

 i G vT1 1=  (3.16)

Dividing Equation 3.16 by Equation 3.11,

  

i
i

G
G G GT

1 1

1 2 3
=

+ +  
(3.17)

Similarly,

 

i
i

G
G G GT

2 2

1 2 3
=

+ +  
(3.18)

and

 

i
i

G
G G GT

3 3

1 2 3
=

+ +  
(3.19)

In words, the ratio of the current through any of the 
individual resistors to the total current through the 
 parallel combination is the same as the ratio of the con-
ductance in question to the total conductance of the par-
allel combination.

If any two of Equations 3.17 and 3.19 are divided by 
one another, iT and (G1 + G2 + G3) cancel out so that

 

i
i
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G

i
i

G
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i
i
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2

1

2
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1

3

2

3

2

3
= = =, ,

 
(3.20)

In words, the ratio of the currents through any two 
resistors is the same as the ratio of the conductances. 
This also follows directly from Ohm’s law, i = Gv, in that 
if the same voltage appears across any two resistors, 
then the ratio of the currents through each resistor must 
be the same ratio as the conductances.

Summary: In a parallel connection of resistors in which the 
total current is i and the current through any of the individual 
resistors Rj is denoted by ij, the ratio of ij to i is the same as the 
ratio of Gj = 1/Rj to the total parallel conductance.

This is a useful result known as current division. 
It also follows from circuit equivalence that the same 
power p  =  vi is dissipated in Reqp as in the parallel 
combination.
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The case of two paralleled resistors (Figure 3.6) is of 
 special interest, as it often occurs in practice. Equation 
3.15 reduces to

 

1 1 1

1 2R R Reqp
= +

 
(3.21)

or

 
R R R

R R
R R

eqp = =
+

1 2
1 2

1 2
�

 
(3.22)

where the parallel lines ‖ denote a parallel  connection. 
In words, the equivalent resistance of two paralleled 
resistors is the product of the resistances divided by 
their sum. When Reqp of more than two resistors is to be 
calculated manually, it is usually more convenient to 
apply Equation 3.22 to two resistances at a time or to 
use Equation 3.14. On the other hand, for calculations 
using computer programs, it is often more convenient 
to use a generalization of Equation 3.15 (Problem P3.65).

From Ohm’s law applied in Figure 3.6,

 
v R i R i R i

R R
R R

ieqp= = = =
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1 1 2 2
1 2

1 2  
(3.23)

It follows that
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(3.24)

These relations also follow from Equations 3.17 
through 3.19 by setting G3  =  0 and replacing each 
of G1 and G2 by its reciprocal resistance R1 and R2, 
respectively. Note that the ratio of either branch cur-
rent to the total current is the same as the ratio of the 
 resistance in the other branch to the sum of the two 
resistances. Another way of remembering this when 
the  numerical values of R1 and R2 are given is to bear 
in mind that the smaller current flows in the branch hav-
ing the larger resistance in order to equalize the voltage 
across the two resistors.

Example 3.2: Parallel-Connected Resistors

Consider three resistors of 2, 3, and 6 Ω connected in 
parallel. It is required to (a) determine Reqp by apply-
ing (i) Equation 3.22 first to the 3 and 6 Ω resistors 
and then to the 2 Ω resistor and (ii) Equation 3.15 in 
the form Reqp = R1R2R3/(R1R2 + R2R3 + R3R1), (b) derive 
the conductance of each resistor and Geqp, (c)  verify 
that the reciprocal of Geqp is Reqp, (d) determine vT 
assuming iT  =  3  A, (e) verify that the power dissi-
pated in Reqp is the sum of the powers dissipated in 
each of the three resistors, and (f) determine i1, i2, 
and i3 using  Ohm’s  law and verify Equations 3.17 
through 3.20.

Solution:

 (a) Let R1 = 2 Ω, R2 = 3 Ω, and R3 = 6 Ω; (i) the paral-
lel resistance of 3 and 6 Ω is, from Equation 3.22, 
3 6
3 6

2
´
+

= W. This in parallel with 2 Ω gives Reqp = 1 Ω;
 

(ii) Reqp =
´ ´

´ + ´ + ´
=2 3 6

2 3 3 6 6 2
1 W.

 (b) The conductances are G1 = 1/2 S, G2 = 1/3 S, and 
G3 = 1/6 S, Geqp = 1 S.

 (c) 1/Geqp = 1 Ω = Reqp. For a given parallel connection 
of resistors, the parallel resistance should be the 
same whether expressed in terms of resistance or 
conductance.

 (d) Applying Ohm’s law to Reqp, vT = 1 × 3 = 3 V.

 
(e)

 
The power dissipated in Reqp is

3
1

9
2( )
=  W = 1 × (3)2. 

The powers dissipated in R1, R2, and R3 are, respec-

tively, 
3
2

4 5
2( )
= . W, 

3
3

3
2( )
= W, and 

3
6

1 5
2( )
= . W. 

The total power is 9 W, which is the same as the 
power dissipated in Reqp.

 
(f)
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i1  +  i2  +  i3  =  3  A  =  iT. It is seen that the current 
ratios are the same as those of the conductances: 
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Simulation: The circuit is entered as in Figure 3.7, 
assuming iT = 3 A. After selecting ‘Bias Point’ in the 
Simulation Settings and running the simulation, 
pressing the I, V, and W buttons displays the cur-
rents, voltages, and powers dissipated, as indicated in 
 Figure 3.7.
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FIGURE 3.6
Two paralleled resistors.
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Problem-Solving Tip

• The parallel resistance of more than two  resistors 
can be conveniently determined from paralleled 
resistances, two at a time.

Primal Exercise 3.3

Determine Reqp, G1, G2, G3, and Geqp for a parallel connec-
tion of R1 = 2 Ω, R2 = 12 Ω, and R3 = 24 Ω.
Ans. Reqp = 1.6 Ω, G1 = 0.5 S, G2 = 0.0833 S, G3 = 0.0417 S, 
Geqp = 0.625 S.

Primal Exercise 3.4

Consider the defogger/defroster of Primal Exercise 2.19, 
whose resistive elements are connected as in Figure 3.8. 
If all the resistances are 1.5 Ω, determine the total equiv-
alent resistance Req, the current drawn from the 12 V car 
battery, and the power dissipated.
Ans. 1.5 Ω, 8 A, 96 W.

Primal Exercise 3.5

Determine the effective resistance for the following 
combinations: (a) a short circuit in series with a resistor 
R, (b) an open circuit in parallel with R, (c) a short circuit 
in series with an open circuit, and (d) a short circuit in 
parallel with an open circuit.
Ans. (a) R; (b) R; (c) infinite; (d) zero.

Primal Exercise 3.6

Determine Req between terminals ‘ab’ in Figure 3.9.
Ans. 1.5 Ω.

Primal Exercise 3.7

Determine the equivalent resistance between  nodes 
‘a’ and ‘c’ in Figure 3.10 assuming (a) an open circuit 
between nodes ‘b’ and ‘d’, or (b) a short circuit between 
these nodes.
Ans. (a) 11.2 Ω; (b) 10 Ω.

Primal Exercise 3.8

Repeat Example 3.2 with a fourth resistor of 1 Ω added 
in parallel with the three resistors.
Ans. (a) 0.5 Ω, G4 = 1 S, Geqp = 2 S; (d) 1.5 V; (e) i1 = 0.75 A, 
i2 = 0.5 A, i3 = 0.25 A, i4 = 1.5 A.

Example 3.3: Voltage and Current Division

Given a 10 V battery applied to a 2 Ω resistor in series 
with a 3 Ω resistor (Figure 3.11a), it is required to deter-
mine (a) by voltage division the voltage across the 3 Ω 
resistor in Figure 3.11a and when a 6 Ω resistor is con-
nected in parallel with the 3 Ω resistor (Figure 3.11b), 
and (b) by current division the currents in the 3 and 6 Ω 
resistors in Figure 3.11b.
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FIGURE 3.8
Figure for Primal Exercise 3.4.
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Solution:

 (a) The same current I1 flows in the battery and the 
two resistors in Figure 3.11a. Since only two 
resistors are connected in series, omitting R3 in 

Equation 3.7 gives 
V
V

R
R RT

2 2

1 2
=

+
. Setting VT = 10 V, 

R1 = 2 Ω, and R2 = 3 Ω gives V2 10
3

2 3
6= ´

+
= V. 

If a 6 Ω resistor is connected with parallel with the 
3 Ω resistor (Figure 3.11b), the current I1 divides 
into two components, I2 and I3. If the 3 Ω and 
the 6 Ω resistors are replaced by their equiva-

lent parallel resistance, Reqp =
´
+

=3 6
3 6

2 Ω, I1 can 

then be considered to flow in Reqp. Hence, from 

voltage division,
 
V
V

R
R RT

eqp

eqp

2

1
=

+
, which gives 

V2 10
2

2 2
5= ´

+
= V. It is important to note that 

the voltage division Equations  3.7 through 3.9 
are  applicable only when the same current flows in 
series-connected resistors. With R2 replaced by Reqp, 
the same current I1 flows in R1 and Reqp, so that the 
voltage division relations can be applied. Voltage 
division should not be applied in Figure  3.11b 
between the 2 Ω resistor and either the 3 Ω resistor 
alone or the 6 Ω resistor alone.

 (b) I1 in Figure 3.11b is 10/(2 + 2) = 2.5 A. From current 
division, I2 = 2.5 × 6/(6 + 3) = 5/3 = 1.667 A, and 
I3 = 2.5 × 3/(6 + 3) = 5/6 = 0.883 A. From Ohm’s 
law, v2 = 3I2 = 6I3 = Reqp I1 = 5 V.

Simulation: The two circuits are entered as in 
 Figure 3.12. After selecting ‘Bias Point’ under ‘Analysis 
type’ in the Simulation Settings and running the simula-
tion, pressing the I and V buttons displays the currents 
and  voltages, respectively, as in Figure 3.12.

Problem-Solving Tips

• Never apply voltage division except to resistors in 
series, that is, resistors that carry the same current.

• In current division the largest current flows in 
the branch having the smallest resistance, and 
conversely.

• Never apply current division except to resistors in 
parallel.

Note that just as voltage division should be applied 
only to resistors in series, current division should only be 
applied to resistors in parallel. In Figure 3.13, for example, 
current  division cannot be applied to I1, I2, and I3, as was 
done in Figure 3.11b, because the 3 and 6 Ω resistors are 
not in parallel.

Primal Exercise 3.9

If Vac = 42 V in Figure 3.10, determine Vbd using voltage 
division.
Ans. −13.5 V.

Primal Exercise 3.10

Determine: (a) Reqp of the 10 and 5 Ω resistors in 
Figure  3.14; (b) VO using voltage division; (c) IS; (d) I1 
and I2 using current division.
Ans. (a) 10/3 Ω; (b) 10 V; (c) 3 A; (d) I1 = 1 A, I2 = 2 A.
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FIGURE 3.11
(a) Voltage divider and (b) voltage divider supplying a resistive load.
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Primal Exercise 3.11

Determine the current IS in Figure 3.15 and the power 
dissipated in the 20 Ω resistor.
Ans. 0.5 A; 3.2 W.

★3.3  Resistivity

Definition: The resistivity, or specific resistance, of a given 
material is the resistance between two opposite faces of a cube 
of the material multiplied by the length of the side of the cube. 
The reciprocal of resistivity is conductivity.

The resistivity ρ of a given material is an intrinsic 
property of the material that is indicative of its electrical 
resistive property. It is independent of the size or shape 
of the conducting material, just as density is an intrinsic 
property indicative of the “heaviness” or mass prop-
erty of the material irrespective of its size and shape. It 
follows from the definition of ρ that ρ is expressed as 
Ω-unit length, with reference to a cube of the material 
having a side of unit length. In the case of copper at 
room temperature, for example, ρ  ≅  1.7  ×  10−6 Ωcm if 
the cube is of 1 cm side, or 1.7 × 10−6 Ωcm × (mm/cm) = 
1.7 × 10−5 Ω mm if the cube is of 1 mm side. Conductivity 
is expressed as siemens/unit length.

A useful relation involving resistivity is the following 
expression for the resistance R between two opposite 
ends of a block of length L units and having a uniform 
cross-sectional area of A square units:

 
R

L
A

L
A

= =r
s  

(3.25)

where σ = 1/ρ is the conductivity. The expression high-
lights the fact that resistance is directly proportional to 
the length of the current path through the conductor 
and inversely proportional to the cross-sectional area 
through which the current flows. Increasing the length 
of path means more collisions between conduction elec-
trons and crystal atoms, which increases the resistance. 
A larger cross-sectional area provides more paths for the 
current to follow, which increases the current for a given 
applied voltage and hence decreases the resistance. 
ρ and σ in Equation 3.25 are independent of the length 
of path or cross-sectional area.

To derive Equation 3.25 we note that, according to 
the discussion of Section 2.1, current flows in a medium 
under the influence of the electric field ξ and in the direc-
tion of this field. The total current depends on the extent 
of the medium; hence, a more appropriate measure of 
the effect of ξ on current flow is the current per unit 
area of flow, denoted as the current density J. Consider 
a small cube of the material oriented so that one of its 
sides is parallel to ξ (Figure 3.16a). From the relation 
ξ = −dv/dx, the voltage drop from the rear face of the 
cube to its front face is −dv = ξΔx. The current through 
the cube, in the direction of ξ, is the current density mul-
tiplied by the area of the face, that is, J(Δx)2. If the resis-
tance in ohms between the rear and front faces of the 
cube is denoted by ρ′, Ohm’s law applied to the cube is 
ξΔx = ρ′J(Δx)2, which gives
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x
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(3.26)

The resistance ρ′ depends on Δx, which makes it unsuit-
able as an intrinsic measure of resistance. However, both 
ξ and J are “local” quantities that do not depend on the 
size or shape of the medium, which makes the ratio 
ξ/J a suitable measure of the intrinsic resistance of the 
medium. The ratio ξ/J is denoted as the resistivity ρ of 
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A

J

L

FIGURE 3.16
Derivation of expression for resistivity. (a) Cube of side Δx having a 
side parallel to the electric field and (b) conducting block of length L 
and uniform cross-sectional area A.
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the medium and is equal to ρ′Δx, as in the definition of 
resistivity. Thus,

 
r x rD= = ¢

J
x

 
(3.27)

Note that the relation ξ = ρJ, or J = σξ, is referred to as 
the microscopic form of Ohm’s law, or Ohm’s law at a 
point in a conductor.

Consider next a block of a conductor of length L 
units and a uniform cross section of area A square units 
(Figure 3.16b). Let the block be divided into small cubes 
of side Δx oriented parallel to the longitudinal axis of the 
block. The resistance of each cube between opposite faces 
is ρ′ = ρ/Δx. A strip of these cubes that extends along the 
length of the block will have L/Δx of these cubes side by 
side. The resistances of these cubes add in series, which 
makes the resistance between the two ends of the strip 
(L/Δx) × (ρ/Δx) = ρL/(Δx)2. The block will have A/(Δx)2 
strips side by side across the block, with the resistances 
of the strips combining in parallel. The resistance R 
between the two ends of the block will therefore be
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(3.28)

Exercise 3.12

A 1  cm cube of material has a resistance of 2.5 kΩ 
between opposite faces. Determine the resistance of a 
rectangular block of this material that is 50 cm long and 
of 10 cm2 cross-sectional area.
Ans. 12.5 kΩ.

3.4  Star–Delta Transformation

An application of series–parallel equivalence is the 
star–delta, or Y–Δ, transformation. Consider three resis-
tors Ra, Rb, and Rc connected in delta (Figure 3.17a) 

and another three resistors R1, R2, and R3 connected 
in Y (Figure 3.17b). It is desired to derive the relations 
between these two sets of resistances so that the two 
circuits are equivalent between any two of the three 
terminals.

According to the definition of circuit equivalence, if 
a test source vT is applied between, say, terminals ‘a’ 
and ‘c’ of the Δ-circuit and this same source is applied 
between terminals ‘a’ and ‘c’ of the Y-circuit, the same 
vT−iT relation is obtained in both circuits, as illustrated 
in Figure 3.18.

According to the third implication of circuit equiva-
lence discussed in Section 3.1, the ratio of v to i is the 
same at the corresponding terminals of equivalent 
circuits. Moreover, since the Δ- and Y-circuits consist 
entirely of resistors, without any independent sources, 
the ratio of vT to iT is evidently some resistance, referred 
to as the input resistance Rin between terminals ‘a’ and 
‘c’, or the resistance seen by the source between these ter-
minals. It follows that the Δ- and Y-circuits in Figure 3.17 
are equivalent if they have the same input resistance 
between terminals ‘ab’, ‘bc’, and ‘ca’. However, an 
additional consideration in this case is the state of the 
third terminal when determining the input resistance 
between a given pair of terminals. Equivalence requires 
that whatever is done with the third terminal, it should 
be the same in the two circuits. A convenient condi-
tion to impose on the third terminal is to simply leave 
it open-circuited in both cases, although this is by no 
means the only possibility (Problem P3.66).

In Figure 3.18b, the resistance Rac between termi-
nals ‘ac’, with terminal ‘b’ open, is that of R1 and R3 in 
series, that is, (R1  +  R3). In Figure 3.18a, the resistance 
between terminals ‘ab’, with terminal ‘b’ open, is that of 
Rb in  parallel with the combination of Ra and Rc in series. 
That  is,  R R R R R R Rac b a c a b c= +( ) + +( )/ . Equating the 
resistances in both cases,
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(3.29)
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FIGURE 3.17 Resistors connected in Δ (a) and in Y (b).
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FIGURE 3.18
Equivalence between resistors connected in Δ and in Y. Test source 
applied between two terminals of Δ-connected resistors (a), and 
between the corresponding terminals of Y-connected resistors (b).



66 Circuit Analysis with PSpice: A Simplified Approach

Similarly, equating the resistances between terminals 
‘bc’, with terminal ‘a’ open,

 
R R

R R R
R R R
a b c

a b c
2 3+ =

+( )
+ +  

(3.30)

Equating the resistances between terminals ‘ab’, with 
terminal ‘c’ open,

 
R R

R R R
R R R
c a b

a b c
1 2+ =

+( )
+ +  

(3.31)

Equations 3.29 through 3.31 are three independent 
 equations. If Ra, Rb, and Rc of the delta circuit are given, 
these equations can be solved for R1, R2, and R3 of the 
equivalent star circuit to give
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Conversely, if the resistances R1, R2, and R3 of the star 
circuit are given, Equations 3.29 through 3.31 can be 
solved for Ra, Rb, and Rc of the equivalent delta circuit 
to give
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To help apply the preceding relations in a systematic 
way, the two equivalent circuits are superimposed, as 
in Figure 3.19. Each Y-resistance is the product of the 
Δ-resistances on either side of it divided by the sum of 
the three Δ-resistances. Conversely, each Δ-resistance 
is the sum of the products of the Y-resistances, two at 
a time, divided by the Y-resistance that is at a right 
angle to the given Δ-resistance.

When the three resistances in either configuration are 
equal, the preceding relations reduce to

 R R R RY YD D= =3 3and /  (3.38)

An interpretation of these relations is that the Δ-circuit 
is more of a parallel circuit, whereas the Y-circuit is more 
of a series circuit. Since resistances in series give a larger 
equivalent resistance, whereas resistances in parallel 
give a smaller equivalent resistance, then if the two cir-
cuits are to be equivalent, the Δ-circuit should have the 
larger resistances.

Primal Exercise 3.13

Assume that in Figure 3.19 the resistances connected in 
Y are 1 Ω each and the resistances connected in Δ are 3 Ω 
each. Determine the resistance between nodes ‘a’ and ‘b’.
Ans. 1 Ω.

Primal Exercise 3.14

Three 6 Ω resistors are connected in Δ. Determine (a) the 
equivalent Y-circuit and (b) the power dissipated in each 
circuit if a 12  V source is connected between any two 
corresponding terminals in each circuit, with the third 
terminal left open.
Ans. (a) RY = 2 Ω; (b) 36 W; from circuit equivalence, the 
product vi is the same.

Example 3.4: Delta–Star Transformation

It is required to determine Req between terminals ‘bd’ in 
the circuit of Figure 3.20a.

Solution:

Either of the two sets of delta-connected resistors could 
be transformed to its equivalent star circuit. The delta cir-
cuit between terminals ‘acd’ is transformed to its equiva-
lent star circuit using Equations 3.32 through 3.34, where 
the sum of the resistances in delta is 10 + 25 + 15 = 50 Ω. 

It  follows that R1
25 10

50
5= ´ = W, R2

25 15
50

7 5= ´ = . ,W  

and R3
10 15

50
3= ´ = W. The delta circuit is replaced by 

c

R1 R2

a b
Rc

RaRb
R3

FIGURE 3.19
Δ–Y transformation.
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the equivalent star circuit, terminal for terminal, result-
ing in the circuit of Figure 3.20b. The 5 Ω resistance is 
added to the 9 Ω to give 14 Ω, and the 7.5 Ω resistance 
is added to the 6.5 Ω to give also 14 Ω. The two 14 Ω resis-
tors in parallel give 7 Ω, which is added to the 3 Ω to give 
10 Ω between terminals ‘bd’.

It should be noted that although nodes ‘b’ and ‘d’ 
in Figure 3.20 are not shown connected to anything, it 
must be borne in mind that Req is formally determined, 
by measurement or PSpice simulation, by connecting 
a test source, such as vT, and determining the resulting 
current iT. Req is then the ratio vT/iT. It must not be assumed 
that nodes ‘b’ and ‘d’ are open-circuited when determining 
Req and therefore wrongly conclude that the 9 and 6.5 Ω 
resistors are in series in  Figure 3.20a and that the 10 and 
15 Ω resistors are also in series.

Simulation: The circuit is entered as in Figure 3.21. 
Note that the required equivalent resistance can be con-
veniently determined by applying a source current of 
1 A between the two terminals in question. The  voltage 
between these terminals is then numerically equal to the 
required resistance. After selecting ‘Bias Point’ under 
‘Analysis type’ in the Simulation Settings and running 

the simulation, pressing the V button  displays the volt-
ages shown. Vbd = 10 V, so Req = (10 V)/(1 A) = 10 Ω.

Exercise 3.15

Simulate the circuit of Figure 3.20b as in Example 3.4 
and verify the voltages at terminals ‘a’, ‘b’, and ‘c’.

Primal Exercise 3.16

Determine Req between terminals ‘bd’ in the circuit of 
Figure 3.20a by considering that the 9, 10, and 25 Ω resis-
tors are connected in star and transforming them to the 
equivalent Δ.
Ans. 10 Ω.

3.5  Series and Parallel Connections 
of Ideal Sources

Having derived in Section 3.2 the equivalent series and 
parallel resistances of resistors connected in series or 
in parallel, we will examine in this section how ideal 
sources, the other basic circuit element introduced in 
Chapter 2, combine in series or in parallel.

3.5.1  Ideal Voltage Sources

Figure 3.22a illustrates a series connection of two ideal 
independent sources, whereas Figure 3.22b illustrates 
a series connection of an ideal independent source vSRC 
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with either a CCVS or a VCVS. In going from terminal ‘b’ 
to terminal ‘a’, the voltages along the series path add alge-
braically (Section 2.8), so that, for the polarities shown,

 v v vab SRC SRC= +1 2

or

 v v iab SRC X= + r

or

 v v vab SRC Y= +a  (3.39)

where iX and vY are, respectively, current and voltage some-
where in the circuit. Evidently, these relations can be gen-
eralized to any number of series-connected, independent 
or dependent ideal voltage sources of any source voltage 
and any polarity, in any combination. Moreover, because 
the sources are ideal, the terminal voltage vab is indepen-
dent of the current through the series combination.

A similar generalization cannot be made in the case of 
paralleled ideal voltage sources. The following concept 
applies in this case: 

Concept: Ideal voltage sources should not be paralleled, 
unless they have the same source voltage and the same 
 polarity. Otherwise, conservation of energy is violated.

To justify this, consider two ideal voltage sources 
of unequal source voltages connected in parallel 
(Figure 3.23a). Such a connection evidently violates KVL 
because vSRC1 − vSRC2  ≠  0. More fundamentally, such a 
connection violates conservation of energy. Thus, if a 
charge q is taken clockwise around the circuit, the work 
done in taking q up a voltage rise vSRC1 is qvSRC1, and the 
work done by the charge in moving down a voltage 
drop vSRC2 is qvSRC2. If qvSRC2 > qvSRC1, for example, then it 
would be possible, at least in principle, to extract energy 
continuously from the circuit, at no energy cost, simply 
by moving q around the circuit, in violation of conserva-
tion of energy. Such a connection is invalid in electric 
circuits and is also not allowed in PSpice. Another mani-
festation of this invalidity is that a finite voltage differ-
ence, vSRC2 − vSRC1, in this case, divided by zero resistance 
in the circuit, results in an infinite current.

The parallel connection of any number of ideal, 
 independent voltage sources of the same voltage and 

polarity is equivalent to that of a single ideal, indepen-
dent voltage source of the same voltage and polarity 
(Figure 3.23b).

3.5.2  Ideal Current Sources

Concept: Ideal current sources should not be connected in 
series, unless they have the same source current and in the 
same direction. Otherwise, conservation of charge is violated.

Consider two ideal current sources of unequal source 
currents connected in series (Figure 3.24a). Such a connec-
tion evidently violates KCL because iSRC1 − iSRC2 ≠ 0. More 
fundamentally, such a connection violates conservation 
of charge. Thus, iSRC1 C/s enter node ‘a’ between the two 
sources and iSRC2 C/s leave the node. If, for the sake of 
argument, iSRC1 >  iSRC2, then iSRC1 − iSRC2 C/s will simply 
vanish at node ‘a’ in violation of conservation of charge. 
Such a connection is invalid in electric circuits and is also 
not allowed in PSpice but for a different reason, namely, 
the occurrence of a ‘floating’ node (Appendix C).

Any number of identical, ideal, independent cur-
rent sources connected in series in the same direction is 
equivalent to a single ideal, independent current source 
of the same current and in the same direction, since the 
terminal current is the same in both cases (Figure 3.24b).

When ideal current sources are connected in parallel, 
the source currents add algebraically. This applies to any 
number of parallel-connected, independent or depen-
dent, ideal current sources of any source current and 
polarity, in any combination. Figure 3.25a illustrates the 
case of two independent sources, whereas Figure 3.25b 
illustrates the case of an independent source and a VCCS 
or a CCCS connected in parallel.

Primal Exercise 3.17

Determine the current IS through the voltage sources in 
Figure 3.26 and the voltage VS across the current sources.

Ans. 5 A, −5 V.
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Parallel connections of ideal voltage sources. (a) Invalid connection if 
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3.6  Linear-Output Sources

Circuit equivalence was applied in the preceding sec-
tions to combinations of ideal resistors on their own and 
to combinations of ideal sources on their own. Circuit 
equivalence will be applied in this section to linear-
output sources, consisting of an ideal voltage source 
in series with a resistor or an ideal current source in 
 parallel with a resistor. The practical importance of 
 linear-output sources is that they can be used to approx-
imate the behavior of some nonideal sources.

3.6.1  Linear-Output Voltage Source

Voltage sources encountered in practice are nonideal 
in the sense that the voltage across the source termi-
nals decreases as the current delivered by the source 
increases. If this decrease in voltage is directly propor-
tional to the current delivered by the source or can be 
approximated as such, then the nonideal source can 
be represented, between the source terminals, by an 
ideal voltage source of voltage vSRC in series with an 
ideal resistor Rsrc, as illustrated in Figure 3.27a. Rsrc is an 
 integral part of the source, as symbolized by the dashed 

rectangle, and the actual terminals of the nonideal 
source are now ‘ab’. This representation is noteworthy 
in that a combination of two ideal circuit elements is 
used to simulate the behavior of a  nonideal component.

Since the circuit in Figure 3.27a is a series circuit, KCL 
is automatically satisfied. From Ohm’s law, the voltage 
drop across Rsrc is RsrciL, and KVL gives

 v R i vSRC src L L– – = 0

or

 v v R iL SRC src L= –  (3.40)

vSRC is now termed the open-circuit voltage of the 
source, because it is the voltage that appears between 
the source terminals ‘ab’ when these terminals are 
open-circuited, which makes iL = 0 and vL = vSRC; Rsrc is 
the source resistance looking into terminals ‘ab’ with 
vSRC = 0, that is, with the ideal source element set to zero 
by replacing it with a short circuit. Rsrc is also referred to 
as the internal resistance of the source.

As iL increases from zero, the voltage drop across Rsrc 
increases in direct proportion to iL and subtracts from 
the open-circuit voltage vSRC; vL at the source terminals 
decreases linearly with iL, the slope being −Rsrc, in accor-
dance with Equation 3.40 and illustrated in Figure 3.27b. 
For any set of values vLL and iLL, the vertical segments 
with arrows at both ends (Figure 3.27b) represent vL and 
RsrciLL. These two segments add up to vSRC, in accordance 
with Equation 3.40. If the output terminals are short-
circuited, vL = 0. The current intercept in Figure 3.27b is 
iLSC = vSRC/Rsrc and is termed the short-circuit current at 
these terminals.

Because of the linear vL–iL relation at the source 
 terminals ‘ab’, we will refer to this type of nonideal 
 voltage source as a linear-output voltage source.

Equation 3.40 relates the terminal variables vL and iL to 
the source quantities vSRC and Rsrc only, independently of 
the load. This vL−iL relation is therefore referred to as the 
source characteristic, with Rsrc being the source resis-
tance. If Rsrc = 0, the source characteristic is a horizontal 
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FIGURE 3.25
(a) Parallel connection of two ideal, independent current sources and 
(b) parallel connection of an ideal, independent current source and an 
ideal dependent current source.
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line having a voltage intercept vSRC. The terminal volt-
age is vSRC, independently of the source current, as for an 
ideal voltage source. This underlies the following con-
cept that we will often use:

Concept: An ideal, independent or dependent, voltage source 
has zero source resistance.

Note that this concept is also in accordance with the 
previous deduction that an ideal voltage source behaves 
as a short circuit if vSRC  =  0 (Figure 2.4), since a short 
circuit has zero resistance. We are now asserting that the 
source resistance is still zero when vSRC ≠ 0.

It also follows that an ideal voltage source must not be 
short-circuited, since Rsrc = 0 makes the resulting current 
infinite. In a nonideal source, the source resistance limits 
the short-circuit current.

Practical voltage sources are commonly paralleled. 
This is because any practical voltage source is designed 
to deliver a maximum current or power. When sources 
are paralleled, the total current delivered is the sum of 
the currents delivered by the individual sources, and 
more power can therefore be delivered than by any of the 
individual sources. Generally, paralleled voltage sources 
have nominally the same open-circuit  voltage and source 
resistance, so they share the load equally.

Primal Exercise 3.18

A discharged 12  V car battery having an open-circuit 
voltage of 11.7  V is energized by paralleling it with a 
fully charged battery of open-circuit voltage 12.6  V. 
Determine the current that initially flows upon parallel-
ing the two batteries, assuming that each battery has an 
internal, or source, resistance of 45 mΩ and that the con-
necting cables are of negligible resistance.
Ans. 10 A.

Primal Exercise 3.19

The voltage of a car battery drops from 12 to 8 V when 
supplying 80  A to the engine starter. Determine the 
internal, or source, resistance of the battery. What is 
the resistance of the starter and the connecting cables?
Ans. Battery internal resistance is 50 mΩ; 0.1 Ω.

3.6.2  Linear-Output Current Source

Current sources encountered in practice are nonideal 
in the sense that the voltage across the source termi-
nals decreases as the current delivered by the source 
increases. If this decrease in voltage is directly propor-
tional to the current delivered by the source or can be 
approximated as such, then the nonideal source can 

be  represented, between the source terminals, by an 
ideal current source of current iSRC in parallel with an 
ideal resistor Rsrc (Figure 3.28a).

Since the circuit in Figure 3.28a is a parallel circuit, 
KVL is automatically satisfied. From Ohm’s law, the cur-
rent through Rsrc is vL/Rsrc, so that KCL at node ‘a’ gives 
iSRC = iL + vL/Rsrc. Multiplying both sides of the equation 
by Rsrc and rearranging,

  v R i R iL src SRC src L= –  (3.41)

Equation 3.41 is plotted in Figure 3.28b. When vL = 0, 
iL =  iSRC and is the current intercept. When iL = 0, the 
voltage intercept is vLOC  =  RsrciSRC and is the open- 
circuit voltage at terminals ‘ab’. The slope of the line 
is −Rsrc, where Rsrc is the source resistance looking into 
 terminals ‘ab’, with iSRC = 0, that is, with the ideal cur-
rent source  set to zero by replacing it with an open 
circuit.

The interpretation of Equation 3.41 is that when iL = 0, 
iSRC flows through Rsrc, producing a voltage drop RsrciSRC 
at the open-circuited terminals ‘ab’. As iL increases from 
zero, it subtracts from iSRC, so less current flows in Rsrc 
and vL is reduced. When terminals ‘ab’ are short-cir-
cuited, vL = 0, no current flows in Rsrc, so that iSRC flows 
through the short circuit. For any set of values vLL and 
iLL, the horizontal segments with arrows at both ends in 
Figure 3.28b represent iLL and vLL/Rsrc.

Because of the linear vL–iL relation at the source 
 terminals ‘ab’, we will refer to this type of nonideal 
current source as a linear-output current source. 
Equation 3.41 relates the terminal variables vL and iL to 
the source parameters iSRC and Rsrc only, independently 
of the load. As in the case of the linear-output voltage 
source, it is referred to as the source characteristic, with 
Rsrc being the source resistance. If iSRC remains constant in 
Figure 3.28b as Rsrc increases, VLoc increases. As Rsrc → ∞, 
the source characteristic becomes a vertical line through 
iSRC. This underlies the following concept that we will 
often use:

Concept: An ideal, independent or dependent, current source 
has zero source conductance or infinite source resistance.
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FIGURE 3.28
(a) Linear-output current source connected to a load and (b) v–i plot 
of source output.
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Note that this concept is also in accordance with the 
previous deduction that an ideal current source behaves 
as an open circuit if iSRC = 0 (Figure 2.5), since an open 
circuit has infinite resistance. We are again asserting that 
Rsrc remains infinite when iSRC ≠ 0.

It also follows that an ideal current source must not be 
open-circuited, as the resulting voltage across the source 
is infinite. In a nonideal source, the source resistance 
limits the open-circuit voltage.

Before ending this discussion, it may be noted that 
when a linear-output source is connected to a load 
resistance RL, a simple graphical analysis can be made. 
Figure 3.29a illustrates a linear-output source connected 
to a resistor RL. Figure 3.29b shows the source charac-
teristic for the linear-output source in terms of vL and iL, 
representing the equation

 v v R iL LOC src L= –  (3.42)

where 
vLOC is the open-circuit voltage at terminals ‘ab’ when 

iL = 0
Rsrc is the source resistance looking into these termi-

nals with the independent source set to zero
ILSC = vLOC/Rsrc is the short-circuit current when vL = 0

Equation 3.42 is independent of RL, depending only 
on the source. However, vL and iL are related by Ohms’ 
applied to RL:

 v R iL L L=  (3.43)

Equation 3.43 is represented in Figure 3.29b as a line 
of slope RL passing through the origin and referred to as 
the load line. Equations 3.42 and 3.43 are two equations 
in the two unknowns vL and iL. The intersection of the 
two lines representing these equations gives the particu-
lar values of vLL and iLL that are the solution to the two 
equations, because these values satisfy both equations.

3.6.3  Transformation of Linear-Output Sources

An important and useful procedure is the transforma-
tion between a linear-output voltage source and a lin-
ear-output current source. This transformation follows 

from a comparison of Equations 3.40 and 3.41. These 
equations are identical if (1) vSRC = RsrciSRC and (2) Rsrc 
is the same in both cases. Under these conditions, the 
vL–iL relation is the same for both sources at terminals 
‘ab’, which means that the two sources are equivalent 
at these terminals. That is, one type of linear-output 
source can be substituted for the other, terminal for ter-
minal, without affecting the rest of the circuit.

The transformation can be illustrated by a voltage 
source of open-circuit voltage vSRC = 6 V and source resis-
tance Rsrc = 2 Ω connected to some load (Figure 3.30a). 
Equation 3.40 becomes

 v iL L= 6 2–  (3.44)

Consider next a current source having iSRC = vSRC/Rsrc = 
6/2 = 3 A, in accordance with the relation vSRC = RsrciSRC 
(Figure 3.30b). The source resistance Rsrc = 2 Ω is in parallel 
with iSRC, as in Figure 3.28a. Equation 3.41 gives vL = 6 – 2iL, 
which is the same as Equation 3.44. This means that the 
two sources are equivalent at terminals ‘ab’. Note that the 
2 Ω source resistance could alternatively be represented as 
a conductance of 0.5 S in parallel with iSRC (Figure 3.30c).

The procedure for transforming a linear-output volt-
age source to an equivalent linear-output current source, 
or conversely, is illustrated in Figure 3.31 and can be 
summarized as follows:

 1. To transform a linear-output voltage source of 
open-circuit voltage vSRC to a linear-output  current 
source, the short-circuit current of the current source 
is given by iSRC = vSRC/Rsrc.

 2. To transform a linear-output current source of short-
circuit current iSRC to a linear-output voltage source, 
the open-circuit voltage of the linear-output voltage 
source is given by vSRC = RsrciSRC.
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FIGURE 3.29 Graphical analysis of load connected to a linear-output 
source. (a) Linear-output source connected to a load and (b) graphical 
construction for determining output voltage and current.
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 3. In both cases, the source resistance Rsrc in series with 
the ideal voltage source element is the same Rsrc in 
parallel with the ideal current source element.

The transformation applies to dependent sources 
as well as independent sources, as emphasized in 
Figure  3.31. A  CCVS of voltage ρiX is transformed 
to a CCCS of current (ρ/Rsrc)iX, and conversely. 
Similarly,  a  VCVS of voltage αvY is transformed to a 
VCCS of  current (α/Rsrc)vY, and conversely.

The following should be noted concerning source 
transformation:

 1. Because of circuit equivalence, source transfor-
mation must preserve polarities of voltages and 
directions of currents at the terminals of the two 
sources. To ascertain this in a given circuit, the 
two sources are temporarily disconnected from 
the rest of the circuit, so that iL = 0 in Figure 3.30, 
for example. The assigned positive direction of 
the ideal voltage source element in Figure 3.30a 
makes terminal ‘a’ positive with respect to ter-
minal ‘b’. Similarly, in Figure 3.30b, the assigned 
positive direction of the ideal current source ele-
ment is such that iSRC flowing in Rsrc makes ter-
minal ‘a’ positive with respect to  terminal ‘b’.

 2. The equivalence between the two sources 
applies at the specified terminals only. It does 
not apply inside the sources. For example, the 
power delivered by the ideal source elements is 
quite different in the two cases, as illustrated in 
Example 3.5.

 3. An ideal voltage source cannot be transformed 
to an ideal current source, and conversely. Thus, 
Rsrc = 0 for an ideal voltage source, which makes 
iSRC = vSRC/Rsrc → ∞. Similarly, Rsrc → ∞ for an ideal 
current source, which makes vSRC = RsrciSRC → ∞. 
Infinite values of vSRC and iSRC imply that the 

corresponding sources are not valid. This is 
in accordance with ideal voltage and current 
sources being basic circuit elements, where a 
basic circuit element cannot be represented in 
terms of other basic circuit elements, as men-
tioned in Section 1.8. Nonideal sources are not 
basic circuit elements. They can therefore be rep-
resented in terms of basic circuit elements, and 
linear-output voltage sources can be transformed 
to linear- output current sources, and conversely.

The following deductions follow from the discussion 
of linear-output sources:

 1. The ideal termination for a nonideal voltage 
source is an open circuit, in the sense that under 
these conditions, vL = vLOC = vSRC (Equation 3.40). 
In other words, the terminal voltage has its larg-
est value, which is the open-circuit voltage of 
the source. However, the power delivered by 
the source is zero.

 2. The ideal termination for a nonideal current 
source is a short circuit, in the sense that under 
these conditions, iL = ILSC = iSRC (Equation 3.41). 
In other words, the terminal current has its larg-
est value, which is the short-circuit current of 
the source. However, the power delivered by 
the source is zero.

 3. If vL = RLiL is substituted in Equation 3.40, iL is 
given by

  
i

v
R R

L
SRC

src L
=

+  
(3.45)

If R RL src� , then iL ≅ vSRC/Rsrc, independently 
of RL. But this same situation applies when a 
load RL is connected to an ideal current source 
of  current iSRC  =  vSRC/Rsrc (Figure 3.32a), in 
that the ideal current source delivers iSRC to RL 
independently of RL. In other words, a voltage 
source having R Rsrc L�  approximates an ideal 
current source as far as the load is concerned 
(Figure  3.32). It should be noted that having 
R Rsrc L�  requires that for a given iL =  iSRC, vSRC 
has a large value nearly equal to RsrciL.
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Example 3.5: Transformation 
of Linear-Output Sources

Consider a linear-output voltage source of 12 V open-
circuit voltage and 1.5 Ω source resistance supplying a 
4.5 Ω load (Figure 3.33a). It is required to transform this 
source to an equivalent current source, verify that the 
load voltage and current are the same, and show that 
equivalence applies at the source terminals only.

Solution:

The load current in Figure 3.33a is iL = 12/(1.5 + 4.5) = 2 A. 
The load voltage is vL = 4.5 × 2 = 9 V. This also follows 

from voltage division, since vL = 
4 5

1 5 4 5
12 9

.
. .+

´ = V. The 

linear-output current source has iSRC = 12/1.5 = 8 A in 
parallel with 1.5 Ω (Figure 3.33b). From current division, 

iL =
+

´ =1 5
1 5 4 5

8 2
.

. .
A, which makes vL  =  9  V in Figure 

3.33b. Note that vL = 8 × (1.5∥4.5) = 8 × 1.125 = 9 V.
Equivalence does not apply inside the sources. 

Thus, the voltage across the 1.5 Ω resistor in Figure 
3.33a is 3 V, and the power dissipated in it is 6 W. The 
current in the 1.5 Ω resistor in Figure 3.33b is 6 A, and 
the power dissipated in it is 54 W. The power deliv-
ered by the ideal voltage source in Figure  3.33a is 
24  W, whereas the power delivered by ideal current 
source in Figure 3.33b is 72  W. However, the power 
delivered by each source minus the power dissipated 

in the source resistance is the power delivered to the 
load, which must be the same in both cases, because of 
equivalence. Thus, 24 – 6 = 72 – 54 = 18 W = 9 × 2.

Simulation: The circuit is entered as in Figure 3.34. 
After selecting ‘Bias Point’ under ‘Analysis type’ in the 
Simulation Settings and running the simulation, press-
ing the I, V, and W buttons displays the currents, volt-
ages, and powers, respectively (Figure 3.34).

Problem-Solving Tip

• In source transformation, equivalence does not 
apply inside the sources. This implies that the 
power delivered or absorbed by the ideal source, 
or the power dissipated in the source resistance, is 
not preserved under source transformation.

Primal Exercise 3.20

Transform the linear-output current source in Figure 3.35 
to a linear-output voltage source between terminals ‘ab’.

Ans. A voltage source of 5 V in series with 10 Ω.

Primal Exercise 3.21

Consider a current source of 6 A short-circuit current and 
2 Ω source resistance. (a) Transform this source to a volt-
age source and back, (b) verify that the two equivalent 
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sources (i) have the same voltage across a 4 Ω load and 
will deliver the same power to the load, and (ii) have 
the same open-circuit voltage and short-circuit current 
at the source terminals.
Ans. (a) VSRC = 12 V, Rsrc = 2 Ω; (b) VL = 8 V, PL = 16 W, 
12 V, 6 A.

Example 3.6: Circuit Analysis Using 
Source Transformation

It is required to determine VO in Figure 3.36.

Solution:

 1. Initialize: All given values and the required VO are 
entered. The nodes are labeled.

 2. Simplify: The ideal current source and the 2 kΩ 
resistor in parallel with it can be transformed to the 
equivalent voltage source, whose source resistance 
can be combined with the 1 kΩ resistance. To ascer-
tain the polarity of the transformed voltage source, 
the ideal current source and its 2 kΩ resistor are iso-
lated from the rest of the circuit, as in Figure 3.37a. 
The 6 mA source current flowing in the 2 kΩ resis-
tor makes node ‘a’ positive with respect to node 
‘b’. Hence, the polarity of the ideal voltage source 
in the transformed linear-output source should be 
as in Figure 3.37b. The justification for isolating the 
sources in order to determine polarity is that the 
transformed sources are equivalent under all termi-
nal conditions, including isolation from the rest of 
the circuit. When the 2 kΩ resistance of the equiv-
alent linear-output voltage source is combined 

with the 1 kΩ resistance, the circuit becomes as in 
Figure 3.38.

 3. Deduce: The current in the 2 kΩ resistor in the  middle 
is VO/2 mA.

 4. Explore: The circuit is now a two-essential-node cir-
cuit that can be analyzed in terms of KCL. The total 
current leaving node ‘b’ can be expressed in terms 
of VO as

 
V V VO O O

2
12

2
12

3
0+ - + - =

which gives VO = 7.5 V.
 5. Check: An alternative solution is to transform the 

two linear-output voltage sources in Figure 3.38 to 
their equivalent linear-output current sources, as in 
Figure 3.39a. The circuit is now a parallel circuit hav-
ing VO across the paralleled elements. The two ideal 
current sources in parallel and in the same direction 
are combined into a single 10 mA source. Reqp for the 
three resistors is derived by first combining the two 
2 kΩ resistances in parallel into a 1 kΩ resistance 
that is paralleled with the 3 kΩ resistance to give 
Reqp = (3 × 1)/(3 + 1) = 0.75 kΩ, as in Figure 3.39b. It 
follows from this figure that VO = 7.5 V.

Simulation: The circuit is entered as in Figure 3.40. 
After selecting ‘Bias Point’ under ‘Analysis type’ in the 
Simulation Settings and running the simulation, press-
ing I and V buttons displays the currents and voltages 
indicated in Figure 3.40.
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Primal Exercise 3.22

Determine IX in Figure 3.41 using source transformation.
Ans. 0.8 A.

Primal Exercise 3.23

Determine the power dissipated in the 5 Ω resistor in 
Figure 3.42 by transforming the current sources to 
 voltage sources.
Ans. 0.2 W.

Primal Exercise 3.24

Determine the current I in Figure 3.43 by transforming 
both linear-output current sources to their equivalent 
linear-output voltage sources.
Ans. 5 A.

3.7  Problem-Solving Approach Updated

The main procedural steps of the ISDEPIC approach are 
summarized and updated below in the light of the mate-
rial covered in this chapter:

Step 1—Initialize:

 (a) Mark on the circuit diagram all given values of 
circuit parameters, currents, and voltages, as 
well as the unknowns to be determined.

 (b) Label the nodes, as this may be generally 
helpful.

 (c) If the solution requires that a given value of cur-
rent or voltage be satisfied, assume this value 
from the very beginning.

Step 2—Simplify: Consider as may be appropriate

 (a) Redrawing the circuit
 (b) Replacing series and parallel combinations of 

circuit elements by an equivalent circuit element
 (c) Applying star–delta transformation
 (d) Applying source transformation

Step 3—Deduce: Determine any values of current or 
 voltage that follow immediately from direct applica-
tion of Ohm’s law, KCL, or KVL, without introducing 
any additional unknowns. If Step 3 does not provide the 
solution, proceed to Step 4.

Step 4—Explore: Consider the nodes and meshes in 
the circuit to see if KCL or KVL can be expressed 
using a single unknown current or voltage and if 
this unknown can then be directly determined from 
KCL or KVL. If Step 4 does not provide the solution, 
 proceed to Step 5.

Step 5—Plan: Think carefully and creatively about the 
problem in the light of circuit fundamentals and circuit 
analysis techniques. Try to think of alternative solutions 
and select what seems to be the simplest and most direct 
solution.

Step 6—Implement: Carry out your planned solution.
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Step 7: Check your calculations and results.

 (a) Check that your results make sense, in terms of 
magnitude and sign.

 (b) Check that Ohm’s law is satisfied across every 
resistor, that KCL is satisfied at every node, and 
that KVL is satisfied around every mesh.

 (c) Seek an alternative solution to see if it gives the 
same results.

 (d) Whenever feasible, check the results with PSpice 
simulation.

Learning Checklist: What Should 
Be Learned from This Chapter

• Two circuits are equivalent at a given pair of 
terminals if the circuits have the same voltage– 
current relation at these terminals.

 1. If v and i are the voltage and current at the 
corresponding terminals of two equivalent 
circuits, then the time course of v(t) and i(t) 
is the same, the quotient v/i is the same, and 
the instantaneous power or the product vi is 
the same for both circuits.

• In a series connection of resistors:
 1. The equivalent series resistance Reqs is the 

sum of the individual resistances.
 2. The reciprocal of the equivalent series 

 conductance is the sum of the reciprocals of 
the individual conductances.

 3. Reqs is larger than the largest of the series-
connected resistors.

• In a series connection of resistors to which a 
voltage v is applied and the voltage across any 
of the individual resistors Rj is denoted by vj, the 
ratio of vj to v is the same as the ratio of Rj to the 
total series resistance.

• In a parallel connection of resistors:
 1. The equivalent parallel conductance is the 

sum of the individual conductances.
 2. The reciprocal of the equivalent parallel 

resistance Reqp is the sum of the reciprocals 
of the individual resistances.

 3. Reqp is smaller than the smallest paralleled 
resistance.

• In a parallel connection of resistors in which the 
total current is i and the current through any of 
the individual resistors Rj is denoted by ij, the 
ratio of ij to i is the same as the ratio of Gj = 1/Rj 
to the total parallel conductance.

• The resistivity, or specific resistance, of a given 
material is the resistance between two opposite 

faces of a cube of the material multiplied by the 
length of the side of the cube. The resistivity of 
a given material is an intrinsic property of the 
material that is indicative of its electrical resis-
tive property. It is independent of the size or 
shape of the conducting material.

• The reciprocal of resistivity is conductivity.

• Resistance is directly proportional to the length 
of the current path through a conductor and 
inversely proportional to the cross-sectional 
area through which the current flows.

• Δ-connected resistors can be substituted for the 
equivalent Y-connected resistors, and conversely, 
terminal for terminal, without affecting the volt-
ages and currents in the rest of the circuit.

• Ideal, independent and dependent, voltage 
sources can be connected in series without restric-
tions on the source voltages and polarities. The 
source voltages add algebraically along the path.

• Ideal voltage sources should not be paralleled, 
unless they have the same source voltage and 
the same polarity. Otherwise, conservation of 
energy is violated.

• Ideal current sources should not be connected 
in series, unless they have the same source cur-
rent and in the same direction. Otherwise, con-
servation of charge is violated.

• Ideal, independent and dependent, current 
sources can be connected in parallel without 
restrictions on the source currents and directions. 
The source currents add algebraically at the 
nodes between which the sources are paralleled.

• If the voltage at the source terminals of a noni-
deal voltage source decreases linearly with 
the  current delivered by the source, the noni-
deal voltage source can be represented by an 
ideal voltage source in series with an ideal resis-
tor. This series combination is referred to as a 
linear-output voltage source.

 1. The linear-output voltage source is charac-
terized by (a) its open-circuit voltage, which 
is the voltage of the ideal source element, 
and (b) its source resistance, or internal resis-
tance, measured between the source termi-
nals with the ideal voltage source set to zero.

• If the voltage at the source terminals of a non-
ideal current source decreases linearly with 
the current supplied by the source, the nonideal 
current source can be represented by an ideal 
current source in parallel with an ideal  resistor. 
This parallel combination is referred to as a 
 linear-output current source.
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 1. The linear-output current source is charac-
terized by (a) its short-circuit current, which 
is the current of the ideal source element, 
and (b) its source resistance, or internal resis-
tance, measured between the source termi-
nals with the ideal current source set to zero.

• A linear-output voltage source of open-circuit 
voltage vSRC and source resistance Rsrc can be 
transformed to a linear-output current source 
of short-circuit current vSRC/Rsrc in parallel with 
Rsrc. Conversely, a linear-output current source 
of short-circuit current iSRC and source resistance 
Rsrc can be transformed to an linear-output volt-
age source of open-circuit voltage RsrciSRC and 
source resistance Rsrc.

 1. The transformation should preserve polari-
ties of voltages and directions of currents at 
the terminals of the two sources.

 2. The transformation applies at the specified 
terminals only and does not apply inside the 
sources.

• An ideal, independent or dependent, volt-
age source has zero source resistance, whereas 
an ideal, independent or dependent, current 
source has zero source conductance or infinite 
source resistance.

• The ideal termination for a nonideal voltage 
source is an open circuit, whereas the ideal ter-
mination for a nonideal current source is a short 
circuit. However, no power is delivered by the 
sources under these conditions.

• A voltage source having R Rsrc L�  approxi-
mates an ideal current source as far as the load 
RL is concerned, since the current through RL is 
almost independent of RL.

Problem-Solving Tips

 1. The parallel resistance of more than two resis-
tors is conveniently determined from paralleled 
resistances, two at a time.

 2. Never apply voltage division except to resistors in 
series, that is, resistors that carry the same current.

 3. In current division the largest current flows in 
the branch having the smallest resistance, and 
conversely.

 4. Never apply current division except to resistors 
in parallel.

 5. In source transformation, equivalence does not 
apply inside the sources. This implies that the 
power delivered or absorbed by the ideal source, 
or the power dissipated in the source resistance, 
is not preserved under source transformation.

Problems

Apply ISDEPIC and verify solutions by PSpice simulation 
whenever feasible.

Equivalent Resistance

P3.1 Determine Req in Figure P3.1.

 Ans. 30 Ω.

P3.2 Determine Geq in Figure P3.2.

 Ans. 6 mS.

P3.3 Determine Req in Figure P3.3.

 Ans. 0.45 kΩ.

P3.4 Determine Req in Figure P3.4.

 Ans. 8 Ω.

P3.5 Determine Req in Figure P3.5.

 Ans. 6 Ω.

P3.6 Determine Req in Figure P3.6.

 Ans. 5 Ω.

P3.7 Determine Req in Figure P3.7.

 Ans. 4.5 Ω.

45 22

12

2416

48

Req

a

b

FIGURE P3.1 

1.8 k 0.1 k0.2 k

0.6 k 1.2 k

0.3 k

2 k 2 k 0.5 k

Req

a b

FIGURE P3.3 

2 mS

8 mS

16 mS

12 mS

3 mS

10 mSGeq

a

b

FIGURE P3.2 



78 Circuit Analysis with PSpice: A Simplified Approach

P3.8 Determine the resistance Rbe between terminals ‘b’ and 
‘e’ in Figure P3.8.

 Ans. 15 Ω.

P3.9 Determine Req in Figure P3.9 when terminals ‘cd’ are (a) 
open-circuited and (b) short-circuited.

 Ans. (a) 80/9 Ω; (b) 76/9 Ω.

P3.10 Determine Geq between terminals ‘ab’ in Figure P3.9 if 
each resistance is replaced by a conductance having 
the same numerical value in S and with terminals ‘cd’ 
(a) open-circuited and (b) short-circuited.

 Ans. (a) 171/20 S; (b) 9 S.

P3.11 Determine (a) Req between terminals ‘ab’ in 
Figure  P3.11, assuming all resistances are 1 Ω, and 
(b) Geq between terminals ‘ab’, assuming all conduc-
tances are 0.5 S.

 Ans. (a) 0.25 Ω; (b) 2 S.

P3.12 Determine Req between terminals ‘ab’ in Figure P3.12.

 Ans. 100/3 Ω.

P3.13 Determine Geq between terminals ‘ab’ in Figure P3.13, 
where G is a conductance.

 Ans. 7G/6.
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P3.14 Determine Req in Figure P3.14.

 Ans. 10 Ω.

P3.15 Determine Req between terminals ‘ab’ in Figure P3.15, 
assuming all resistances are 1 Ω.

 Ans. 1.2 Ω.

P3.16 Determine Req in Figure P3.16.

 Ans. 5 Ω.

P3.17 Determine Req in Figure P3.17.

 Ans. 3 Ω.

P3.18 Determine each of the resistors of the equivalent delta 
between terminals ‘a’, ‘b’, and ‘c’ in Figure P3.18, the 
value expressed in S.

 Ans. 0.5 S.

P3.19 Determine VO in Figure P3.19 given that the six, 
unmarked Y-connected resistors are 2 Ω each.

 Ans. 2 V.

P3.20 Determine Rin in Figure P3.20.

 Ans. 4.75 kΩ.

P3.21 Determine Rin in Figure P3.21.

 Ans. Infinite.
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P3.22 n resistors are connected in series, the ith resistance 
being 2−(i – 1) where i = 1, 2, …, n. Determine the total 
series resistance as n → ∞.

 Ans. 2 Ω.

Voltage Division, Current Division, 
and Source Transformation

P3.23 Determine VO  in Figure P3.23 by applying (a) voltage 
division and (b) source transformation and current 
division.

 Ans. 24 V.

P3.24 Determine VO in Figure P3.24.

 Ans. 2 V.
P3.25 Determine VO in Figure P3.25 using voltage division.

 Ans. 7 V.

P3.26 Determine ISRC in Figure P3.26.

 Ans. −4 mA.

P3.27 Determine ISC in Figure P3.27.

 Ans. 0.2 A.

P3.28 Determine VO by successive voltage division at nodes 
‘a’, ‘b’, and then ‘c’ in Figure P3.28.

 Ans. 16 V.

P3.29 Determine IO by successive current division at nodes 
‘c’, ‘b’, and then ‘a’ in Figure P3.29.

 Ans. 25/3 mA.

P3.30 Determine VX and IY in Figure P3.30.

 Ans. 8 V, 0.375 A.
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P3.31 Determine VY in Figure P3.31.

 Ans. 1.6 V.

P3.32 Determine IX in Figure P3.32.

 Ans. 1.2 A.

P3.33 Determine the ratio of the power delivered by the ideal 
voltage source in Figure P3.33 to that delivered by the 
ideal current source of the equivalent linear-output 
source.

 Ans. Rsrc/RL.

P3.34 A nonideal voltage source has an open-circuit voltage 
VSRC. When connected to a load resistor that draws a 
current of 1 A, the power dissipated in the load is four 

times the power dissipated in the source resistance. 
Determine the short-circuit current of the equivalent 
nonideal current source.

 Ans. 5 A.

P3.35 Determine IX in Figure P3.35 by transforming the depen-
dent voltage source to its equivalent current source.

 Ans. 1.5 V.

P3.36 Determine IX and VO in Figure P3.36 by transforming 
(a) the current source to a voltage source and (b) the 
voltage source to a current source. Note that IX and VO 
can be identified with respect to terminals ‘ab’.

 Ans. 1 A, 3 V.

P3.37 Determine Rx in Figure P3.37 so that IX = 0.

 Ans. 5 Ω.
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P3.38 Determine Gx in Figure P3.38 so that I = 0.

 Ans. 1.8 S.

P3.39 Determine VO in Figure P3.39.

 Ans. 36 V.

P3.40 Determine VO in Figure P3.40.

 Ans. 6 V.

P3.41 Determine VO in Figure P3.41.

 Ans. 40 V.

P3.42 Determine IO in Figure P3.42.

 Ans. −1 A.

P3.43 Determine IX in Figure P3.43 using source transforma-
tion and KVL.

 Ans. 1 A.

P3.44 Determine VO in Figure P3.44 using source 
transformation.

 Ans. 16 V.

P3.45 Determine VO and VS in Figure P3.45.

 Ans. VO = 30 V, VS = 225 V.

P3.46 Determine VO in Figure P3.46.

 Ans. 2/3 V.

P3.47 Determine R and IX in Figure P3.47.

 Ans. 3.2 Ω, 2 A.

P3.48 Determine VS in Figure P3.48.

 Ans. 35 V.
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General Resistive Circuits

P3.49 RX in Figure P3.49 can be varied between 0 and ∞. 
Determine (a) the largest value of IS and (b) the small-
est value of IS, as RX is varied over its full range.

 Ans. 125 mA when RX = 0, 80 mA when RX → ∞.

P3.50 Determine VSRC and R in Figure P3.50 given that (a) 
when terminals ‘a’ and ‘b’ are open-circuited, the 
power delivered by VSRC is 12 W and (b) when termi-
nals ‘a’ and ‘b’ are short-circuited, the short-circuit 
 current from ‘a’ to ‘b’ is 0.5 A.

 Ans. 9 V, 4.5 Ω.

P3.51 Determine in Figure P3.51 (a) Req between terminals 
‘ab’, (b) the total power absorbed by the resistors, 
(c)  the power delivered or absorbed by each source, 
and (d) the battery voltage that will make the current 
source neither absorb or deliver power.

 Ans. (a) 7 Ω; (b) 28 W; (c) voltage source absorbs 10 W, 
current source delivers 38 W; (d) 14 V, of polarity oppo-
site to that shown.

P3.52 Determine ISRC in Figure P3.52 so that no current flows 
in RL.

 Ans. 3 mA.

P3.53 Determine IX in Figure P3.53.

 Ans. 1.5 A.

P3.54 Determine VX in Figure P3.54.

 Ans. 1.5 V.

P3.55 Determine the power delivered or absorbed by the 4 V 
source in Figure P3.55.

 Ans. 12 W delivered.
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P3.56 Determine IX in Figure P3.56.

 Ans. −0.5 A.

P3.57 Determine R in Figure P3.57 such that no power is 
delivered or absorbed by the 2 V source.

 Ans. 16 Ω.

P3.58 Determine VX in Figure P3.58.

 Ans. 50 V.

P3.59 Determine IS in Figure P3.59.

 Ans. 2 A.

P3.60 Determine IS in Figure P3.60.

 Ans. 5 A.

P3.61 Determine VO in Figure P3.61.

 Ans. 12 V.

P3.62 Determine VY in Figure P3.62.

 Ans. 140 V.
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P3.63 (a) Argue that the circuit in Figure P3.63 is not valid, 
(b) reverse the directions of the upper two 5 A sources, 
and determine the power dissipated in the resistor 
between nodes (i) ‘a’ and ‘b’ and (ii) ‘b’ and ‘c’.

 Ans. (b) (i) 0, (ii) 25 W.

P3.64 (a) Argue that the circuit in Figure P3.64 is not valid, 
(b) replace the lower battery with a resistance R that 

dissipates 2 W, determine R, (c) determine the power 
delivered or absorbed by each battery, (d) show that no 
net power is absorbed or delivered by the three cur-
rent sources, and (e) note that the voltage across each 
 current source is indeterminate. Explain why.

 Ans. (b) 2 Ω; (c) voltage source in branch ‘ab’ delivers 2 W, 
voltage source in branch ‘ac’ neither absorbs nor delivers 
energy; (d) power delivered by voltage sources equals 
that dissipated in R; (e) an ideal current source can have 
any voltage across it, and KVL only defines differences 
between voltages across individual current sources.

Probing Further

P3.65 Consider Equation 3.15 for the case of  paralleled resis-
tors. Show that for n resistors in parallel

  
1 1 1 1 1 1

1 2 3 1R R R R R Reqp n n
= + + + + +

-
�

 Deduce that

 R
R
R

eqp
n i

n n j
=

Õ
å Õ -1

 

 where the numerator is the  product of all the resistances 
and the denominator is the sum of n terms, each term 
consisting of the product of the different combinations 
of resistances (n − 1) at a time.

P3.66 Suppose that equivalence between the Δ- and 
Y-circuits of Figure 3.17 is to be derived based on the 
resistance seen between any two terminals with the 
third terminal short-circuited to the terminal just pre-
ceding it in the sequence ‘abcabc’, that is, by deriving 
Rab with terminal ‘c’ shorted to ‘b’, Rbc with terminal 
‘a’ shorted to ‘c’, and Rca with terminal ‘b’ shorted to 
‘a’. Show that the required relation between the resis-
tors is the same as that of Equations 3.32 through 3.37.
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Objective and Overview

The chapter presents some theorems that apply to elec-
tric circuits and that center primarily around Thevenin’s 
theorem.

Thevenin’s theorem takes circuit equivalence to its 
extreme, by representing any LTI circuit, between any 
two given terminals, by a linear-output voltage source 
in the case of resistive circuits. Thevenin’s theorem is 
arguably the most important theorem in circuit analy-
sis, both from theoretical and practical viewpoints. It is 
therefore discussed at length with several examples that 
highlight some of its aspects.

The discussion of Thevenin’s equivalent circuit (TEC) 
is naturally followed by a discussion of its current-
source counterpart, namely, Norton’s equivalent cir-
cuit (NEC). NEC has the added significance that some 
 circuits may have an NEC, but not a TEC, just as the 
converse is also true.

The chapter ends with the substitution theorem, 
which is a useful theorem that simplifies the analysis of 
some types of circuits and can be readily proved using 
Thevenin’s theorem. A particular form of the substitu-
tion theorem, the source absorption theorem, is pre-
sented as a useful tool for replacing dependent sources 
by resistors in some cases, which again simplifies circuit 
analysis in these cases.

Discussion in this chapter and in Chapters 5 and 6 is 
mostly restricted to the dc state.

4.1  Excitation by Dependent Sources

Before presenting Thevenin’s theorem, the following 
concept is discussed:

Concept: Dependent sources alone do not excite a circuit.

To illustrate this concept, consider the circuit of Figure 
4.1. From KCL at the upper essential node,

 
i i

v
Y Y

X+ =2
6  

or

 v iX Y= 18  (4.1)

From KVL around the mesh on the left,

 3 4 0v i vX Y X- - =  

or

 v iX Y= 2  (4.2)

Substituting for iY from Equation 4.2 in Equation 4.1,

 v vX X= 9  

or

 8 0vX =  (4.3)

It follows that vX = 0, which also makes iY = 0.
Although demonstrated for a particular circuit, it is 

true in general that if dependent sources are the only 
sources in a circuit, the circuit is relaxed, that is, all volt-
ages and currents in the circuit are zero.

Although they alone do not excite a circuit, dependent 
sources do, of course, affect the voltages and currents in 
the circuit. But the ultimate source of energy is the inde-
pendent sources in the circuit. In the absence of these 
independent sources, there is no excitation in the circuit.

4.2  Thevenin’s Theorem

In the context of resistive circuits, Thevenin’s theorem 
can be stated as follows:

Statement: A circuit consisting of ideal resistors and sources 
is equivalent, at a specified pair of terminals, to a linear- output 
voltage source.

4
Circuit Theorems

–
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2iY vX3vX
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FIGURE 4.1
Excitation by dependent sources.
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The equivalent circuit, consisting of an ideal voltage 
source in series with a resistor, is known as TEC. The 
open-circuit voltage, or the voltage of the ideal voltage 
source element, is referred to as the Thevenin volt-
age, VTh, and the source resistance as the Thevenin 
 resistance, RTh. The open-circuit voltage and source 
resistance were defined for a linear-output voltage 
source in Section 3.6.

Thevenin’s theorem takes circuit equivalence to the 
extreme, in that it reduces any LTI circuit at a given 
pair of terminals to the simplest possible equivalent, 
namely, an ideal voltage source in series with an ideal 
resistor.

Thevenin’s theorem can be illustrated by the sim-
ple voltage divider circuit of Figure 4.2a supplying 
a load RL. The circuit is a two-essential-node circuit 
that can be analyzed using KCL. The current leaving 
node ‘a’ is

 
I

V
R

V V
R

L
L L SRC+ +

-
=

2 1
0
 

(4.4)

Equation 4.4 can be rearranged as

 
V

R
R R

V
R R

R R
IL SRC L=

+
-

+
2

1 2

1 2

1 2  
(4.5)

Now let us replace the voltage divider by an ideal 
voltage source VTh in series with an ideal resistor RTh 
(Figure 4.2b). KVL gives

 V V R IL Th Th L= -  (4.6)

Equation 4.6 is of the same form as Equation 4.5, in 
accordance with Thevenin’s theorem. Moreover, the two 
equations become identical if VTh and RTh are given by
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R
R R

V R
R R

R R
Th SRC Th=

+
=

+
2

1 2

1 2

1 2
and

 
(4.7)

Under these conditions, VTh in series with RTh is equiv-
alent to the voltage divider circuit at terminals ‘ab’, since 
they have the same VL−IL relation (Figure 4.2c). RTh is the 
source resistance, and VTh is the open-circuit voltage at 
terminals ‘ab’, when IL = 0.

Although shown to apply for the voltage divider cir-
cuit, Thevenin’s theorem in fact applies to a circuit of 
any complexity consisting of ideal sources and resis-
tors. Evidently, replacing a complex circuit by its TEC 
between a given pair of terminals greatly simplifies the 
analysis of the overall circuit, as will be demonstrated 
on many occasions.

4.2.1  Derivation of TEC

In the preceding discussion, VTh and RTh were deter-
mined by deriving the VL−IL relation at the given pair of 
terminals, which is unnecessarily complicated. A sim-
pler procedure is suggested by the nature of TEC itself 
and the VL−IL relation. Since the plot of VL vs. IL is a 
straight line (Figure 4.2c), this line is uniquely deter-
mined by specifying its slope, whose magnitude is RTh, 
and a point through which the line passes, such as the 
intercept on the voltage axis. This intercept is VTh and 
equals VL, when IL = 0. It can, therefore, be determined 
directly from the circuit as the open-circuit voltage at 
terminals ‘ab’. Thus, if RL is removed from the circuit 
(Figure 4.3a), it follows from voltage division that
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R
R R

VTh SRC=
+

2

1 2  
(4.8)

which is the same as Equation 4.7.
RTh can be determined in one of two ways: either 

directly or as the ratio of the voltage intercept VTh in 
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Figure 4.2c to the current intercept, which is the short-
circuit current ISC. When terminals ‘ab’ are short- 
circuited (Figure 4.3b), it follows from Ohm’s law that

 
I

V
R

SC
SRC=

1  
(4.9)

The ratio VTh/ISC is, from Equations 4.8 and 4.9, 
R1R2/(R1  +  R2), the same as the expression for RTh in 
Equation 4.7.

The direct method of determining RTh is suggested 
by Figure 4.2b. If VTh is set to zero, that is, replaced by 
a short-circuit (Section 2.4) and a test voltage source 
VT is applied between terminals ‘ab’, then RTh  =  VT/IT 
(Figure 4.4a). That is, RTh is Req seen by the test source 
between terminals ‘ab’. Alternatively, a test current 
source IT may be applied and RTh is again given by VT/IT 
(Figure 4.4b). But what does setting VTh to zero imply 
in the original circuit? It implies setting all independent 
sources to zero, for this removes excitation from the circuit 
and reduces all currents and voltages in the circuit to 
zero, including VTh. As mentioned in Section 4.1, depen-
dent sources alone do not excite the circuit. Hence, VTh 
becomes zero when all independent sources are set to 
zero while leaving dependent sources unchanged. Note 
that although dependent sources alone do not excite the 
circuit, they do affect the relations between voltages and 
currents in the circuit in the presence of independent 
sources by effectively altering the values of resistances, 
including RTh. Setting dependent sources to zero will 
therefore alter RTh, whereas setting independent sources 
to zero removes excitation from the circuit, without 
altering RTh. Recall that an ideal voltage source is set to 
zero by replacing it with a short circuit (Section 2.4) and 
that an ideal current source is set to zero by replacing it 
with an open circuit (Section 2.5).

It should be noted that applying a test source to 
determine RTh, as in Figure 4.4a and b, is a formal and 
general method of determining Req between any two 
terminals of a circuit, with independent sources set to 
zero. That was, in fact, the method used for determin-
ing Reqs and Reqp in Chapter 3 (Figures 3.3 and 3.5). Using 
a test source is the only generally applicable method for 

determining Req in the presence of dependent sources. 
However, in the absence of dependent sources, a test 
source need not be explicitly applied. Equivalently, Req, 
and hence RTh, can be determined more directly using 
series/parallel combinations of resistors, star-delta 
transformation, etc.

The procedure for deriving TEC can be summarized 
as follows:

 1. Determine VTh as the open-circuit voltage at the 
specified terminals.

 2. Determine the short-circuit current ISC at the speci-
fied terminals, which gives RTh as VTh/ISC.

 3. Set all independent sources in the given circuit to 
zero, leaving dependent sources unchanged. RTh is 
the resistance Req looking into the specified terminals. 
Formally, this resistance is obtained by applying a 
test voltage source or a test current source and deter-
mining Req as the ratio of the voltage at the source 
terminals to the source current. In the absence of 
dependent sources, this effectively reduces to deter-
mining Req directly from series/parallel combinations 
of resistors, and using star-delta transformations, if 
necessary.

The following should be noted concerning this 
procedure:

 1. Since VTh = RThISC, only two of the three quanti-
ties in this relation need be determined through 
the aforementioned three steps. However, it is 
useful for checking purposes to determine all 
three of these quantities independently.

 2. Moreover, some of the aforementioned three 
steps many be easier to implement than others. 
Thus, setting independent sources to zero can 
make the circuit particularly simple.

 3. In some cases, VTh = 0, which means that ISC = 0. 
It follows that VTh/ISC is 0/0, which is indetermi-
nate. In this case, RTh can only be determined by 
Step 3 of the aforementioned procedure. This is 
illustrated by Example 4.3.

 4. A potential ambiguity in deriving TEC at a 
pair of terminals is whether or not to include in 
TEC a branch, such as a resistor R, that is con-
nected between the given pair of terminals. The 
ambiguity is resolved in this book by the way 
the resistor is drawn with respect to the given 
terminals or by the way TEC is required. In 
Figure 4.5a, for example, R is drawn beyond the 
terminals at which TEC is required, as was done 
in Figure 4.2a. The implication is that R should 
not be included in TEC. Even without draw-
ing the terminals in this manner,  requiring 
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FIGURE 4.4
Alternative derivation of TEC. Determination of RTh by applying a 
test voltage source (a), or a test current source (b), with VTh = 0.
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“TEC seen by R,” or “TEC looking into termi-
nals ‘ab’” means that R should not be included in 
TEC. On the other hand, if the given terminals 
are beyond R, as in Figure 4.5b, the implication 
is that R should be included in TEC. Requiring 
“TEC between terminals ‘ab’” is unambiguous 
in this case.

 5. Even in the case of Figure 4.5b, it may be advan-
tageous to remove R and determine an interme-
diate TEC from the simpler circuit that results 
when R is removed. After obtaining this TEC, 
R is connected to the terminals of this TEC and 
the final TEC derived. This procedure is illus-
trated by Example 4.4.

 6. If RL = RTh (Figure 4.2b), the ideal voltage source 
VTh transfers maximum power to RL. This is 
proved in Section 17.4 and extended to more 
general cases.

★4.2.2  Derivation of TEC with PSpice

Although VTh, ISC, and RTh can be derived from two sep-
arate simulations, it is possible, and more convenient, to 
derive TEC from a single simulation. The basis for this 
procedure is instructive and can be explained with ref-
erence to Figure 4.6a. A test current source IT is applied 
at terminals ‘ab’, between which TEC is to be derived. 
This TEC, consisting of VTh and RTh, is shown between 
these terminals, which signifies that the original circuit 
is left as is, that is, with the independent sources retained, 
so that VTh ≠ 0. KVL gives

 V V R IT Th Th T= +  (4.10)

If IT is varied between 0 and 1 A, and VT is plotted 
against IT, a straight line graph is obtained having 
a voltage intercept VTh at IT  =  0. Let VT1

 denote VT at 
IT = 1 A. From Equation 4.10, the difference (VT1

 − VTh) 
is numerically equal to RTh when IT = 1 A (Figure 4.6b). 
IT is conveniently varied in PSpice over a desired range 
of values, using the “DC Sweep” feature, as explained 
in Example 4.1.

Example 4.1:  Application of TEC

It is required to determine IL in Figure 4.7 by deriving 
TEC looking into terminals ‘ab’.

Solution:

When terminals ‘ab’ are open-circuited by removing 
the 50 Ω resistor, the circuit becomes as in Figure 4.8a. 
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FIGURE 4.5
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With no current in the 20 Ω resistor, the 6  A source 
current flows through the 30 Ω resistor, produc-
ing a voltage of 180  V across this resistor. From KVL, 
VTh = 20 + 180 = 200 V.

When terminals ‘ab’ are short-circuited, the short- circuit 
current ISC can be determined by transforming the ideal 
6 A source in parallel with 30 Ω to an ideal voltage source of 
30 × 6 = 180 V in series with 30 Ω, as in Figure 4.8b. ISC now 
flows through the 30 and 20 Ω resistors. Applying KVL, 
starting from node ‘b’ and going clockwise, 180 – 30ISC – 
20ISC + 20 = 0. This gives ISC = 200/50 = 4 A. It   follows 
that RTh = VTh/ISC = 200/4 = 50 Ω.

Since the circuit does not have dependent sources, it is 
not necessary to apply explicitly a test source and deter-
mine the ratio of the voltage of the test source to the 
current through the source. RTh can be determined in 
this case as Req between terminals ‘ab’, or Rin, the input 
resistance looking into terminals ‘ab’, with independent 
sources set to zero. The 20 V source is replaced by a short 
circuit and the 6 A source is replaced by an open circuit, 
as in Figure 4.9a. The resistance looking into terminals 
‘ab’ is seen to be 30 + 20 = 50 Ω, as determined previ-
ously. TEC between terminals ‘ab’ is therefore a 200 V 
source in series with 50 Ω (Figure 4.9b). When the 50 Ω 
resistor is connected between terminals ‘ab’ IL is given 
by IL = 200/(50 + 50) = 2 A.

Simulation: The circuit is entered as in Figure 4.10. 
An IDC I2 is connected between terminals ‘ab’ of the 
circuit. Its default value of 0A need not be changed. 
A voltage marker is placed at terminal ‘a’ of the circuit. 

In the Simulation Settings, ‘Analysis type’ is ‘DC Sweep’, 
‘Primary Sweep’ is selected under ‘Options’, ‘Current 
source’ is selected as ‘Sweep variable’, and I2 is entered 
in the ‘Name’ field. ‘Sweep type’ is ‘Linear’, ‘Start value’ 
is 0, ‘End value’ is 1, and ‘Increment’ is 1m, which is 
small enough to give a large number of points (1000) 
and hence a smooth line. When the simulation is run, 
Figure 4.11 is displayed. Cursor 1 is positioned at 1 A 
on the horizontal axis, and cursor 2 is positioned at the 
origin. In the cursor window, VTh is read as Y2 = 200.000, 
and RTh × 1 is read as Y1 – Y2 = 50.000.

Exercise 4.1

Verify that applying a test voltage source or a test  current 
source in Figure 4.9a gives the same RTh.

Example 4.2: Derivation of TEC

It is required to derive TEC seen by the 26 Ω load in 
Figure 4.12.
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Solution:

Terminals ‘ab’ are open-circuited by removing the 26 Ω 
load, so that VTh is now the voltage between these termi-
nals (Figure 4.13). The 2 A current flows in the 8 Ω resis-
tor between nodes ‘a’ and ‘d’, and Ib flows through the 4 Ω 
resistor and the 4 V source. The current leaving node ‘c’, 
through the CCVS is, from KCL, (Ib – 2). Node ‘d’ can then 
be used to check that KCL is satisfied in the circuit. The 
current entering node ‘d’ is (Ib – 2 + 2) = Ib, the same as 
the current leaving the node. As emphasized previously, 
it is good practice in problem-solving not to use addi-
tional variables and to mark the currents and voltages on 
the circuit diagram. Ib is determined from KVL around 
mesh ‘bcdb’. By going clockwise around this mesh, start-
ing from node ‘b’, KVL gives 4 – 4Ib – 4Ib – 8Ib = 0, so that 
Ib = 4/16 = 0.25 A, and VTh = 8 × 2 + 8 × 0.25 = 18 V. Note 
that there is no point in taking KVL around the mesh 
that includes the 2 A source because the voltage across 
this source is an additional unknown.

When terminals ‘ab’ are short-circuited, the circuit 
becomes as in Figure 4.14. Because Vda  =  Vdb, and the 
resistances in the branches ‘da’ and ‘db’ are equal, it fol-
lows that the current Ida is also Ib. From KCL at node ‘a’, 
the current in the short circuit is ISC = (2 + Ib). From KCL 
at node ‘b’, the current in the branch ‘bc’ is (2 + 2Ib), and 
from KCL at node ‘c’, the current in the CCVS is 2Ib. Again, 
KCL at node ‘d’ can serve as a check on KCL in the circuit. 

By going clockwise around the mesh ‘bcdb’, KVL gives 
4 – 4(2 + 2Ib) – 4Ib – 8Ib = 0. Hence, Ib = −4/20Ib = −0.2 A, so 
that ISC = (2 + Ib) = 1.8 A. It follows that RTh = 18/1.8 = 10 Ω. 
It should be noted that the assigned positive direction of ISC 
should be consistent with that of VTh, in accordance with Ohm’s 
law. Otherwise, the sign of RTh will be incorrect. The positive 
direction of ISC is that of the voltage drop VTh at the open-
circuited terminals. If a resistor is connected across the 
terminals, the positive direction of current through the 
resistor is that of a voltage drop between the terminals. 
Reducing the resistance to zero will not change the posi-
tive direction of current. It follows that the positive direc-
tion of ISC is that of a voltage drop VTh.

To determine RTh by applying a test source, the indepen-
dent sources are set to zero, so that the 4 V source is replaced 
by a short circuit and the 2 A source by an open circuit, as 
shown in Figure 4.15. With a 1 A test source applied, KCL 
is satisfied at node ‘d’ by having a current (1 – Ib) leaving 
this node through the CCVS and the 4 Ω resistor. Node 
‘b’ can be used to check KCL. By going clockwise around 
the mesh ‘bcdb’, KVL gives 4(1 – Ib) – 4Ib – 8Ib = 0. Hence, 
Ib = 4/16 = 0.25 A, and VT = 8 × 1 + 8 × 0.25 = 10 V. It follows 
that RTh = (10 V)/(1 A) = 10 Ω, as before.

Simulation: The circuit is entered as in Figure 4.16. 
Proceeding as in Example 4.1, Figure 4.17 is displayed 
when the simulation is run. It is seen that VTh = 18 V and 
RTh = 10 Ω.
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Problem-Solving Tip

• In deriving TEC, the assigned positive direction of 
ISC should be in the direction of the voltage drop 
VTh so as to obtain the correct sign of RTh = VTh/ISC, 
in accordance with Ohm’s law.

Exercise 4.2

Determine RTh in Figure 4.15 by applying a 1  V test 
source rather than a 1 A source.

Example 4.3: Derivation of TEC for a Bridge Circuit

It is required to derive TEC seen by the 25 Ω resistor in 
Figure 4.18a.

Solution:

As mentioned previously, the circuit configuration is a 
bridge circuit, since the 25 Ω resistor between nodes ‘b’ 
and ‘c’ is a “crossover” element, like a bridge. To derive 
TEC seen by the 25 Ω resistor, the resistor is removed 
and Vbc determined (Figure 4.18b). The voltages Vbd 
and Vcd in Figure 4.18b can be determined from volt-
age division, since the 10 Ω resistor is in series with the 
15  Ω resistor, and the 20 Ω resistor is in series with 
the 30 Ω resistor. Hence, Vbd = 5 × 30/(20 + 30) = 3 V, and 
Vcd = 5 × 15/(10 + 15) = 3 V.

When the two middle nodes of the bridge circuit 
are at the same voltage, that is, Vbd  =  Vcd, the bridge 
is said to be “balanced,” as is discussed more fully in 
Appendix 5A.

With the bridge balanced, VTh  =  Vbc  =  Vbd – Vcd  =  0. 
Moreover, when nodes ‘b’ and ‘c’ are at the same volt-
age, then the current through any resistor connected 
between these nodes is zero, because there is no voltage 

to drive such a current. The current remains zero as the 
resistance is reduced to zero, that is, when nodes ‘b’ and 
‘c’ are short-circuited. It follows that ISC  =  0. However, 
having VTh and ISC equal to zero does not mean that 
RTh = 0, because RTh = VTh/ISC is indeterminate and could 
be finite.

To determine RTh, therefore, the resistance looking into 
terminals ‘bc’ should be derived, with the independent 
voltage source set to zero, that is, replaced by a short 
circuit (Figure 4.19a). To make it easier to visualize 
the connections, it is helpful to redraw the circuit as in 
Figure 4.19b after relocating the short circuit between the 
two resistive branches. Clearly, the resistance between 
nodes ‘c’ and ‘b’ is (10‖15 + 20‖30) = 18 Ω. With VTh = 0, 
TEC reduces to an 18 Ω resistor.
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Simulation: The circuit is entered as in Figure 4.20. 
Proceeding as in Example 4.1, Figure 4.21 is displayed 
when the simulation is run. It is seen that VTh = 0 and 
RTh = 18 Ω.

Example 4.4: Application of TEC

It is required to determine IX in Figure 4.22 using TEC.

Solution:

TEC will be derived in two steps. The first step is to deter-
mine TEC as seen by the 3 A source in parallel with the 6 Ω 
resistor, as illustrated in Figure 4.23a. The motivation for 
this step is that the parallel  combination of the 3 A source 
and the 6 Ω resistor is connected between the terminals 
where TEC is required. Under these conditions, this paral-
lel combination can be temporarily removed, resulting in 
a considerably simpler circuit for which an intermediate 
TEC can be derived more easily. The 3 A source is then 
added to this intermediate TEC and a new TEC derived, 
from which IX is determined by adding the 6 Ω resistor.

It is seen from voltage division in Figure 4.23a that 
Vac = 9 × 6/9 = 6 V, and Vbc = 9 × 3/9 = 3 V. It follows that 

VTh1 = Vac − Vbc = 6 − 3 = 3 V. RTh1 is most easily found by 
determining the resistance between terminals ‘ab’ with 
the 9 V source set to zero, that is, replaced by a short 
circuit. This makes RTh1 = Rab = (6‖3) + (6‖3) = 2 + 2 = 4 Ω. 
The intermediate TEC will therefore consist of VTh1 = 3 V 
in series with RTh1 = 4 Ω (Figure 4.23b).

The next step is to connect the 3  A current source 
and derive a second TEC as seen by the 6 Ω resistor 
(Figure 4.24a). The 3 A current now flows through the 
3 V source and the 4 Ω resistor, so that the open-circuit 
voltage Vab = VTh2 = 3 + 12 = 15 V. When the 3 A source 
is replaced by an open circuit and the 3 V source by a 
short circuit, the resistance seen between terminals ‘ab’ 
is RTh2  =  Rab  =  4 Ω as before (Figure 4.24b). When the 
6 Ω resistor is connected to terminals ‘ab’, IX that flows is 
15/(6 + 4) = 1.5 A (Figure 4.24c).

Simulation: Although the current IX can be derived 
directly by simulating the circuit of Figure 4.22 with-
out invoking TEC, it is instructive to derive by simu-
lation TEC as seen by the 6 Ω resistor. The circuit is 
entered as in Figure 4.25. Proceeding as in Example 4.1, 
Figure 4.26 is displayed when the simulation is run. It 
is seen that VTh = 15 V and RTh = 4 Ω, as determined 
previously.
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Problem-Solving Tips

• When a voltage or a current in a circuit is required, 
it can often be conveniently  determined by deriving 
TEC at the terminals associated with this voltage or 
current.

• In deriving TEC, it is often advantageous to tem-
porarily remove elements that appear in parallel 
or in series with the terminals between which TEC 
is required, derive an intermediate TEC, and then 
restore the removed elements to this intermediate 
TEC in order to derive the final TEC.

Exercise 4.3

Determine RTh in Figure 4.23a by deriving ISC.

Primal Exercise 4.4

Derive TEC between nodes ‘a’ and ‘b’ in Figure 4.27: 
(a) without including the 60 Ω resistance between these 
nodes and (b) including this resistance.

Ans. (a) 12 V in series with 30 Ω; (b) 8 V in series with 20 Ω.

Primal Exercise 4.5

Derive TEC between terminals ‘a’ and ‘b’ in Figure 4.28.

Ans. 6 V, 2 Ω.
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Primal Exercise 4.6

(a) Derive TEC looking into terminals ‘ab’ in Figure 
4.29; (b) determine ISC between terminals ‘ab’ by trans-
forming the current sources to their equivalent voltage 
sources.

Ans. (a) VTh = Vab = −20 V, RTh = 100 Ω; (b) ISC = Iab = −0.2 A.

4.3  Norton’s Theorem

In the context of resistive circuits, Norton’s theorem can 
be stated as follows:

Statement: A circuit consisting of ideal resistors and sources 
is equivalent, at a specified pair of terminals, to a linear- output 
current source.

It is seen that NEC is in fact the linear-output current 
source equivalent of TEC. The two equivalent circuits 
are related by source transformation, as illustrated in 
Figure 4.30. The ideal current source IN is referred to 
as Norton’s current and is the short-circuit current of 
TEC, that is, VTh/RTh, in accordance with source trans-
formation. The source resistance that is in parallel 
with IN is Norton’s resistance RN and is the same as 
RTh in TEC.

It is sometimes more convenient to derive NEC rather 
than TEC, as in Example 4.5. Moreover, some circuits 
may have an NEC but not a TEC, or conversely, as in the 
case of ideal voltage sources and ideal current sources. 
Thus, an ideal voltage source can be considered to be its 
own TEC, with RTh = 0. IN = VTh/0 → ∞, which means that 
NEC does not exist. Similarly, an ideal current source 
can be regarded as its own NEC, with RN infinite, so that 
VTh → ∞, which means that TEC does not exist. This is 
in accordance with the fact that an ideal voltage source 
cannot be transformed to an ideal current source, and 

conversely, as explained in Section 3.6. Circuits that have 
TEC but not NEC generally reduce to an ideal voltage 
source between the terminals involved, whereas circuits 
that have NEC but not TEC generally reduce to an ideal 
current source between these terminals. Examples of 
these are given in the problems at the end of the chapter.

The procedure for deriving NEC is essentially the 
same as that for TEC. When independent sources are set 
to zero in Figure 4.30, the ideal voltage source in TEC is 
replaced by a short circuit and the ideal current source 
in NEC is replaced by an open circuit. The resistance 
looking into terminals ‘ab’ is RTh = RN in both cases. In 
the case of TEC, VTh is generally determined directly, 
and the short-circuit current, IN, is determined as an 
alternative method for finding RTh. In the case of NEC, 
IN is generally determined directly, and the open-circuit 
voltage, VTh, is determined as an alternative method for 
finding RN.

★4.3.1  Derivation of NEC with PSpice

NEC can be derived in a single simulation, analogous to 
that described for TEC, and explained in Figure 4.31a. 
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A test source VT is connected between these terminals 
with the circuit left as is, that is, with the independent 
sources retained, so that IN ≠ 0. KCL gives

 I I G VT N N T= +  (4.11)

If VT is varied between 0 and 1  V, and IT is plotted 
against VT, a straight line graph is obtained having a 
current intercept IN at VT = 0. The difference between IT1, 
which is IT at VT = 1 V, and IN is numerically equal to GN 
(Figure 4.31b). VT is conveniently varied in PSpice over a 
desired range of values, using the “DC Sweep” feature.

Example 4.5: Application of NEC

It is required to determine IL in Figure 4.32 using NEC.

Solution:

When terminals ‘ab’ are short-circuited, VX = 0 and the 
VCVS becomes a short circuit (Figure 4.33a). To clarify 
the evaluation of ISC, the circuit can be redrawn as in 
Figure 4.33b. It is seen that the 15 and 10 Ω resistors are 
in parallel, so that current division can be applied to the 

5 A source. Accordingly, the currents in these two resis-
tors are 2 and 3 A as shown. IS = −2 A and the CCCS 
becomes 6 A directed upward. It follows from KCL that 
ISC = IN = 3 + 6 = 9 A. Note that the 6 A source current 
only adds to the current in the short circuit between 
nodes ‘a’ and ‘b’ in Figure 4.33a and does not affect cur-
rent division.

To determine RN, a test source IT is applied, with the 5 A 
current source replaced by an open circuit (Figure 4.34). 
KVL around the outer loop gives

 2 25 0V I VT S T- - =  

or

 V IT S= 25  (4.12)

From KCL at node ‘a’, 

 I I IS T S+ = 3  

or

 I IT S= 2  (4.13)

Dividing Equation 4.13 by Equation 4.12,
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NEC therefore consists of a 9 A source in parallel with 
a 12.5 Ω resistor (Figure 4.35a). Note that the direction 
of the 9 A source  is such  that  the  short-circuit current 
is directed from ‘a’ to ‘b’, as in Figure 4.33a. When the 
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50 Ω resistor is connected between terminals ‘ab’, it fol-
lows from  current division that

 
IL =

+
´ =12 5

12 5 50
9 1 8

.
.

. A
 

(4.15)

The voltage Vab is 90 V, as in Figure 4.35b where 
12.5 ∥ 50 = 10 Ω. It may be noted that determining the 
open-circuit voltage in Figure 4.32 in order to work 
with TEC is slightly more complicated than determin-
ing IN as in Figure 4.33a (Exercise 4.7).

Simulation: The circuit is entered as in Figure 4.36, in 
accordance with the method explained in connection 
with Figure 4.31. The 50 Ω resistor is included in order 
to facilitate finding IL, as explained later, but could be left 
out for the purpose of determining NEC between termi-
nals ‘ab’. Note the alternative way of connecting depen-
dent sources in Figure 4.35 in order to avoid making the 
somewhat awkward connections to the control terminals 
of dependent sources. This is to label the appropriate 
nodes using the net alias feature of PSpice, as described 
in Appendix C. PSpice considers nodes having the same 
label to be  connected together, as shown in Figure 4.36. A 
DC sweep is performed as described in Example 4.1 but 
sweeping a voltage source instead of a current source. 
The DC sweep gives the plot of Figure 4.37, from which, 

IN = 9 A and RN = 1/0.1 = 10 Ω, this being the parallel 
resistance of 12.5 and 50 Ω (Figure 4.35b). IL is deter-
mined from Vab = 9 × 10 = 90 V in Figure 4.35a and b. 
It follows from Figure 4.35a that IL = 90/50 = 1.8 A.

Exercise 4.7

Determine VTh directly from the circuit of Figure 4.32.

Primal Exercise 4.8

Determine NEC between nodes ‘a’ and ‘b’ in Figure 4.38: 
(a) without including the 10 Ω resistance between these 
nodes and (b) including this resistance.

Ans. (a) 10 A in parallel with 15 Ω; (b) 10 A in parallel 
with 6 Ω.

Primal Exercise 4.9

Determine VTh, IN, and GN looking into terminals ‘ab’ in 
Figure 4.39.

Ans. 6 V, 6 mA, 1 mS.

Primal Exercise 4.10

Derive NEC between terminals ‘ab’ in Figure 4.40. Note 
how much easier it is to derive IN compared to VTh.

Ans. 6 mA, in parallel with 1 kΩ.
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4.4  Substitution Theorem

Consider a circuit ‘N’ connected at terminals ‘ab’ 
to a  circuit ‘NA’ having a designated voltage VA 
across  ‘ab’ (Figure 4.41a), where VA could be of known 
or unknown value. Let IX be the current flowing from 
‘N’ to ‘NA’. According to the substitution theorem, ‘NA’ 
can be replaced by an independent voltage source VA 
(Figure 4.41b), without affecting IX. This can be readily 

justified if ‘N’ is represented between terminals ‘ab’ by 
its TEC, as in Figure 4.41c and d. It is evident from these 
figures that KVL is the same in both cases, namely,

 V R I VTh Th X A- =  

which gives

 
I

V V
R

X
Th A

Th
= -

 
(4.16)

In other words, replacing ‘NA’ by an independent volt-
age source VA does not affect  ‘N’, since IX remains the 
same.

Similarly, suppose that ‘NA’ has a designated current 
IA at the common terminals ‘ab’ (Figure 4.42a), where 
IA could be of known or unknown value. Let VX be the 
voltage across terminals ‘ab’. According to the substitu-
tion theorem, an independent current source IA can be 
substituted for ‘NA’ (Figure 4.42b), without affecting VX. 
Again, this can be justified if ‘N’ is represented between 
terminals ‘ab’ by its TEC, as in Figure 4.42c and d. It is 
evident from these figures that KVL is the same in both 
cases and gives

 V V R IX Th Th A= -  (4.17)

In other words, replacing ‘NA’ by an independent cur-
rent source IA does not affect ‘N’, since VX remains the 
same. The substitution theorem can be stated as follows:

Statement: A circuit having a designated voltage V across 
it can be replaced by an ideal, independent voltage source V, 

6 mA

1 k

3 k2Ix

Ix

a

b

FIGURE 4.39
Figure for Primal Exercise 4.9.

+

–

+

–

+

–

a

b

3 k 2 k 6 k

6 V 6 V 6 V

FIGURE 4.40
Figure for Primal Exercise 4.10.

N

(a)

a

b

IX
N

a

b

VA

+

–

IX

+

–

(b)

VA

+

–

NA

+

–

N

a

b

+

–

RTh

VTh

+

–

a

b

RTh

VTh

IX IX
N

VA

+

–

VA

+

–

(d)(c)

NA

FIGURE 4.41
Substitution theorem in terms of a voltage source. Circuit ‘NA’ in 
(a) having a designated voltage VA is replaced in (b) by an ideal volt-
age source of source voltage VA. Circuit ‘N’ in (a) and (b) is replaced 
by its TEC in (c) and (d), respectively.

N

(a)

a

b

IA
N

a

b

IA

(b)

VX

+

–

VX

+

–

NA

+

–

N

a

b

RTh

VTh

+

–

a

b

RTh

VTh

N

(d)(c)

IA

VX

+

–

IA VX

+

–

NA

FIGURE 4.42
Substitution theorem in terms of a current source. Circuit ‘NA’ in 
(a) having a designated current IA is replaced in (b) by an ideal cur-
rent source of source current IA. Circuit ‘N’ in (a) and (b) is replaced 
by its TEC in (c) and (d), respectively.



100 Circuit Analysis with PSpice: A Simplified Approach

without affecting the rest of the circuit. Similarly, a circuit 
having a designated current I through it can be replaced 
by an ideal, independent current source I, without affect-
ing the rest of the circuit. The designated V or I could be a 
numerical value, or V and I could be symbols for unknown 
values.

There is no restriction on the nature of the circuit 
‘NA’ that is being replaced by an independent source. 
It could be a single resistor, a dependent source, or any 
valid combination of independent sources, dependent 
sources, and resistors. In fact, according to the substi-
tution theorem, a designated voltage between any two 
nodes in a circuit can be replaced by an ideal voltage 
source of the same voltage as the designated voltage. 
Similarly, a current in any branch in a circuit can be 
replaced by an ideal  current source of the same current 
as the designated current. The substitution theorem is 
illustrated by Example 4.6; it is particularly useful in 
connection with superposition, discussed in the follow-
ing chapter.

Exercise 4.11

Justify the substitution theorem by replacing circuit N 
by its NEC: (a) in Figure 4.41 and (b) in Figure 4.42.

Example 4.6: Application of Substitution Theorem

Given a known bridge circuit connected to a circuit 
‘NA’ of unknown component values, as illustrated in 
Figure  4.43. The bridge circuit is inaccessible for mea-
surements, but the voltage across ‘NA’ can be measured 
by means of a voltage-measuring device (a voltmeter) 
and is found to be 15 V, of the polarity indicated. It is 
required to determine IS, the current drain on the 6 V 
battery.

Solution:

This may look like an impossible problem, but IS 
can be readily determined by means of the substitu-
tion theorem. According to this theorem, ‘NA’ can be 
replaced by a 15  V independent source, without dis-
turbing the circuit (Figure 4.44a). IS can be conveniently 
determined by deriving TEC between terminals ‘ad’ 
(Figure 4.44b). VTh = Vad = Vab + Vbd. From voltage divi-

sion,
 
Vab =

-
+

= -15
15 10

15 9 V, and Vbd =
+

=30
30 15

15 10 V.
 

It follows that VTh = Vad = −9 + 10 = 1 V.
RTh is determined as Req between terminals ‘a’ and 

’d’ with the 15  V source set to zero (Figure  4.45a), 
which makes nodes ‘b’ and ‘c’ one and the same. 
The resistance between terminals ‘a’ and ‘b’ is 

15 10
15 10
15 10

6� = ´
+

= W. The resistance between terminals 

‘c’ and ‘d’ is 30 15
30 15
30 15

10� = ´
+

= W. Hence, RTh  = 10  + 

6  =  16  Ω. Replacing the load circuit between  terminals 
‘a’ and ‘d’ by its TEC, the circuit becomes as shown in 
Figure 4.45b. It follows from KVL that (6 – 1) = (4 + 16)IS, 
which gives IS = 5/20 = 0.25 A. Note that deriving TEC 
for the bridge circuit in Figure 4.44b illustrates a use-
ful general application of TEC, namely, simplifying a 
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circuit as part of the solution to a given problem (see 
Problem P4.18).

Simulation: The circuit is entered as in Figure 4.46. After 
selecting ‘Bias Point’ under ‘Analysis type’ in the simu-
lation profile and running the simulation, pressing the 
I and V buttons displays the currents and voltages indi-
cated in Figure 4.46. It is seen that Vad = 5 V and IS = 0.25 A.

Problem-Solving Tip

• Use TEC to simplify a circuit as part of the solution 
to a given problem.

Exercise 4.12

Determine RTh in Example 4.6 by applying (a) a 1 A test 
source and (b) a 1 V test source.

Primal Exercise 4.13

Consider the circuit of Figure 4.47. Determine (a) the 
independent voltage source that can replace the 5 Ω 
resistor without affecting the current I in the circuit and 
(b) the independent current source that can replace this 
resistor without affecting Vab.

Ans. (a) 5 V, with node ‘a’ positive with respect to ‘b’; 
(b) 1 A directed from node ‘a’ to ‘b’.

4.5  Source Absorption Theorem

The source absorption theorem is a special case of the 
substitution theorem that can be usefully applied in 
some cases involving dependent sources, particularly 
in transistor circuits. In the definition of dependent 
sources (Section 2.6), it was stated that the controlling 
variable is a current or voltage elsewhere in the circuit, 
which excludes the controlling variable being that of 
the source itself, or a quantity proportional to it. In 
these cases, the dependent source can be conveniently 
replaced by a resistor.

Concept: If a direct proportionality exists between the volt-
age across a dependent source and the source current, the 
dependent source can be replaced by a resistor having a resis-
tance equal to the ratio of the voltage across the source to the 
source current.

To justify this, consider the dependent voltage source 
of Figure 4.48a, where the source voltage is proportional 
to the current through the source, V = ρI. If the depen-
dent source is replaced by a resistor having R = ρI/I = ρ, 
then for the same I through the two circuit elements, 
the voltage V across them is the same. The dependent 
voltage source having V = ρI is therefore equivalent to a 
resistor R and can be replaced by this resistor between 
the same terminals.

The dependent current source of Figure 4.48b has I = σV, 
where V is the voltage across the source. The source can 
be replaced by a resistor having R = V/σV = 1/σ. The two 
circuit elements are equivalent since, for the same volt-
age across them, the current through them is the same.

Note that in Figure 4.48a and b, a positive value of 
R corresponds to having the current in the dependent 
source in the direction of a voltage drop across the 
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source. If the current through the source is in the direc-
tion of a voltage rise across the source, the  resistance is 
negative. Just as a positive resistance  dissipates power, a 
negative resistance does the opposite; it delivers power. 
In this sense, it acts as source, but it differs from an ideal 
source in that it has a finite,  nonzero resistance. Recall 
that an ideal voltage source has zero resistance, whereas 
an ideal current source has infinite resistance.

Example 4.7: Output Resistance of Transistor Circuit

A case that is often encountered in transistor circuits is 
that of Figure 4.49a, where Req between terminals ‘ab’ is 
required.

Solution:

The current source gmvx is transformed to a volt-
age source gmvxro in series with ro (Figure 4.49b). The 
 current  i through Rx is vx/Rx, which makes the source 
voltage gmvxro proportional to the current vx/Rx through 
the source. The dependent source can therefore be 
replaced by a resistance whose value is the source volt-
age divided by the source current. This resistance is 
(gmvxro)/(vx/Rx)  =  gmroRx; Req between terminals ‘ab’ is 
then the sum of the three resistances in Figure 4.49c:

 R r g r R Req o m o x x= + +  (4.18)

Simulation: The circuit is entered as in Figure 4.50 
using Rx = 1 kΩ, ro = 200 kΩ, and gm = 4 mA/V. A 1 μA dc 
current source is applied so that the voltage across the 
source in volts is numerically equal to the resistance 
in megohms seen by the source. After selecting ‘Bias 
Point’ under ‘Analysis type’ in the simulation profile 
and running the simulation, pressing the V button dis-
plays the voltages indicated in Figure 4.50. It is seen that 
Req = 1.001 MΩ, in accordance with Equation 4.18.

Exercise 4.14

Derive Req in Example 4.7 by applying (a) a 1  A test 
source, and (b) a 1 V test source.

Primal Exercise 4.15

Determine Rin in Figure 4.51 using the source  absorption 
theorem based on the current that flows through the 
source.

Ans. 40 Ω.

4.6  Problem-Solving Approach Updated

The main procedural steps of the ISDEPIC approach are 
summarized and updated as follows in the light of the 
material covered in this chapter:

Step 1—Initialize:
 (a) Mark on the circuit diagram all the given values 

of circuit parameters, currents and voltages, as 
well as the unknowns to be determined.

 (b) Label the nodes, as this may be generally 
helpful.

 (c) If the solution requires that a given value of cur-
rent or voltage be satisfied, assume this value 
from the very beginning.
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Step 2—Simplify: Consider, as may be appropriate:

 (a) Redrawing the circuit.
 (b) Replacing series and parallel combinations of 

circuit elements by an equivalent circuit element.
 (c) Applying star-delta transformation.
 (d) Applying source transformation.
 (e) Using TEC or NEC to simplify part of the circuit. 

In applying TEC or NEC, remove temporarily any 
elements in series or in parallel with the given ter-
minals and derive an intermediate TEC or NEC.

 (f) Applying the source absorption theorem.

Step 3—Deduce: Determine any values of current or volt-
age that follow immediately from direct application of 
Ohm’s law, KCL, or KVL, without introducing any addi-
tional unknowns. If Step 3 does not provide a solution, 
proceed to Step 4.

Step 4—Explore: Examine each of the following alterna-
tives, as may be applicable:

 (a) Consider the nodes and meshes in the circuit 
to see if KCL or KVL can be expressed using a 
single unknown current or voltage and if this 
unknown can then be directly determined from 
KCL or KVL.

 (b) Use TEC or NEC to determine a voltage or a 
current through a given circuit element.

 (c) Apply the substitution theorem.

If Step 4 does not provide the solution, proceed to 
Step 5.

Step 5—Plan: Think carefully and creatively about the 
problem in the light of circuit fundamentals and circuit 
analysis techniques. Consider alternative solutions and 
select what seems to be the simplest and most direct 
solution.

Step 6—Implement: Carry out your planned solution.

Step 7: Check your calculations and results.

 (a) Check that your results make sense, in terms of 
magnitude and sign.

 (b) Check that Ohm’s law is satisfied across every 
resistor, that KCL is satisfied at every node, and 
that KVL is satisfied around every mesh.

 (c) Seek an alternative solution to see if it gives the 
same result.

 (d) Whenever feasible check the results with PSpice 
simulation.

Learning Checklist: What Should 
Be Learned from This Chapter

• Dependent sources alone do not excite a circuit. 
They affect currents and voltages in the circuit 
by effectively modifying the values of some 
resistances in the circuit.

• Thevenin’s Theorem: A circuit consisting of 
ideal resistors and sources is equivalent, at a 
specified pair of terminals, to a linear-output 
voltage source. The voltage of the ideal voltage 
source element is referred to as the Thevenin 
voltage, VTh, and the source resistance as the 
Thevenin resistance, RTh.

• VTh is determined as the open-circuit voltage at 
the specified terminals. RTh can be determined 
as VTh/ISC, where ISC is the short-circuit current 
between the specified terminals.

• The procedure for deriving TEC can be summa-
rized as follows:

 1. Determine VTh as the open-circuit voltage at 
the specified terminals.

 2. Determine the short-circuit current ISC at 
the specified terminals, which gives RTh as 
VTh/ISC.

 3. Set all independent sources in the given 
circuit to zero, leaving dependent sources 
unchanged. RTh is the resistance Req looking 
into the specified terminals. Formally, this 
resistance is obtained by applying a test volt-
age source or a test current source and deter-
mining Req as the ratio of the voltage at the 
source terminals to the source current. In the 
absence of dependent sources, this effectively 
reduces to determining Req directly from 
series/parallel combinations of resistors, and 
using star-delta transformations, if necessary.

• Norton’s Theorem: A circuit consisting of ideal 
resistors and sources is equivalent, at a specified 
pair of terminals, to a linear-output current source.

• NEC follows from TEC through source 
transformation.

• According to the substitution theorem, a  circuit 
having a designated voltage V across it can 
be replaced by an ideal, independent voltage 
source V, without affecting the rest of the circuit. 
Similarly, a circuit having a designated current I 
through it can be replaced by an ideal, indepen-
dent current source I, without  affecting the rest 
of the circuit. The designated V or I could be a 
numerical value, or V and I could be symbols 
for unknown values.
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• There is no restriction on the nature of the cir-
cuit that is being replaced by an independent 
voltage or current source in accordance with 
the substitution theorem. It could be a single 
resistor, a dependent source, or any valid com-
bination of independent sources, dependent 
sources, and resistors.

• If a direct proportionality exists between the 
voltage across a dependent source and the 
source current, the dependent source can be 
replaced by a resistor having a resistance equal 
to the ratio of the voltage across the source to 
the source current. The resistance value is posi-
tive when the source current is in the direction 
of a voltage drop across the source.

Problem-Solving Tips

 1. In deriving TEC, the assigned positive direc-
tion of ISC should be in the direction of the volt-
age drop VTh so as to obtain the correct sign of 
RTh = VTh/ISC, in accordance with Ohm’s law.

 2. When a voltage or a current in a circuit is 
required, it can often be conveniently deter-
mined by deriving TEC at the terminals associ-
ated with this voltage or current.

 3. Use TEC to simplify a circuit as part of the solu-
tion to a given problem.

 4. In deriving TEC it is often advantageous to 
temporarily remove elements that appear 
in parallel or in series with the terminals 
between which TEC is required, derive an 
intermediate TEC, then restore the removed 
elements to this intermediate TEC in order to 
derive the final TEC.

Problems

Apply ISDEPIC and verify solutions by PSpice simulation 
whenever feasible.

TEC and NEC

P4.1 Derive TEC looking into terminals ‘ab’ in Figure P4.1.

 Ans. VTh = Vab = 6 V, RTh = 20 Ω.

P4.2 Determine VTh  =  Vab, ISC, and RTh independently 
between terminals ‘ab’ in Figure P4.2.

 Ans. 48 V, 2.75 A, RTh = 192/11 Ω.

P4.3 Use TEC to determine RL in Figure P4.3 so that 
VO = VSRC/6.

 Ans. 4/3 Ω.

P4.4 Derive TEC looking into terminals ‘ab’ in Figure P4.4.

 Ans. VTh = Vab = 12 V, RTh = 6 Ω.

P4.5 Derive TEC and NEC looking into terminals ‘ab’ in 
Figure P4.5.

 Ans. TEC is an ideal 5 V source, Vab = 5 V; NEC does not 
exist.

P4.6 Determine IX in Figure P4.6 in two ways: (a) by deriving 
TEC for each half-circuit and combining the two TECs; 
(b) By deriving a single TEC between the two terminals 
through which IX flows.

 Ans. 0.75 A.
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P4.7 (a) Determine VSRC in Figure P4.7 by deriving TEC 
between terminals ‘bc’. (b) Determine ISRC, VX, and VY.

 Ans. (a) 120 V; (b) 12 A, VX = 48 V, VY = 72 V.

P4.8 Derive TEC looking into terminals ‘ab’ in Figure P4.8.

 Ans. VTh = Vab = 10 V, RTh = 10 Ω.

P4.9 Derive NEC looking into terminals ‘ab’ in Figure P4.9.

 Ans. IN = Iab = 1 A, RN = 20/3 Ω.

P4.10 Derive TEC and NEC looking into terminals ‘ab’ in 
Figure P4.10.

 Ans. NEC is an ideal 8 A source directed from node ‘a’ 
to node ‘b’. TEC does not exist.

P4.11 Derive TEC looking into terminals ‘ab’ in Figure P4.11.

 Ans. VTh = Vab = 0, RTh = 25 Ω.

P4.12 Derive TEC looking into terminals ‘ab’ in Figure P4.12.

 Ans. VTh = Vab = 16 V, RTh = 8 Ω.

P4.13 Derive NEC looking into terminals ‘ab’ in Figure P4.13.

 Ans. IN = Iab = 4.4 A, GN = 0.04 S.

P4.14 Derive TEC as seen by the 50 Ω resistor in Figure P4.14.

 Ans. VTh = Vab = 20 V, RTh = 10 Ω.

P4.15 Determine VO in Figure P4.15 using TEC.

 Ans. 20 V.

P4.16 Determine IO in Figure P4.16 using NEC.

 Ans. 20 A.
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P4.17 Derive TEC looking into terminals ‘ab’ in Figure P4.17.

 Ans. VTh = Vab = 7 V, RTh = 1.5 Ω.

P4.18 Derive TEC looking into terminals ‘ab’ in Figure P4.18.

 Ans. VTh = 0, RTh = 1 Ω.

P4.19 Derive NEC looking into terminals ‘ab’ in Figure P4.19.

 Ans. IN = 0, RN = 20/3 Ω.

P4.20 Derive TEC and NEC looking into terminals ‘ab’ in 
Figure P4.20.

 Ans. VTh = 0 = IN, RTh = RN = 25 Ω.
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P4.21 Connect a resistor RL between terminals ‘ab’ in Figure 
P4.21 and show that the voltage Vab is independent of RL. 
Deduce that TEC looking into terminals ‘ab’ is an ideal 
voltage source. Verify this deduction by determining 
VTh and RTh looking into terminals ‘ab’.

 Ans. VTh = Vab = 24 V, RTh = 0.

P4.22 Derive TEC looking into terminals ‘ab’ in Figure P4.22.

 Ans. VTh = Vab = 4 V, RTh = 4 Ω.

P4.23 Derive TEC looking into terminals ‘ab’ in Figure P4.23.

 Ans. VTh = Vab = −100/3 V, RTh = 1000/3 Ω.

P4.24 Derive TEC and NEC looking into terminals ‘ab’ in 
Figure P4.24, assuming (a) α = 1, and (b) α = 2.

 Ans. (a) VTh = 0 = IN, RTh = 1 Ω = RN; (b) VTh = Vab = −5 V, 
RTh = 0, NEC does not exist.

P4.25 Derive TEC looking into terminals ‘ab’ in Figure P4.25.

 Ans. VTh = Vab = 10 V, RTh = 10 Ω.

P4.26 Derive TEC looking into terminals ‘ab’ in Figure P4.26.

 Ans. VTh = Vab = 3 V, RTh = 75 Ω.

P4.27 Derive NEC looking into terminals ‘ab’ in Figure P4.27.

 Ans. IN = Iab = 0.3 A, GN = 0.025 S.

P4.28 Derive TEC looking into terminals ‘ab’ in Figure P4.28.

 Ans. VTh = Vab = 40 V, RTh = 0.

P4.29 Determine R so that Norton’s current between nodes 
‘ab’ in Figure P4.29 is zero.

 Ans. 1 Ω.

P4.30 Determine in Figure P4.30 (a) TEC between node ‘c’ and 
the reference node, that is, including the 4 Ω  resistor, 
and (b) VO using TEC as seen by the 4 Ω  resistor and 
taking IX into account.

 Ans. (a) TEC is a source of −10/3  V in series with a 
resistor of −4/3 Ω; (b) TEC is a source of 10 V in series 
with −16 Ω, which gives V0 = −10/3 V.
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P4.31 Determine IO in Figure P4.31 using NEC.

 Ans. −10/3 A.

P4.32 Determine IO in Figure P4.32 using TEC. Note that the 
circuit does not possess an NEC.

 Ans. 30 A.

P4.33 Determine TEC looking into terminals ‘ab’ in Figure 
P4.33.

 Ans. VTh = Vab = 27 V, RTh = 3 Ω.

P4.34 Derive TEC as seen by RL in Figure P4.34.

 Ans. VTh = Vab = 2.5 V, RTh = 0.5 kΩ.

P4.35 Derive NEC looking into terminals ‘ab’ in Figure P4.35.

 Ans. IN = Iab = 0.5 A, RN = 10 Ω.

P4.36 Derive TEC between terminals ‘ab’ in Figure P4.36.

 Ans. VTh = Vab = 5 V, RTh = 5 Ω.
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P4.37 Derive TEC looking into terminals ‘ab’ in Figure P4.37.

 Ans. VTh = Vab = 12 V, RTh = 80 Ω.

P4.38 Derive TEC between nodes ‘ab’ in Figure P4.38.

 Ans. VTh = Vab = 20 V, RTh = 8 Ω.

P4.39 Determine VO in Figure P4.39 using TEC.

 Ans. 15.51 V.

P4.40 Derive TEC looking into terminals ‘ab’ in Figure P4.40.

 Ans. 0 V, RTh = 18/7 Ω.

P4.41 Determine VO in Figure P4.41 using NEC. Note that the 
circuit does not possess a TEC.

 Ans. 30 V.

P4.42 Determine IO in Figure P4.42 using NEC.

 Ans. 15.51 A.
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P4.43 Determine TEC looking into terminals ‘ab’ in Figure 
P4.43.

 Ans. VTh = Vab = 4 V, RTh = 1/3 Ω.

P4.44 Determine IO in Figure P4.44 using TEC.

 Ans. −0.65 A.

P4.45 Derive TEC looking into terminals ‘ab’ in Figure P4.45. 
Verify by deriving an intermediate TEC with the 4 Ω 
resistor and the 1 V–3 Ω branch removed.

 Ans. VTh = Vab = 4 V, RTh = 2 Ω.

P4.46 Derive TEC between terminals ‘ab’ in Figure P4.46.

 Ans. VTh = Vab = 80 V, RTh = 10 Ω.

P4.47 Derive TEC looking into terminals ‘ab’ in Figure P4.47.

 Ans. VTh = Vab = −1/3 V, RTh = 8/9 kΩ.

P4.48 Derive TEC looking into terminals ‘ab’ in Figure P4.48, 
(a) keeping the 4 Ω resistor in place, (b) temporarily 
removing this resistor. Note that although these TECs 
are different, they give the same Vab and the same IX.

 Ans. (a) VTh  =  Vab  =  20  V, RTh  =  4 Ω; (b) VTh  =  12.5  V, 
RTh = −1.5 Ω.

P4.49 Derive TEC between terminals ‘ab’ in Figure P4.49.

 Ans. VTh = Vab = 6 V, RTh = 10 Ω.

P4.50 Derive TEC looking into terminals ‘ab’ in Figure P4.50.

 Ans. VTh = Vab = 1 V, RTh = 4 Ω.

P4.51 Derive NEC between terminals ‘ab’ in Figure P4.51, 
assuming all resistances are 2 Ω.

 Ans. IN = Iab = −41/33 A, RN = 66/23 Ω.
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P4.52 Derive TEC between terminals ‘ab’ in Figure P4.52.

 Ans. VTh = Vab = −1 V, RTh = 1.5 kΩ.

P4.53 Use TEC to determine Im in Figure P4.53 so that Vab is a 
square waveform.

 Ans. 3 mA.

Substitution and Source Absorption Theorems

P4.54 Determine, according to the substitution theorem, (a) 
the independent voltage source, (b) the independent 
current source, and (c) the resistance that can replace 
the dependent current source in Figure P4.54 without 
affecting the rest of the circuit.

 Ans. (a) 4 V; (b) 2 A; (c) 2 Ω.

P4.55 Determine VX in Figure P4.55 by using the substitu-
tion theorem, where ‘NA’ is an unspecified circuit that 
passes a current of 0.5 A.

 Ans. 15 V.

P4.56 Determine VO in Figure P4.56 by using the substitu-
tion theorem and by deriving NEC between nodes ‘ab’, 
where ‘NA’ is an unspecified circuit having a voltage of 
12.5 V across it.

 Ans. −10/3 V.

P4.57 Determine IO in Figure P4.57 by using the substitu-
tion theorem and by deriving TEC between nodes ‘ab’, 
where ‘NA’ is an unspecified circuit that passes a cur-
rent of 12.5 A.

 Ans. −10/3 A.
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P4.58 Determine IO in Figure P4.58 by using the substitu-
tion theorem and by deriving NEC between nodes ‘ab’, 
where ‘NA’ is an unspecified circuit having a voltage of 
15.5 V across it.

 Ans. −22 A.

P4.59 Determine VO in Figure P4.59 by using the substitu-
tion theorem and by deriving TEC between nodes ‘ab’, 
where ‘NA’ is an unspecified circuit passing a current 
of 10 A.

 Ans. 0.

P4.60 Determine IS in Figure P4.60 by deriving TEC looking 
into terminals ‘ab’, given that the current in the resistor 
R is 1 A.

 Ans. 2 A.

P4.61 Redo Example 4.6 assuming a current of 1.4 A in ‘NA’ 
directed from left to right.

 Ans. 105/281 = 0.37 A.

P4.62 Determine Rin in Figure P4.62 by applying the source 
absorption theorem.

 Ans. 40 Ω.

P4.63 Determine Rin in Figure P4.63 by applying the source 
absorption theorem, where IX is in amperes.

 Ans. 100 Ω.

P4.64 Determine Rin in Figure P4.64 by applying the source 
absorption theorem.

 Ans. 1.25 Ω.

P4.65 Determine Gin looking into terminals ‘ab’ in Figure 
P4.65.

 Ans. 6 S.
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Objective and Overview

This chapter is concerned with various procedures 
and techniques that simplify circuit analysis, either by 
reducing a given circuit to a simpler form or by fol-
lowing certain methodologies that facilitate obtaining 
the desired circuit response. We have already encoun-
tered circuit simplification in previous chapters, as in 
the equivalent series or parallel connections of resis-
tors, star-delta transformation, and Thevenin’s equiva-
lent circuit (TEC). However, the main objective in these 
cases was pursuing circuit equivalence rather than cir-
cuit simplification per se. By the end of this chapter, all 
the main circuit simplification techniques would have 
been presented.

The chapter begins with the fundamental concept of 
superposition, its implications, and its application in 
circuit analysis, including the use of the substitution 
theorem in conjunction with superposition. This is fol-
lowed by the method of output scaling, according to 
which a convenient output is arbitrarily assumed, and 
voltages and currents are determined by working back-
ward toward an applied source, then scaling all voltages 
and currents in accordance with the value of this source. 
Output scaling is followed by the technique of removal 
of redundant elements, which are elements that either 
do not carry current or do not affect the responses of 
interest.

Two other simplification techniques, discussed next, 
are partitioning of circuits by sources and source rear-
rangement. These techniques can simplify the analysis 
of some types of circuits and provide useful insight into 
their behavior. The chapter ends by considering circuits 
that possess symmetry of a form that can be exploited to 
greatly simplify the analysis.

5.1  Superposition

Definition: If an input x1 to a given system produces an out-
put y1 and an input x2 produces an output y2, then the system 
obeys superposition if an input (x1 + x2), that is, the sum of 
the two inputs, produces an output (y1 + y2), that is, the sum 
of the outputs due to each input acting alone. The same applies 
for more than two inputs.

Superposition is a defining property of linear systems, 
as it is an essential attribute of linearity. Consider, for 
example, an ideal resistor that obeys Ohm’s law, v = Ri. 
With R being constant, this is a linear relation in v and i. 
A current i1 produces a voltage v1 = Ri1, and a current i2 
produces a voltage v2 = Ri2. The voltage produced by a 
current (i1 + i2) is

  v R i i Ri Ri v v= +( ) = + = +1 2 1 2 1 2  (5.1)

It is seen that superposition is obeyed in this case 
because of linearity of Ohm’s law. On the other hand, if 
v = ki2, where k is a constant, the v–i relation is not linear. 
A current i1 produces a voltage v ki1 1

2= , and a current i2 
produces a voltage v ki2 2

2= . The voltage produced by a 
current (i1 + i2) is

 v k i i ki ki i ki ki ki= +( ) = + + ¹ +1 2
2

1
2

1 2 2
2

1
2

2
22  (5.2)

Superposition is not obeyed in this case, because the 
nonlinearity introduces an additional nonlinear product 
term 2ki1i2.

To see how superposition can be applied in circuit 
analysis, consider the simple two-essential-node circuit 
of Figure 5.1, in which it is required to determine VX. It is 
assumed that VSRC and ISRC are given, but their symbols 
will be retained to begin with. KCL at node ‘a’ gives
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It is seen that VX is the sum of two components VX1 
and VX2, where VX1  =  (2/3)VSRC is due to VSRC acting 
alone, with ISRC = 0, and VX2 =  (10/3)ISRC is due to ISRC 
acting alone, with VSRC = 0. This suggests that VX1 can be 
obtained from the circuit by setting ISRC = 0, that is, replac-
ing the current source with an open circuit, as in Figure 
5.2a. From voltage division, VX1 is indeed (2/3)VSRC. 
Similarly, if VSRC is set to zero, by replacing the voltage 
source with a short circuit, as in Figure 5.2b, VX2 is indeed 
(50/15)ISRC = (10/3)ISRC. It follows that VX in Figure 5.1 
can be obtained by applying each independent source 
alone, with the other independent source set to zero.

The preceding argument illustrates the essence of 
using superposition in circuit analysis and can be gener-
alized to a circuit containing any number of independent 
sources. The desired variable is the sum of components, 
each of which is obtained by applying one independent 
source at a time, with the other independent sources set 
to zero. Evidently, the advantage of this procedure is 
that the circuit resulting from applying one source at a 
time is simpler to analyze than the original circuit.

Superposition can be defined in slightly more gen-
eral terms than stated earlier. A system is said to obey 
superposition if an input (ax1 + bx2) produces an output 
(ay1 + by2), where a and b are constants, y1 is the response 
to x1 acting alone, and y2 is the response to x2 acting 
alone. LTI circuits satisfy both definitions. For in an LTI 
circuit, multiplying an input acting alone by a constant 
multiplies the output due to this input by the same con-
stant, as can be seen from Equation 5.4. Hence, ax1 and 
bx2 can be considered as two inputs ¢x1 and ¢x2 that pro-
duce outputs ¢ =y ay1 1 and ¢ =y by2 2, respectively, so that 
the sum of the two inputs produces an output that is the 
sum of the two outputs.

Example 5.1:  Governing Relation 
for Zener Diode Circuit

A voltage regulator diode, or Zener diode, is commonly 
used to supply a variable load current at a nominally 
constant voltage from an unregulated dc voltage sup-
ply that may vary between specified limits. The diode 
can be represented over its normal operating range by a 
linear-output voltage source consisting of a battery VZ0 
in series with a resistance rZ. The diode is shown con-
nected in parallel with the load RL in Figure 5.3a and is 
supplied from the unregulated dc supply VI through a 
series resistor, RS. It is required to derive an expression 
for the load voltage VL as a function of VI, VZ0, and IL, in 
terms of RS and rZ.

Solution:

The required relation can be readily derived using 
superposition and the substitution theorem. The circuit 
is shown in Figure 5.3b, where, according to the sub-
stitution theorem, VI, as a designated voltage between 
two nodes, is represented by a battery and RL is replaced 
by an independent current source IL. Superposition can 
then be applied to VL with each of the independent 
sources alone, while the other sources set to zero.

Applying VI alone (Figure 5.4a) gives, by voltage 
division,

 
V

r
R r

VL
Z

S Z
I1 =

+  
(5.5)

With VZ0 applied alone (Figure 5.4b), VL2 is the voltage 
across RS. By voltage division,

 
V

R
R r

VL
S

S Z
Z2 0=

+  
(5.6)

With IL applied alone (Figure 5.4c), VL3 is the voltage 
across the parallel combination of Rs and rZ, with a nega-
tive sign, because IL produces a voltage drop from the 
lower node to the upper node. Thus,

 
V

R r
R r
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S Z

S Z
L3 = -

+  
(5.7)
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VL is then the sum of the three components:

 
V

r
R r

V
R

R r
V

R r
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IL
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S Z
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S Z
Z

S Z

S Z
L=

+
+

+
-

+
0

 
(5.8)

It is seen that if r RZ S� , as is the case in practice when 
the diode is operating in its normal regulating range, 
the first and third terms on the RHS of Equation 5.8 can 
be neglected compared to the middle term, which gives 
VL ≅ VZ0, independently of VI and IL.

Problem-Solving Tip

• The substitution theorem can be used to replace 
a branch current or voltage by an independent 
source, which allows application of superposition.

Exercise 5.1

Derive Equation 5.8 from KVL and KCL applied to the 
circuit of Figure 5.3a. Note the relative ease of applying 
superposition and the substitution theorem.

Primal Exercise 5.2

Determine in Figure 5.5 (a) the component of VX due to 
the battery acting alone, (b) the component of VX due 
to ISRC = 2 A acting alone, (c) the components in (a) and 
(b) if the battery voltage and ISRC are doubled, and (d) ISRC 
that makes VX = 0, (i) using superposition, (ii) considering 
VX to be zero and determining ISRC using KCL and KVL.

Ans. (a) 6 V; (b) −4 V; (c) 12 V, −8 V; (d) 3 A.

Primal Exercise 5.3

Determine ISC in Figure 5.6 by applying (a) the  current 
source alone, with the voltage sources set to zero and 
(b) the two voltage sources together, with the cur-
rent source set to zero. Note that superposition can 
be applied with some sources applied together if it is 
 convenient to do so.

Ans. 3 A.

5.1.1  Dependent Sources

How is superposition applied in the presence of depen-
dent sources? To answer this question, consider the 
 circuit of Figure 5.1 with a dependent source added as 
in Figure 5.7. From KCL at node ‘a’,
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where IS = (VSRC – VX)/5. Substituting for IS in Equation 5.9 
and rearranging, we get

 
V V IX SRC SRC=

+( )
+( )

+
+( )

10
15

50
15

r
r r  

(5.10)

Equation 5.10 is of the same form as Equation 5.4, but 
with the resistive coefficients of VSRC and ISRC modified 
by ρ. The dependent source does not contribute a com-
ponent to VX, as do VSRC and ISRC. This is consistent with 
the conclusion in Section 4.1, that dependent sources 
alone do not excite a circuit. Note that the modification 
of resistances by dependent sources is in accordance 
with the special case exemplified by the source absorp-
tion theorem (Section 4.5), whereby the dependent 
source is itself replaced by a resistance.

The fact that Equation 5.10 is of the same form as 
Equation 5.4 indicates that superposition can be applied 
in the same manner, by applying VSRC and ISRC one at 
a time, while keeping the dependent source in place. 
In Figure 5.8a, with ISRC replaced by an open circuit, 
KVL gives VSRC – 5IS1 – ρIS1 – 10IS1  =  0 or IS1  =  VSRC/
(15 + ρ). Moreover, VX1 = VSRC – 5IS1. Substituting for IS1 
gives VX1 = VSRC(10 + ρ)/(15 + ρ), as in Equation 5.10. If 
VSRC = 12 V, ISRC = 2 A, and ρ = 5, then VX1 = 9 V.

In Figure 5.8b, with VSRC replaced by a short circuit, KVL 
around the outer loop gives 5IS2 + ρIS2 + 10(IS2 + ISRC) = 0. 
From Ohm’s law, VX2 = −5IS2. Substituting for IS2 gives 
VX2  =  50ISRC/(15  +  ρ), as in Equation 5.6. Substituting 
numerical values, VX2 = 5 V, so that VX = VX1 + VX2 = 14 V.

Comparing Figures 5.2 and 5.8, it is seen that the pres-
ence of the dependent source increases the  complexity of 

the circuits involving one independent source at a time. 
These circuits become much simpler if the dependent 
source can also be treated like an independent source. 
Can this be done? The answer is yes, using the substitu-
tion theorem. For according to this theorem, a dependent 
voltage source of designated voltage ρIS can be replaced 
by an independent voltage source of the same voltage. 
This is done in Figure 5.9, where the dependent source 
has been replaced by an independent source VY that is 
assumed to have the same numerical value as ρIS. Clearly, 
if IS is known, replacing the dependent source ρIS by an 
independent source VY of the same source voltage does 
not change the values of the voltages and currents in the 
circuit. But since IS is not known, VY can be considered at 
this stage to be just a symbol, like VSRC and ISRC. We will 
now show that the same VX is obtained as before.

Although superposition can be applied to the 
required variable VX, it is generally simpler and more 
syste matic, when replacing a dependent source by 
an independent source, to apply superposition to 
the controlling  variable of the dependent source, 
which is IS in this case. The procedure is illustrated 
in Figure  5.10. If VSRC is applied alone, with ISRC and 
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VY set to zero, the circuit becomes as in Figure 5.10a, 
from which it follows that IS1 = 12/15 = 4/5 A. If ISRC 
is applied alone, with VSRC and VY set to zero, the cir-
cuit becomes as in Figure 5.10b, from which it follows 
that IS2 = −2 × (10/15) = −4/3 A. Finally, VSRC and ISRC 
are set to zero with VY applied, as in Figure 5.10c. It is 
seen from this figure that IS3 = −VY/15. It follows from 
superposition that

 
I

V
S

Y= - -4
5

4
3 15  

(5.11)

Substituting VY = 5IS and solving for IS give IS = −2/5 A. 
In the original circuit, VX  =  12 – 5IS. Substituting for 
IS gives VX  =  14  V, as before. Evidently, replacing the 
dependent source by an independent source simplifies 
the application of superposition, as it leads to simpler 
circuits for determining the individual components of 
the variable in question.

Although the preceding discussion is based on a 
specific circuit, the conclusions apply to LTI circuits in 
general.

Primal Exercise 5.4

Determine VX in Figure 5.7 with the polarity of the 
dependent source reversed.

Ans. 16 V.

5.1.2  Procedure for Applying Superposition

The procedure for applying superposition in the absence 
of dependent sources can be summarized as follows:

 1. Select the desired voltage or current response as 
the circuit variable to which superposition will be 
applied.

 2. A component of the desired response is obtained 
with each independent source acting alone, while the 
remaining independent sources are set to zero.

 3. The desired response is the algebraic sum of the 
 individual components.

In the presence of a single dependent source, the pro-
cedure for applying superposition can be summarized 
as follows:

 1. Replace the dependent source with an independent 
source of unknown value.

 2. Select the controlling variable of the dependent 
source as the circuit variable to which superposition 
will be applied.

 3. A component of the controlling variable is obtained 
with each independent source acting alone, while the 
remaining independent sources are set to zero.

 4. Apply the superposition equation and substitute 
for the unknown value of the independent source 
its value in terms of the controlling variable in the 
original circuit.

 5. The controlling variable is determined from the 
superposition equation.

 6. Once the controlling variable is determined, the 
desired circuit response can be found using KCL, 
KVL, and Ohm’s law.

When two dependent variables are present, the pre-
ceding procedure can be applied to the controlling 
variable of each of the dependent sources. The result 
is two superposition equations in the two controlling 
variables as unknowns. Once these variables are deter-
mined from the solution of these equations, the desired 
circuit responses can be found using KCL, KVL, and 
Ohm’s law.

When three or more dependent sources are present, 
the superposition method does not have a decisive 
advantage over alternative methods discussed in pre-
ceding chapters and in Chapter 6.

Example 5.2:  Superposition with Dependent  
Current Source

It is required to determine VO in Figure 5.11a using 
superposition.

Solution:

In accordance with the aforementioned procedure, the 
dependent source is replaced by an independent current 
source IY of unknown value (Figure 5.11b) and superposi-
tion applied to IO in the middle branch. When each inde-
pendent source is  acting alone, with the other sources set 
to zero, the resulting circuits are as shown in Figure 5.12. 
With the 40 V source applied alone (Figure 5.12a), the cur-
rent through the source is 40/(20 + 10‖10) = 40/25 = 1.6 A. 
By current division, IO1  =  1.6/2  =  0.8  A. With the 20 V 
source applied alone (Figure 5.12b), the current through 
the source is 20/(10 + 20‖10) = 60/50 = 1.2 A. By  current 
division, IO2 = 1.2 × 20/30 = 0.8 A. With IY applied alone, 
the  circuit can be redrawn as in Figure 5.12c. By current 
division, using ratios of conductances,
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(5.12)

The superposition equation is IO  =  0.8  +  0.8  +  0.4IY. 
Substituting IY = 0.5IO gives IO = 2 A. From the given cir-
cuit, the voltage across the middle 10 Ω resistor is 20 V. 
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KVL around the mesh on the RHS gives 20 – 20 – VO = 0, 
or VO = 0.

Simulation: The circuit is entered as in Figure 5.13. 
After selecting ‘Bias Point’ under ‘Analysis type’ in 
the Simulation Settings and running the simulation, 
pressing the I and V buttons displays the currents and 
voltages, respectively, indicated in Figure 5.13. VO is 
10 × 20 × 10–12 ≅ 0.

Exercise 5.5

Apply superposition in Figure 5.11 keeping the depen-
dent source in place. Note how much simpler is apply-
ing superposition with the dependent source replaced 
by an independent source.

Example 5.3: Superposition with Dependent  
Voltage Source

Given that IX = 6 A in Figure 5.14a, it is required to deter-
mine ρ and IY.

Solution:

From KCL at node ‘d’ in Figure 5.14b, IY  =  1 A. From 
KVL around the loop ‘bcdab’, 6ρ – 2 × 1 – 6 × 3 + 15 = 0, 
which gives ρ = 5/6.
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Figure for Example 5.2.
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IY will next be derived as an illustration of super-
position and the substitution theorem. The dependent 
source is replaced by an independent voltage source 
of unknown value VY, and the 3 Ω resistor is replaced 
by a 6 A source in accordance with the substitution 
theorem (Figure 5.15). Superposition can then be 
applied to IY with each of the independent sources act-
ing alone.

When either voltage source is applied alone, the two 
current sources are replaced by open circuits, which 
makes both components of IY, due to the voltage sources, 
equal to zero. When the 6 A source is applied alone, 
with the 5 A source replaced by an open circuit, IY1 = 6 
A. Similarly, when the 5 A source is applied alone, with 
the 6 A source replaced by an open circuit, IY2 = −5 A. 
It  follows that IY = 1 A, as before.

Simulation: ρ = 5/6 is used in the simulation to verify 
that the current in the 6 Ω resistor is 6 A. The circuit is 
entered as in Figure 5.16. Note that 5/6 is entered as 
a decimal number since PSpice does not accept frac-
tions in data entries. After selecting ‘Bias Point’ under 
‘Analysis type’ in the Simulation Settings and running 
the simulation, pressing the I and V buttons displays 
the currents and voltages, respectively, indicated in 
Figure 5.16.

Primal Exercise 5.6

Determine IX in Figure 5.17 using superposition.

Ans. 4 A.

Primal Exercise 5.7

Determine VR in Figure 5.18 using superposition.

Ans. 7 V.

5.1.3  Power with Superposition

Concept: Because power is a nonlinear function of volt-
age or current, superposition cannot be applied directly to 
power.

Consider, for example, the circuit of Figure 5.19, in 
which the power in the 60 Ω resistor is required as a func-
tion of VSRC1 and VSRC2. VX, the voltage across the 60 Ω, 
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can be readily derived by superposition. Thus, if VSRC1 
is applied alone, with VSRC2 replaced by a short circuit, 
it follows from voltage division that VX1 = (30‖60)VSRC1/
(40 + 30‖60) = 20VSRC1/(40 + 20) = VSRC1/3. Similarly, if 
VSRC2 is applied alone, with VSRC1 replaced by a short 
circuit, VX2  =  (40‖60)VSRC2/(30  +  20‖60)  =  24VSRC2/
(30 + 24) = VSRC2/2.25. Hence,

 
V

V V
X

SRC SRC= +1 2

3 2 25.  
(5.13)

The power PX1 dissipated in the 60 Ω resistor due 
to VSRC1 acting alone is (1/60)(VSRC1/3)2, whereas the 
power PX2 dissipated in the 60 Ω resistor due to VSRC2 
acting alone is (1/60)(VSRC2/3)2. The sum of these 
 powers is
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However, the true power dissipated in the 60 Ω 
 resistor is
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It is seen that PX  ≠  PX1  +  PX2, because the square of 
the sum of VSRC1/3 and VSRC2/2.25 in Equation 5.15 is 
not equal to the sum of the squares of these terms in 
Equation 5.14. Hence, to obtain the correct value of 
power dissipated in a resistor using superposition, the 
voltage across the resistor, or the current through the resistor, 
is first obtained by superposition, and the power can then be 
determined using the total value of the voltage or current.

Exercise 5.8

Tabulate the powers dissipated in each of the resistors 
in Figure 5.19 due to each source applied alone, with 
the other source set to zero, and when both sources are 
applied together, assuming VSRC1 = 12 V and VSRC2 = 9 V. 
Compare the total power dissipated to the source power 
delivered in each case.

Primal Exercise 5.9

Determine the power dissipated in the 4 Ω resistor in 
Figure 5.20 when (a) either source is applied alone or 
(b) both sources are applied together.
Ans. (a) 16 W due to either source applied alone; (b) 64 W.

Primal Exercise 5.10

Determine the power dissipated in either 2 Ω resistor 
in Figure 5.21 when (a) either source is applied alone or 
(b) both sources are applied together.

Ans. (a) 32 W due to voltage source, 8 W due to current 
source; (b) 8 W.

5.2  Output Scaling

Consider the circuit of Figure 5.7. If only VSRC is present 
in the circuit and ISRC is replaced by an open circuit, it 
follows from Equation 5.10 that

 
V VX SRC=

+( )
+( )

10
15

r
r  

(5.16)

On the other hand, if only ISRC is present in the circuit 
and VSRC is replaced by a short circuit, it follows from 
Equation 5.10 that

 
V IX SRC=

+( )
50

15 r  
(5.17)

In general, if a circuit is excited by a single independent 
source, any voltage or current response in the circuit can 
be expressed as

 Response Excitation= ( )´f R  (5.18)

where f(R) depends on the resistances and values of 
dependent sources in the circuit and is a constant for a 
given LTI circuit. The excitation could be due to an inde-
pendent voltage source or an independent current source. 
If the excitation is multiplied by a constant factor K, the 
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response is multiplied by the same factor. This can be 
made use of in some types of circuits by assuming a con-
venient output, working backward from this output to 
the source of excitation, and then scaling the output in 
accordance with the value of the given source.

As an example, consider the circuit of Figure 5.22a, 
where it is required to determine IO. It is rather awk-
ward to do this by any of the conventional methods. But 
it may be assumed quite arbitrarily that IO = 1 A and then 
work backward toward the voltage at the source termi-
nals (Figure 5.22b). The voltage of node ‘a’ with respect 
to the common node ‘d’ is 6 V. The current from node ‘a’ 
to node ‘d’ through the 6 Ω resistor is 1 A. From KCL at 
node ‘a’, the current flowing toward node ‘a’ through the 
1 Ω resistor is 2 A. The voltage of node ‘b’ with respect 
to node ‘d’ is 8 V. Proceeding in this manner gives a volt-
age of 20 V at the source terminals. IO per unit of applied 
excitation is 1/20 A/V, which means that when the exci-
tation is 5 V, then IO = 5/20 = 0.25 A in the original circuit.

The method of output scaling can be applied to cir-
cuits that are more general than the ladder circuit of 
Figure 5.22a, and which may include dependent sources. 
But the circuit must have a single independent source of  
excitation, and must be such that one can assume a cer-
tain output and then work backward toward the input 
by systematically determining all the currents and volt-
ages along the way, without having to invoke additional 
variables. This is illustrated by Example 5.4.

Primal Exercise 5.11

Determine IO in Figure 5.22a if the excitation is a 4 A 
source instead of a 5 V source.
Ans. IO = 0.5 A.

Primal Exercise 5.12

Determine IO in Figure 5.23.

Ans. IO = 0.5 A.

Example 5.4: Output Scaling

It is required to determine IO in Figure 5.24a using 
 output scaling.

Solution:

We will assume a convenient value for IO, such as 1 A, 
and work backward toward the source terminals using 
KCL, KVL, and Ohm’s law.

Let the nodes be labeled as in Figure 5.24b with 
IO = 1 A and node ‘d’ taken as reference. Vc = 5 V. The 
CCCS is 4 A, so that Icb = 3 A, where Icb is the current in 
the 3 Ω resistor that flows from node ‘c’ toward node ‘b’. 
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The voltage drop across the 3 Ω resistor is 9 V, so that 
Vb = VX = 5 – 9 = −4 V, Idb = 0.5 A. The voltage of the 
VCVS is −8 V, so it can be taken as +8  V of reversed 
polarity. From KCL at node ‘b’, Iba = 3.5 A. This makes 
Va = −4 + 8 – 2 × 3.5 = −3 V. KCL at node ‘a’ gives a cur-
rent of 0.5 A flowing in the 16 Ω resistor toward node ‘a’. 
The voltage at the input terminal is −3 + 16 × 0.5 = 5 V. 
Since IO per unit source voltage is 1/5 A/V, it follows 
that IO = 4 A for a source voltage of 20 V, and all currents 
and voltages in Figure 5.24b are multiplied by 4.

Simulation: The circuit is entered as in Figure 5.25. 
After selecting ‘Bias Point’ under ‘Analysis type’ in 
the Simulation Settings and running the simulation, 
pressing the I and V buttons displays the currents and 
 voltages, respectively, indicated in Figure 5.25.

5.3  Redundant Resistors

5.3.1 Redundant Resistors Connected to Sources

Concept: A resistor in series with an ideal current source is 
redundant as far as the rest of the circuit is concerned, but 
affects the voltage across the source. Similarly, a resistor in 
parallel with an ideal voltage source is redundant as far as the 
rest of the circuit is concerned, but affects the current through 
the source.

Consider a 2 A current source connected in series 
with a 3  Ω resistor to a circuit ‘N’ represented by its 
TEC between terminals ‘ab’ (Figure 5.26a). The current 
source forces 2 A into terminal ‘a’ and out of terminal 
‘b’, producing a voltage Vab = 4 × 2 + 8 = 16 V. Removing 
the 3 Ω resistor does not affect the current supplied to 
circuit ‘N’, and hence does not affect Vab (Figure 5.26b). 
The 3 Ω resistor is therefore redundant as far the rest of 
the circuit is concerned, which in this case is circuit ‘N’. 
So what is the effect of the 3 Ω resistor? Its effect is on 
the voltage across the current source, which is 16 V in 
the absence of the 3 Ω resistor, and 22 V in its presence, 

due to the 6 V drop across the resistor. Being an ideal 
current source, the source current is not affected by the 
voltage across it.

Figure 5.27a shows an ideal voltage source of 12 V con-
nected in parallel with a 3 Ω resistor across terminals ‘ab’ 
of the same circuit ‘N’ that is now represented by its NEC 
between these terminals. The source impresses 12 V across 
the terminals, so that the current in RN is 3 A and the input 
current at terminal ‘a’ is 1 A. Removing the 3 Ω resistor 
(Figure 5.27b) does not affect the voltage across terminals 
‘ab’ and hence the input current to circuit ‘N’. The 3 Ω resis-
tor is therefore redundant as far as circuit ‘N’ is concerned. 
The effect of the 3 Ω resistor is on the current in the ideal 
voltage source. This  current is 1 A without the 3 Ω resistor, 
and 5 A in its presence, because of the 4 A that it draws 
from the source. Being an ideal voltage source, the source 
voltage is not affected by the current through the source.
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Example 5.5: Redundant Resistors 
Connected to Sources

It is required to determine TEC at terminals ‘ab’ in 
Figure 5.28a.

Solution:

The 8 Ω resistor in parallel with the 5 V source and the 
3 Ω resistor in series with the VCCS are both redundant 
as far as deriving TEC at terminals ‘ab’ is concerned and 
can be removed from the circuit.

Another simplification that can be made is to tem-
porarily remove the 6 and 2.6 Ω resistors, derive an 
intermediate TEC that does not include these resis-
tors, and then add the resistors to this intermediate 
TEC and determine the required TEC, as was done 
in Example 4.4. Accordingly, TEC is first determined 
at terminals ‘cd’ in Figure 5.28b, without including 
the 6 and 2.6 Ω resistors. VTh1 across these terminals 
is also the controlling voltage for the VCCS. From 
KVL, VTh1 = 2 × 0.25VTh1 + 5, which gives VTh1 = 10 V. 
If terminals ‘ab’ are short- circuited (Figure 5.28c), 
VTh1 becomes zero and the VCCS is replaced by an 
open   circuit. Hence, ISC  =  5/2  =  2.5 A, and RTh1  = 
10/2.5 = 4 Ω.

The second step is to connect the 6 and 2.6 Ω resistors 
to VTh1 and RTh1 (Figure 5.29a) and derive TEC between 
terminals ‘ab’. With these terminals open-circuited, VTh 
is the same as the voltage across the 6 Ω resistor, which 
by voltage division is 10 × 6/(4 + 6) = 6 V. With the 10 V 
source set to zero, the resistance looking into terminals 
‘ab’ is 2.6 + 4‖6 = 2.6 + (4 × 6)/(4 + 6) = 5 Ω. TEC is as 
shown in Figure 5.29b.

Simulation: The circuit is entered as in Figure 5.30, with 
the test current source applied at terminals ‘ab’ in the 
given circuit so as to determine TEC. Note that in order 
to apply the controlling voltage VX in the required polar-
ity, the positive terminal of the controlling voltage input 
should be connected to the upper line and the negative 
terminal to ground. But this involves awkward-looking 
cross connections, which can be avoided by reversing 
the connections of the controlling voltage, as shown, and 
changing the sign of the gain of the dependent source to 
−0.25. DC Sweep is used as explained in Example 4.1, 
the resulting graph being shown in Figure 5.31. It is seen 
that VTh = 6 V and RTh = 5 Ω.

+

–

a

b

+

–

VX

2.62

3

8 65 V

0.25VX

(a)

+

–

+

–

VTh1

c

d

2

5 V

(b)

0.25VTh1

0.25VTh1

+

–

c

d

5 V

2

ISC

(c)

FIGURE 5.28
Figure for Example 5.5.

+

–

a

b

2.64

610 V

(a)

VTh1

RTh1

c

d

+

–

VTh

+

–
6 V VTh

RTh

a

b

5

(b)

FIGURE 5.29
Figure for Example 5.5.

5Vdc
Gain =
–0.25

6

2.6
3

2

I1
0Adc

0

V

+
–

+

– +
–

8

FIGURE 5.30
Figure for Example 5.5.

0A 0.2A 0.4A 0.6A 0.8A 1.0A
6V

8V

10V

Test current

VT

12V

FIGURE 5.31
Figure for Example 5.5.



126 Circuit Analysis with PSpice: A Simplified Approach

Primal Exercise 5.13

Using the value derived for VTh in Example 5.5, deter-
mine the voltage across the dependent current source 
and the current through the voltage source.

Ans. 10.5 V, 0.125 A.

Primal Exercise 5.14

Determine VX in Figure 5.32.

Ans. −10 V.

5.3.2 Resistors Not Carrying Current

In Figure 5.33, the resistances are such that nodes ‘b’ 
and ‘c’ are at the same voltage with respect to node ‘d’, 
as can be readily verified. Thus, from voltage division,
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The currents and voltages in the circuit are indicated 
in Figure 5.34. It is seen that none of these depends on 
any resistance R that may be connected between nodes 
‘b’ and ‘d’. This is because R does not carry any current, 

since its terminals are at the same voltage, so there is 
no voltage drop across it. It follows that R can have 
any value, without affecting the rest of the circuit. This 
includes extreme values of R, that is, an open circuit, as 
in Figure 5.33, or a short circuit, when nodes ‘b’ and ‘c’ 
are directly connected together.

The conditions depicted in Figures 5.33 and 5.34 lead 
to the following conclusions:

 1. Resistor R in Figure 5.34, not carrying any cur-
rent, is redundant. It can have any value, can be 
removed from the circuit, or can be replaced by 
a short circuit, without affecting the rest of the 
circuit.

 2. Nodes ‘b’ and ‘c’ in Figure 5.33, being at the 
same voltage, can be connected together, with-
out affecting the rest of the circuit, and no 
 current flows in the connection.

It may be noted that the condition in Figure 5.33, 
when nodes ‘b’ and ‘c’ are at the same voltage is 
referred to as bridge balance, and the bridge is said 
to be balanced under these conditions. The resistive 
bridge circuit is of considerable practical importance 
and is known as a Wheatstone bridge. It is discussed 
in Appendix 5A.

The preceding conclusions can be generalized to the 
following concepts:

Concepts:

 1. A reduntant resistor can be removed from the 
 circuit,  without disturbing the rest of the circuit. 
When removing a redundant resistor the following 
applies:

 (i) A series resistor is replaced by a short circuit, 
as in the case of a resistor in series with an ideal 
current source.

 (ii) A parallel resistor is replaced by an open cir-
cuit, as in the case of a resistor in parallel with 
an ideal voltage source.
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 (iii) In cases where the redundant resistor does not 
carry current, as in the case of bridge balance, 
the resistor may be replaced by a short circuit or 
an open circuit, as can be readily checked.

 2. Nodes that are at the same voltage, without being short-
circuited together, can be left open-circuited or can be 
connected by a short circuit or by resistors of arbitrary 
values, without any current flowing in the connections 
and without affecting the rest of the circuit.

 3. If several circuit elements are connected to nodes at 
the same voltage, the circuit elements can be recon-
nected between the nodes in any arbitrary manner 
without affecting the rest of the circuit, as long as the 
reconnection does not change the node voltages (see 
Problem P5.58).

It should be emphasized that when two nodes are 
referred to as being at the same voltage, as in item ‘2’ of 
the preceding concepts, these nodes are not connected 
together by a short circuit, which evidently makes them 
at the same voltage. If the short circuit is replaced by 
an open circuit, the two nodes will not in general be 
at the same voltage. A resistor connected between the 
nodes will therefore carry current and is not redundant. 
Consider, for example, the bridge circuit of Figure 5.35, 
where the output nodes ‘b’ and ‘c’ are short-circuited and 
are therefore at the same voltage with respect to node ‘d’. 
However, if this short circuit is replaced by an open cir-
cuit, Vcd = 12 × 24/30 = 9.6 V, and Vbd = 12 × 8/20 = 4.8 V, 
so that a voltage difference exists between these nodes. If 
a resistor is connected between nodes ‘b’ and ‘c’, the resis-
tor carries current and cannot be considered redundant. 
Note that current flows in the short circuit in Figure 5.35.

Primal Exercise 5.15

Determine the resistance seen by the 12 V source in 
Figure 5.33 and verify that it remains the same when 
nodes ‘b’ and ‘c’ are short-circuited.
Ans. 9.6 Ω.

5.4  Partitioning of Circuits by Ideal Sources

Concept: If an ideal voltage source is connected in parallel with 
two circuits or an ideal current source is connected in series 
with two circuits, the two circuits can be separated, one from 
the other, as long as the two circuits are independent of one 
another, that is, they are not interconnected in any other way.

Consider Figure 5.36a in which an ideal 12 V source 
is connected in parallel between two circuits ‘N1’ and 
‘N2’, each represented by its TEC between terminals ‘a1’ 
and ‘b1’ of ‘N1’ and ‘a2’ and ‘b2’ of ‘N2’. According to the 
 foregoing concept, the ideal voltage source effectively 
separates the two circuits, one from the other, so that 
changes in one circuit do not affect the other circuit.

To verify this, note that KVL around the mesh con-
sisting of ‘N1’ and the 12 V source gives 16 = 4I1 + 12, 
where I1 is the current flowing out of the terminal ‘a1’. 
This makes I1 = 1 A, as shown. KVL around the mesh 
consisting of ‘N2’ and the 12 V source gives 12 = 2I2 + 8, 
where I2 is the current entering terminal ‘a2’. This 
makes I2  =  2  A, as shown. Suppose, for the sake of 
argument, that ‘N1’ is altered so that its VTh is 18 V and 
its RTh is 5 Ω (Figure 5.36b). KVL around the mesh on 

12 6

12 V

a

b c

d

+

–

8 24

FIGURE 5.35
Bridge with short-circuited output.

FIGURE 5.36
Circuit partitioning by voltage source. (a) Ideal voltage source con-
nected between circuits ‘N1’ and ‘N2’, (b) change in ‘N1’ does not affect 
‘N2’, and (c) change in ‘N2’ does not affect ‘N1’.
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the left gives 18 = 5I1 + 12, which makes I1 = 1.2 A. KVL 
around the mesh on the right is unchanged, so that I2 
remains the same. With the voltage between terminals 
‘a2’ and ‘b2’ remaining at 12 V, conditions in ‘N2’ remain 
the same, despite changes in ‘N1’. The current in the 
12 V source is reduced from 1 to 0.8 A, but because 
the source is assumed to be ideal, its voltage does not 
change, even if the current through it is reversed. The 
same argument applies if ‘N2’ is changed, for example, 
so that its VTh is 6 V and its RTh is 4 Ω (Figure 5.36c). KVL 
around the mesh on the right gives 12 = 4I2 + 6, which 
makes I2 = 1.5 A. KVL around the mesh on the left is 
unchanged, so that I1 remains the same. With the volt-
age between terminals ‘a1’ and ‘b1’ remaining at 12 V, 
conditions in ‘N1’ remain the same, despite changes 
in ‘N2’. The current in the 12 V source is reduced from 1 
to 0.5 A, but because the source is assumed to be ideal, 
its voltage does not change. ‘N1’ and ‘N2’ are therefore 
effectively separated by the  voltage source, so that each 
circuit can be considered independently of the other.

As a straightforward application of partitioning of a 
circuit by a voltage source, suppose that VO is required 
in the circuit of Figure 5.37a. At first glance, this looks 
like a complex circuit, but a closer inspection reveals 
that the 8 V is connected in parallel between the left part 
of the circuit and the right part. The circuit is therefore 
partitioned into two separate circuits. The circuit on 
the right is shown in Figure 5.37b, after removal of the 
10 Ω resistor connected in parallel with the 8 V source, 
because this resistor is redundant as far as VO is con-

cerned. From voltage division, VO =
+

´ =6
6 2

8 6 V.

An analogous argument can be made for an ideal 
current source connected in series with two circuits. 

Consider Figure 5.38a in which an ideal 1 A source is 
connected in series with two circuits ‘N1’ and ‘N2’, each 
represented by its NEC between terminals ‘a1’ and 
‘b1’ of ‘N1’ and ‘a2’ and ‘b2’ of ‘N2’. According to the 
foregoing concept, the ideal current source effectively 
separates the two circuits, one from the other, so that 
changes in one circuit do not affect the other circuit.

To verify this, note that from KCL at node ‘a1’, the cur-
rent flowing downward in the 4 Ω resistor of ‘N1’ is 3 A, 
and by Ohm’s law the voltage across the terminals of 
‘N1’ is V1 = 12 V. Similarly, the current flowing down-
ward in the 2 Ω resistor of ‘N2’ is 3 A, and by Ohm’s law 
the voltage across the terminals of ‘N2’ is V2 = 6 V. From 
KVL, the voltage across the 1 A source is V1 – V2 = 6 V, of 
the polarity shown.

Suppose, for example, that ‘N1’ is altered so that its IN is 
5 A and its RN is 2 Ω (Figure 5.38b). From KCL at node ‘a1’, 
a current of 4 A flows downward through the 2 Ω resis-
tor, so that V1 = 8 V. The source current entering node ‘a2’ 
is 1 A, the current flowing in the 2 Ω resistor of ‘N2’ is 3 
A, and V2 = 6 V. With the terminal current and voltage at 
‘a2b2’ remaining the same, the conditions in ‘N2’ remain 
the same, despite changes in ‘N1’. The voltage across the 
1 A source decreases from 6 to 4 V, but because the source 
is assumed to be ideal, its current does not change.
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A similar argument applies if ‘N2’ is altered, as in 
Figure 5.38c. The terminal voltage and current of ‘N1’ 
remain the same, but the voltage Va1a2 across the current 
source changes. ‘N1’ and ‘N2’ are therefore effectively 
separated by the current source, so that each circuit can 
be considered independently of the other.

As an example of the partitioning of a circuit by a cur-
rent source, consider the circuit of Figure 5.39a, where 
it is required to determine VO. The 2 A series-connected 
source partitions the circuit into two separate circuits. 
The circuit on the right is shown in Figure 5.39b, after 
removal of the 7 Ω resistor connected in series with the 
2 A source, because this resistor is redundant as far as VO 
is concerned. The current source is reconnected across 
the 8 Ω resistor, which does not alter KCL at nodes ‘a’ 
and ‘b’. From current division, the current in the 6 Ω 
resistor is 2 × 8/(8 + 8) = 1 A, which gives VO = 6 V.

Before ending this section, it should be emphasized 
that the two separate circuits that resulted from par-
titioning the circuits of Figures 5.36a and 5.38a are 
independent, that is, they are not interconnected in 
any other way. Otherwise, each circuit could not be 
considered separately. The two circuits could be inter-
connected, for example, by one or more elements 
that bridge them or by having a dependent source in 
one circuit controlled by a voltage or a current in the 
other circuit.

Primal Exercise 5.16

(a) Replace the single 12 V source in Figure 5.36a by two 
12 V sources, one connected to circuit ‘N1’ between  terminals 
‘a1’ and ‘b1’, the other to circuit ‘N2’ between terminals ‘a2’ 

and ‘b2’, the ‘a’ terminals being positive with respect to 
the ‘b’ terminals. Does this affect circuits ‘N1’ and ‘N2’? 
Compare the net power delivered by the two sources 
with that delivered by the single source in Figure 5.36a. 
(b) Replace the 1 A current source in Figure 5.38a by two 
1 A current sources, one directed from terminal ‘a1’ to ter-
minal ‘b1’, the other directed from terminal ‘b2’ to terminal 
‘a2’. Does this affect circuits ‘N1’ and ‘N2’? Compare the net 
power absorbed by the two sources with that absorbed by 
the single source in Figure 5.38a.

Ans. (a) No; 12 W are delivered in both cases; (b) no, 6 W 
absorbed in both cases.

Primal Exercise 5.17

Determine IX in the part of the circuit on the left in 
Figure  5.37a. Note that the separated circuit is a two-
essential-node circuit.

Ans. 11/17 A.

Primal Exercise 5.18

Determine IX in the part of the circuit on the left in 
Figure 5.39a. Note that after source transformation of 
the 2 A source, the separated circuit is a two-essential-
node circuit.

Ans. 100/127 A.

Primal Exercise 5.19

Determine IX in Figure 5.40.

Ans. 1 A.

5.5  Source Rearrangement

Circuits can sometimes be simplified by rearranging 
sources. The basic idea will be illustrated by a simple 
example, before a more realistic case is considered in 
Example 5.6.
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Suppose that IX in Figure 5.41a is required. IX in this 
simple case can be obtained from current division as 
5 × 6/15 = 2 A. A more general procedure is to replace 
the 5 A source by two sources, as in Figure 5.41b. KCL at 
nodes ‘a’, ‘b’, and ‘c’ remains the same. Thus, at nodes ‘a’ 
and ‘b’: 5 – IX + IX = 5, and at node ‘c’, the two 5 A sources 
cancel out. From KVL around the mesh of three resistors, 
2(5 – IX) – 9IX + 4(5 – IX) = 0, which gives IX = 2 A.

Example 5.6: Source Rearrangement

It is required to determine IX in Figure 5.42 using source 
rearrangement.

Solution:

The 10 A source is split into two sources as in Figure 5.43. 
In Figure 5.42, a current of 10 A enters node ‘b’ from the 
source and a current of 10 A leaves node ‘a’ from the 
source. The same conditions are preserved in Figure 5.43. 
A source current of 10 A both enters and leaves node ‘c’ 
in Figure 5.43, so that the net source current at this node 
is zero, as in Figure 5.42.

The 10 V source can also be split into two 10 V sources 
in parallel, as in Figure 5.44a. The upper terminals of the 
two 10 V sources are evidently at the same voltage with 
respect to the lower node, so that no current flows in this 
connection (Section 5.3). The connection can therefore be 
removed, as in Figure 5.44b, without disturbing the rest 
of the circuit, which is now split into two subcircuits. IX 
can be readily determined by deriving TEC seen by the 
6 Ω resistor (Figure 5.45).

Superposition can be applied with the voltage 
sources acting alone and with the current sources act-
ing alone. When the two 10 A sources are set to zero, 
Vac = 10 × 2/5 = 4 V, and Vbc = 10 × 4/10 = 4 V. Hence, 
nodes ‘a’ and ‘b’ are at the same voltage, so that this com-
ponent of Vba is zero. If the 10 V sources are set to zero, 
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Vac = −10 × 6/5 = −12 V, and Vbc = 10 × 24/10 = 24 V. 
It follows that Vba  =  VTh  =  36 V. With all sources set 
to zero, RTh  =  (4‖6)  +  (2‖3)  =  3.6 Ω. TEC is therefore 
a source of  36  V in series with 3.6 Ω. When the 6 Ω 
resistor is reconnected (Figure  5.46), it is seen that 
IX = 36/9.6 = 3.75 A.

Simulation: The circuit is entered as in Figure 5.47. 
After selecting ‘Bias Point’ under ‘Analysis type’ in the 
Simulation Settings and running the simulation, press-
ing the I and V buttons displays the currents and volt-
ages, respectively, indicated in Figure 5.47.

★5.6  Exploitation of Symmetry

Symmetry in a circuit can generally be exploited to 
greatly simplify the analysis required for obtaining a 
given response. Consider, for example, Figure 5.48, in 
which it is desired to determine I. The circuit is sym-
metrical about a vertical line XX′ through its midline. 

This feature can be made use of in one of two ways to 
determine I.

The first method is based on the observation that 
because of symmetry, nodes ‘b’ and ‘d’ are at the same 
voltage with respect to node ‘c’. They can therefore be 
connected together without disturbing the circuit, as 
explained in Section 5.3. In effect, this is equivalent to 
folding the circuit about the midline XX′. The 4 Ω resis-
tor along XX′ is not affected, but each of the other resis-
tors is paralleled with a resistor of equal value, which 
halves the resistance in each case, as illustrated in Figure 
5.49a. The three upper resistances are equivalent to 2 Ω 
in parallel with a combination of 2 Ω in series with 4 Ω, 
which is 1.5 Ω. This resistance is in series with 0.5 Ω 
across the voltage source, so that I = 6/2 = 3 A.

In the second method, the circuit is split along the mid-
line into two symmetrical halves. The 4 Ω resistor, being 
common to the two halves, is replaced by two 8 Ω resistors, 
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which when paralleled give 4 Ω. The 6 V source is rear-
ranged into two parallel sources of 6 V each, the current 
through each source being I/2. The left half of the circuit is 
illustrated in Figure 5.42b. As in Figure 5.49a, the resistance 
across the voltage source is then 1 + 4‖(4 + 8) = 1 + 3 = 4 Ω, 
and I/2 = 6/4 = 1.5 A, or I = 3 A, as before.

Primal Exercise 5.20

Suppose that the 6 V source in Figure 5.48 is replaced by 
a 3 A current source. Determine the voltage across the 
source, using the two methods described in connection 
with Figure 5.49.

Ans. 6 V.

Example 5.7: Exploitation of Symmetry

It is required to determine the equivalent resistance 
between nodes ‘ab’ in Figure 5.50.

Solution:

To determine the resistance between nodes ‘a’ and ‘b’, a test 
source is applied between these nodes and the resulting test 
current or voltage determined, as in Figure 5.51. It may be 
suspected that the voltages at nodes ‘c’, ‘d’, and ‘e’ are half-
way between the voltage of nodes ‘a’ and ‘b’, so that nodes 
‘c’, ‘d’, and ‘e’ are at the same voltage. But how can this be 
verified in an easy manner? The answer is to apply a very 
useful problem-solving technique, namely, make a reasonable 
assumption, and then check if this assumption leads to logically 
consistent results; if it does, then the assumption is justified. In 
this case, let us assume that nodes ‘c’, ‘d’, and ‘e’ in Figure 
5.51 are at the same voltage, which means that the 0.5 Ω 
resistors between these nodes are redundant, since they 
do not carry current, and can be removed without affect-
ing the rest of the circuit. When these resistors are removed, 
the circuit becomes as in Figure 5.51. It follows from voltage 
division between nodes ‘a’ and ‘b’ that nodes ‘c’, ‘d’, and 
‘e’ are at the same voltage with respect to node ‘b’, which 
means that any resistance, not only 0.5 Ω, can be connected 

between these nodes without affecting the rest of the circuit. 
Moreover, the 0.5 Ω resistors could equally well be replaced 
by open circuits or short circuits. Hence, the initial assump-
tion that nodes ‘c’, ‘d’, and ‘e’ are at the same voltage leads 
to a logically consistent conclusion, in that these nodes are 
indeed at the same voltage, so that the initial assumption 
is justified. Had the removal of the 0.5 Ω resistors led to 
unequal voltages of nodes ‘c’, ‘d’, and ‘e’, then this result is 
inconsistent with the assumption of equality of voltages at 
the nodes, which would invalidate the assumption.

It is seen from Figure 5.51 that VT/IT is three resis-
tances in parallel: 2 Ω in parallel with 2 Ω gives 1 Ω. This, 
in parallel with 1 Ω, is 0.5 Ω.

Simulation: The circuit is entered as in Figure 5.52. A 1 A 
current source is used to indicate the resistance between 
nodes ‘a’ and ‘b’ as being numerically equal to the 
voltage of node ‘a’ with respect to ground at node ‘b’. 
After selecting ‘Bias Point’ under ‘Analysis type’ in the 
Simulation Settings and running the simulation, press-
ing the I and V buttons displays the currents and volt-
ages, respectively, indicated in Figure 5.52.
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Problem-Solving Tips

• Always bear in mind that determining an equivalent 
resistance between two nodes is based on applying 
a test source and determining the resulting current 
or voltage. In the absence of dependent sources, the 
equivalent resistance can be found directly, as from 
series–parallel combinations of resistances.

• A useful problem-solving technique is to make 
a reasonable assumption and then check if this 
assumption leads to logically consistent results; if 
it does, then the assumption is justified.

Primal Exercise 5.21

Verify that short-circuiting nodes ‘c’, ‘d’, and ‘e’ in 
Figure 5.51 give Rab = 0.5 Ω.

It should be noted that exploitation of symmetry in 
the preceding examples basically depends on  having 
nodes of the same voltage about an axis of symmetry 
rather than having equal resistances about this axis. In 
Figure 5.53, for example, the resistance values have been 
changed compared to Figure 5.50. Applying the same 
argument as in Example 5.7 leads to the conclusion that 
if a test source is applied between nodes ‘a’ and ‘b’, the 
0.5 Ω and 6 Ω resistors do not carry current and can be 
removed from the circuit. The resistance between nodes 
‘a’ and ‘b’ is then 3∙6∙12 = 12/7 Ω.

5.7  Problem-Solving Approach Updated

The main procedural steps of the ISDEPIC approach are 
summarized and updated as follows in the light of the 
material covered in this chapter:

Step 1—Initialize:

 (a) Mark on the circuit diagram all given values of 
circuit parameters, currents, and voltages, as 
well as the unknowns to be determined.

 (b) Label the nodes, as this may be generally helpful.
 (c) If the solution requires that a given value of cur-

rent or voltage be satisfied, assume this value 
from the very beginning

Step 2—Simplify: Consider, as may be appropriate,

 (a) Redrawing the circuit
 (b) Replacing series and parallel combinations of 

circuit elements by an equivalent circuit element
 (c) Applying star-delta transformation
 (d) Applying source transformation
 (e) Using TEC or NEC to simplify part of the circuit
 (f) Applying the source absorption theorem
 (g) Removing resistors that are redundant as far as 

the variables of interest are concerned
 (h) Partitioning the circuit in the presence of shunt-

connected ideal voltage sources or series- 
connected ideal current sources

 (i) Exploiting symmetry

Step 3—Deduce: Determine any values of current or volt-
age that follow immediately from direct application of 
Ohm’s law, KCL, or KVL, without introducing any addi-
tional unknowns. If Step 3 does not provide a solution, 
proceed to Step 4.

Step 4—Explore: Examine each of the following alterna-
tives, as may be applicable:

 (a) Consider the nodes and meshes in the circuit 
to see if KCL or KVL can be expressed using a 
single unknown current or voltage, and if this 
unknown can then be directly determined from 
KCL or KVL.

 (b) Use TEC or NEC to determine a voltage or a 
current through a given circuit element.

 (c) Apply the substitution theorem.
 (d) Apply superposition if more than one source is 

present in the circuit.
 (e) Use output scaling.
 (f) Rearrange sources.

If Step 4 does not provide the solution, proceed to 
Step 5.

Step 5—Plan: Think carefully and creatively about the 
problem in the light of circuit fundamentals and circuit 
analysis techniques. Consider alternative solutions and 
select what seems to be the simplest and most direct 
solution.

Step 6—Implement: Carry out your planned solution.
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Step 7—Check your calculations and results.

 (a) Check that your results make sense, in terms of 
magnitude and sign.

 (b) Check that Ohm’s law is satisfied across every 
resistor, that KCL is satisfied at every node, and 
that KVL is satisfied around every mesh.

 (c) Seek an alternative solution to see if it gives the 
same result.

 (d) Whenever feasible, check simulate with PSpice.

Learning Checklist: What Should 
Be Learned from This Chapter

• If an input x1 to a given system produces an out-
put y1 and an input x2 produces an output y2, 
then the system obeys superposition if an input 
(x1 + x2) that is the sum of the two inputs pro-
duces an output (y1 + y2) that is the sum of the 
outputs due to each input acting alone. The same 
applies for more than two inputs.

• The procedure for applying superposition 
in the absence of dependent sources can be 
 summarized as follows:

 1. Select the desired voltage or current 
response as the circuit variable to which 
superposition will be applied.

 2. A component of the desired response is 
obtained with each independent source act-
ing alone, while the remaining independent 
sources are set to zero.

 3. The desired response is the algebraic sum of 
the individual components.

• In the presence of a single dependent source, 
the dependent source can be left in place and 
superposition applied to the desired response 
by applying the independent sources one at a 
time, or the following procedure adopted:

 1. Replace the dependent source with an 
 independent source of unknown value.

 2. Select the controlling variable of the depen-
dent source as the circuit variable to which 
superposition will be applied.

 3. A component of the controlling variable is 
obtained with each independent source act-
ing alone, while the remaining independent 
sources are set to zero.

 4. Apply the superposition equation and sub-
stitute for the unknown value of the inde-
pendent source its value in terms of the 
controlling variable in the original circuit.

 5. The controlling variable is determined from 
the superposition equation.

 6. Once the controlling variable is determined, 
the desired circuit response can be found 
using KCL and KVL.

• Because power is a nonlinear function of volt-
age or current, superposition cannot be applied 
directly to power. The voltage across the resis-
tor, or the current through the resistor, is first 
obtained by superposition, and the power can 
then be determined using the total value of the 
voltage or current.

• In some circuits, such as those excited by a sin-
gle independent source, a convenient output 
can be assumed, and the voltages and currents 
determined by working backward from the out-
put to the source, using KCL, KVL, and Ohm’s 
law. The output is then scaled in accordance 
with the value of the source.

 1. Scaling can be applied to more general circuits 
as long as it is possible to assume a certain 
output and then work backward toward the 
input by systematically determining all the 
currents and voltages along the way, without 
having to invoke additional variables.

• A resistor in series with an ideal current source 
is redundant as far as the rest of the circuit is 
concerned, but affects the voltage across the 
source. Similarly, a resistor in parallel with an 
ideal voltage source is redundant as far as the 
rest of the circuit is concerned, but affects the 
current through the source.

• A redundant resistor can be removed from the 
circuit, without disturbing the rest of the cir-
cuit. When removing a redundant resistor, a 
redundant series resistor is replaced by a short 
circuit, whereas a redundant parallel resistor is 
replaced by an open circuit. A redundant resis-
tor that does not carry current may be replaced 
by a short circuit or an open circuit.

• Nodes that are at the same voltage, without 
being short-circuited together, can be left open-
circuited or can be connected by a short circuit 
or by resistors of arbitrary values, without any 
current flowing in the connection and without 
affecting the rest of the circuit.

• If an ideal voltage source is connected in paral-
lel with two circuits or an ideal current source 
is connected in series with two circuits, the two 
circuits can be separated, one from the other, as 
long as the two circuits are independent of one 
another, that is, they are not interconnected in 
any other way.
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• A circuit can be simplified by replacing a cur-
rent source by two current sources, without 
changing KCL at the nodes involved. A circuit 
can be simplified by replacing a voltage source 
by two voltage source, without changing KVL 
around the meshes involved.

• Symmetry in a circuit can generally be exploited 
to greatly simplify the analysis required for 
obtaining a given response.

Problem-Solving Tips

 1. The substitution theorem can be used to replace 
a branch current or voltage by an independent 
source, which allows application of superposition.

 2. Superposition can be advantageously applied 
in conjunction with the substitution theorem by 
replacing dependent sources, or branch  currents 
or voltages, by independent sources.

 3. A circuit should always be carefully inspected 
to see if it can be simplified through removal 
of redundant resistors, partitioning of circuits 
because of parallel location of an ideal voltage 
source, or series location of an ideal current 
source, or through source rearrangement, or 
exploitation of symmetry.

 4. Always bear in mind that determining an equiv-
alent resistance between two nodes is based on 
applying a test source and determining the result-
ing current or voltage. In the absence of depen-
dent sources, the equivalent resistance can be 
found directly from series–parallel  combinations 
of resistances, star-delta transformation, etc..

 5. A useful problem-solving technique is to make 
a reasonable assumption, and then check if this 
assumption leads to logically consistent results; 
if it does, then the assumption is justified.

Appendix 5A: Wheatstone Bridge

Bridge circuits are commonly used for accurate measure-
ments of circuit parameters. The basic principle is illus-
trated by the Wheatstone bridge for dc measurement 
of resistance (Figure 5.54). When the bridge is  balanced, 
Vbc = Vdc, so that VO = 0, and the detector ‘D’ does not 

draw any current, From voltage division, V
R

R R
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+
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2 3
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R R
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1 4
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Cross multiplying and simplifying,
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The balance condition can be stated as (1) the prod-
uct of resistances in diametrically opposite arms of the 
bridge is the same or (2) the ratio of resistances in adja-
cent, opposite arms of the bridge is the same.

For the accurate measurement of an unknown resis-
tance say R3, R2 is an accurately known fixed, refer-
ence resistor, and R1 and R4 are high-quality resistors 
of the same type whose resistances can be varied in 
small enough steps. R1 and R4 are varied until bridge 
balance is achieved. R3 is then determined from 
Equation 5.20. Two factors underlie the accuracy of 
this measurement:

 1. A zero indication can be much more accurately 
determined than a nonzero value of current or 
voltage, because the scale around zero can be 
expanded to almost any desired degree of accu-
racy. A sensitive, current-measuring device, 
known as a galvanometer is normally used to 
indicate bridge balance. A method of measure-
ment based on an indication of zero is referred 
to as a null method.

 2. The ratio of resistances of two resistors of the 
same type, such as R1 and R4, is much more 
accurate than the absolute value of either one, 
because systematic, that is, nonrandom, errors 
in R1 and R4 tend to cancel out.

Problems

Apply ISDEPIC and verify solutions by PSpice simulation 
whenever feasible.

R1 R2

R4 R3

a

b

c

dVI

+

_

D

VO +_

FIGURE 5.54
Wheatstone bridge.
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Superposition

P5.1 Determine VX in Figure P5.1.

 Ans. 80/3 V.

P5.2 Determine VO, ISRC1, and ISRC2 in Figure P5.2.

 Ans. ISRC1 = −1.3 A, and ISRC2 = 2.2 A, VO = 18 V.

P5.3 Determine IX in Figure P5.3.

 Ans. 50 mA.

P5.4 Determine the power delivered or absorbed by the 
15 V source in Figure P5.4.

 Ans. 17.5 W delivered.

P5.5 Determine VO in Figure P5.5.

 Ans. 66 V.

P5.6 Determine IO in Figure P5.6.

 Ans. 20 A.

P5.7 Determine VSRC1 and VSRC2 in Figure P5.7.

 Ans. VSRC1 = −1.3 V, VSRC2 = 2.2 V.

P5.8 Determine VS and IS in Figure P5.8.

 Ans. 29 V, 1.6 A.
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P5.9 Determine VX in Figure P5.9.

 Ans. 1.75 V.

P5.10 Determine IX in Figure P5.10.

 Ans. 0.5 A.

P5.11 Determine the power delivered or absorbed by the 
 current source in Figure P5.11.

 Ans. 180 W absorbed.

P5.12 A resistive circuit is excited by two identical, inde-
pendent sources. When either source acts alone, with 
the other source set to zero, the power dissipated in a 
given resistor in the circuit is 1 W. Determine the power 
dissipated in this same resistor when both sources act 
together.

 Ans. 0 if the sources act in opposition and 4 W if the 
sources augment one another.

P5.13 In Figure P5.13, the power dissipated in R is 8 W if ISRC 
is applied alone, and is 0.5 W if VSRC is applied alone, 
with the other source set to zero. Determine the power 
dissipated in R if both sources are applied together, 
with polarities that will give (a) the largest current in R 
and (b) the smallest current in R.

 Ans. (a) 12.5 W; (b) 4.5 W.

P5.14 The resistance values in Figure P5.14 are not speci-
fied. It is given that (a) when VSRC = 5 V and ISRC = 1 A, 
VO1 = 2 V and (b) when VSRC = 5 V and ISRC = 0, VO2 = 1 V. 
Determine VO when VSRC = 0 and ISRC = 2 A.

 Ans. 2 V.

P5.15 Determine IX in Figure P5.15. Note that the 5 A source 
partitions the circuit into two subcircuits, the one hav-
ing IX being independent of the subcircuit consisting of 
the dependent source and the 10 Ω resistor.

 Ans. 1.5 A.

P5.16 Determine IX in Figure P5.16.

 Ans. 0.

P5.17 Determine IO in Figure P5.17.
 Ans. −1 A.

P5.18 Determine IO in Figure P5.18.

 Ans. 0.1 A.
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P5.19 Determine TEC looking into terminals ‘ab’ in Figure P5.19, 
given R = 1 Ω.

 Ans. VTh = Vab = 1 V, RTh = 0.5 Ω.

P5.20 Determine the power dissipated in the 5 Ω resistor due 
to each source in Figure P5.20 and the total power dis-
sipated in this resistor. Note that it should be evident 

from superposition that the dependent source does not 
contribute to current in this resistor.

 Ans. 20 W due to the 2 A source, 80 W due to 4 A 
source, 180 W.

P5.21 Determine the power dissipated in the 5 S resistor due 
to each source in Figure P5.21 and the total power dis-
sipated in this resistor. Note that it should be evident 
from superposition that the dependent source does not 
contribute to current in this resistor.

 Ans. 20 W due to 2 V source, 80 W due to 4 V source, 
180 W.

P5.22 Determine IX in Figure P5.22.

 Ans. 2.5 A.

P5.23 Determine VO in Figure P5.23.

 Ans. −10/3 V.

P5.24 Determine IO in Figure P5.24.

 Ans. −10/3 A.
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P5.25 Determine IX in Figure P5.25.

 Ans. −0.4 A.

P5.26 Determine VO in Figure P5.26.

 Ans. −11/9 = −1.22 V.

P5.27 Determine VO in Figure P5.27.

 
Ans.

 
760
49

15 51= . V.

P5.28 Determine VO in Figure P5.28.

 Ans. 30 V.

P5.29 Determine in Figure P5.29 (a) VO and (b) the power 
delivered or absorbed by the 1 A source.

 Ans. (a) −5 V; (b) 25 W.

Miscellaneous Circuit Simplification

P5.30 Determine IO in Figure P5.30 assuming all resistances 
are 1 Ω.

 Ans. 5/41 A.

P5.31 Determine IO in Figure P5.31 assuming all resistances 
are 1 Ω.

 Ans. 10/13 A.

P5.32 Determine VSRC in Figure P5.32 assuming all resistances 
are 1 Ω. Note that this is a special ladder known as the 
R-2R ladder, in which the resistance between each of 
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the upper essential nodes and the lower common node 
is 2R and the resistance looking to the right of each of 
the upper essential nodes is also 2R. Consequently, the 
voltages at the upper nodes are successively multi-
plied by 2 in going from right to left.

 Ans. 8 V.

P5.33 Determine VX in Figure P5.33.

 Ans. 4.5 V.

P5.34 Determine VO in Figure P5.34 using scaling.

 Ans. 4 V.

P5.35 Determine the power delivered or absorbed by the 
 current source in Figure P5.35.

 Ans. 2.75 W delivered.

P5.36 Determine IO in Figure P5.36.

 Ans. 2/3 A.

P5.37 Determine ISRC1, ISRC2, and VSRC1 in Figure P5.37.

 Ans. ISRC1 = 31 A, ISRC2 = 0.5 A, VSRC1 = 5 V.
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P5.38 Determine VO in Figure P5.38.

 Ans. 2 V.

P5.39 Determine VA in Figure P5.39 so that VX = 0.

 Ans. 6 V.

P5.40 Determine IO in Figure P5.40.

 Ans. 2/3 A.

P5.41 Determine VO in Figure P5.41.

 Ans. 12 V.

P5.42 Determine Req between terminals ‘ab’ in Figure P5.42, 
assuming all resistances are 1 Ω.

 Ans. 3 Ω.

P5.43 Determine Req between terminals ‘a’ and ‘b’ in 
Figure P5.43, assuming all resistances are 1 Ω.

 Ans. 0.8 Ω.

P5.44 Determine VO in Figure P5.44 by rearranging the two 
current sources.

 Ans. 5 V.

P5.45 Determine VX in Figure P5.45.

 Ans. 0.5 V.

P5.46 Determine ISRC in Figure P5.46 assuming all resistances 
are 1 Ω.

 Ans. 12 A.

P5.47 Determine ISRC in Figure P5.47 assuming all resistances 
are 1 Ω.

 Ans. 14 A.
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P5.48 Determine ISRC in Figure P5.48 assuming all resistances 
are 2 Ω. (Hint: Identify redundant resistors based on 
symmetry.)

 Ans. 12 A.

P5.49 Determine Vab in Figure P5.49, assuming all resistances 
are 1 Ω.

 Ans. 12 V.

P5.50 Determine IX in Figure P5.50, assuming all resistances 
are 1 Ω.

 Ans. 2/3 A.

P5.51 Determine Vab in Figure P5.51, assuming all resistances 
are 1 Ω.

 Ans. 15 V.
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P5.52 Determine the resistance between terminals ‘a’ and ‘b’ 
in Figure P5.52.

 Ans. 10/11 Ω.

P5.53 Determine ISRC in Figure P5.53, assuming all resistances 
are 2 Ω.

 Ans. 1 A.

P5.54 Determine TEC between terminals ‘ab’ in Figure P5.54, 
assuming all resistances are 5 Ω.

 Ans. VTh = Vab = 2.4 V, RTh = 6 Ω.

P5.55 R in Figure P5.55 is unspecified, but VR = 6 V when 
VSRC  = 48 V and ISRC = 6 A. Determine VR when 
VSRC = 32 V and ISRC = 8 A.

 Ans. 4 V.

P5.56 Determine the power delivered by the voltage source 
in Figure P5.56, assuming all resistances are 1 Ω.

 Ans. 1.25 W.

P5.57 Determine ISRC in Figure P5.57, assuming all resistances 
are 1 Ω, except for the two 4 Ω resistances indicated.

 Ans. 1 A.

P5.58 Determine Rab in Figure P5.58.

 Ans. 8/3 Ω.

P5.59 Determine Rab in Figure P5.59, assuming that all resis-
tances are in ohms.

 Ans. 18/11 Ω.
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Objective and Overview

This chapter presents the systematic methods for analyz-
ing circuits, namely, the node-voltage and mesh- current 
methods and discusses some of their variants.

Kirchhoff’s laws and Ohm’s law provide the number 
of equations necessary to analyze an electric circuit, but 
the number of equations can become unwieldy except 
in simple circuit configurations. Although the theorems, 
procedures, and techniques discussed in Chapters 3 
through 5 can be invaluable in simplifying the analysis 
in many cases, there remains cases where these meth-
ods are not practicable. Systematic methods based on 
Kirchhoff’s laws have therefore been developed to facil-
itate analysis of more complex circuits and reduce the 
likelihood of error in writing the equations that govern 
the behavior of electric circuits. The commonly used 
node-voltage and mesh-current methods are presented 
in this chapter, including some special considerations 
and generalizations.

6.1  Node-Voltage Method

Concept: In the node-voltage method, voltages of essential 
nodes are assigned with respect to one of the essential nodes 
taken as a reference. This automatically satisfies Kirchhoff’s 
voltage law (KVL) in every mesh in the circuit. Equations 
based on Kirchhoff’s current law (KCL) are then written 
directly in terms of Ohm’s law for each essential node other 
than the reference node.

The node-voltage method is illustrated by the circuit 
in Figure 6.1a, which is excited by a current source and in 
which resistance values are expressed as conductances. 
The first step is to select one of the essential nodes as the 
reference node. This can be done quite arbitrarily, but it 
is usually convenient to select as reference the node that 
has the largest number of connections, which is usually 
a grounded node. Alternatively, the reference node may 
be selected as a node with respect to which a voltage is 
required so that only one unknown needs to be deter-
mined. If the node voltages are required with respect to 
a node other than the selected reference node, these can 
be derived very simply, as will be shown later. Node ‘d’ 
is chosen as the reference in Figure 6.1a, as indicated by 
the unfilled arrow.

The reference node is assigned a voltage of zero, and 
the voltages of all the other essential nodes are expressed 
with reference to this node. To verify that KVL is satisfied 
around every mesh, consider the upper mesh as an exam-
ple. The voltage drops around this mesh are denoted as 
Vab, Vbc, and Vca in Figure 6.1a. KVL around this mesh is

 V V Vab bc ca+ + = 0 (6.1)

The voltage drops Vab, Vbc, and Vca can be expressed 
in terms of the assigned node voltages as Vab = Va – Vb, 
Vbc = Vb − Vc, and Vca = Vc − Va. The LHS of Equation 6.1 
becomes

 V V V V V Va b b c c a– – –( ) + ( ) + ( ) = 0 

The node voltages cancel out in pairs, so they sum to 
zero, as required by KVL. The same is true of the other 
meshes in the circuit (Exercise 6.1).

With KVL satisfied, KCL is written for each of the 
essential nodes in terms of Ohm’s law and any source 
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(a) Circuit to be analyzed by the node-voltage method and (b) branch 
currents between nodes are explicitly shown.
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currents entering or leaving the node. For node ‘a’, the 
total current leaving the node through the conductances 
connected to the node is Iad + Iac + Iab (Figure 6.1b), where 
Iad = GsrcVa, Iac = G5(Va − Vc), and Iab = G1(Va − Vb). The 
source current entering node ‘a’ is ISRC. Equating the cur-
rent leaving the node through the conductances to the 
current entering the node from the source and collecting 
terms in the node voltages gives KCL for node ‘a’ as

 G G G V G V G V Isrc a b c SRC+ +( ) =1 5 1 5– –  (6.2)

The total current leaving node ‘b’ through the con-
ductances connected to the node is Iba + Ibc + Ibd, where 
Iba = G1(Vb − Va), Ibc = G3(Vb − Vc), and Ibd = G2Vb. There is 
no source current entering node ‘b’. Collecting terms in 
the node voltages gives KCL for node ‘b’ as

 – –G V G G G V G Va b c1 1 2 3 3 0+ + +( ) =  (6.3)

The total current leaving node ‘c’ through the con-
ductances connected to the node is Icb + Ica + Icd, where 
Icb = G3(Vc − Vb), Ica = G5(Vc − Va), and Icd = G4Vc. There is 
no source current entering node ‘c’. Collecting terms in 
the node voltages gives KCL for node ‘c’ as

 – –G V G V G G G Va b c5 3 3 4 5 0+ + +( ) =  (6.4)

Comparing Equations 6.2 through 6.4 reveals a pat-
tern that allows writing the node-voltage equations by 
inspection:

 1. In the equation for a given node, the coef-
ficient multiplying the voltage of this node 
is the sum of all the conductances connected 
directly to that node. Thus, in the equation 
for node ‘a’ (Equation 6.2), Va is multiplied by 
(Gsrc + G1 + G5), the sum of the three conduc-
tances connected directly to node ‘a’. Similarly, 
in the equation for node ‘b’ (Equation 6.3), Vb 
is multiplied by (G1 + G2 + G3), and in the equa-
tion for node ‘c’ (Equation 6.4), Vc is multiplied 
by (G3 + G4 + G5).These coefficients are known 
as the self-conductances of the nodes.

 2. In the equation for a given node, the coefficient 
multiplying the voltage of each of the other 
nodes is the conductance that directly con-
nects this node to the given node, with a minus 
sign. The minus sign arises from subtracting 
the voltages of the other nodes from the volt-
age of the given node. Thus, the current leaving 
node ‘a’ through G1 is (Va − Vb)G1 = G1Va − G1Vb, 
where G1 directly connects node ‘a’ to node ‘b’. 
In the equation for node ‘a’ (Equation 6.2), Vb is 
therefore multiplied by −G1. The current leaving 

node ‘a’ through G5 is (Va − Vc)G5 = G5Va − G5Vc, 
where G5 connects node ‘a’ to node ‘c’. In the 
equation for node ‘a’ (Equation 6.2) Vc is there-
fore multiplied by −G5. The same is true of the 
other node equations. These coefficients are 
known as the mutual conductances between 
the nodes. If there is no conductance that 
directly connects a certain node with the node 
in  question, the corresponding mutual conduc-
tance is zero.

If the coefficients of the node voltages in Equations 6.2 
through 6.4 are arranged in an array, as in Figure 6.2, 
the array has the following characteristic features that 
provide a useful check on the correctness of the node-
voltage equations:

 1. The self-conductances are the diagonal entries 
in the array from top left to bottom right.

 2. The array is symmetrical with respect to this diag-
onal, as illustrated by the coefficients pointed to 
by the double-sided arrows in Figure 6.2. This 
symmetry is because the conductance is inde-
pendent of the direction of current. For example, 
in the expression Iab = G1(Va − Vb), G1 is the same 
as in the expression Iba = G1(Vb − Va), although 
Iab = −Iba. It will be shown in the next section that 
this symmetry is destroyed when the depen-
dency relations of dependent sources are taken 
into account.

 3. All the mutual conductances have a negative 
sign, as explained previously.

 4. In any row or column, the mutual conductances 
are part of the self-conductance in that row or 
column. Thus, in the first row or first column in 
the array of Example 6.2, G1 and G5 are included 
in the self-conductance term (Gsrc  +  G1  +  G5). 
The remaining conductance is that between the 
given node and the reference node.

(G3 + G4 + G5)

(G1 + G2 + G3)

(Gsrc + G1 + G5)

–G3

–G1

–G5

–G3

–G5–G1

FIGURE 6.2
Symmetry of coefficients in node-voltage equations.
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The procedure for writing the node-voltage equation 
for a given essential node ‘n’ can be summarized as 
follows:

 1. The voltage of node ‘n’ is multiplied by the sum of 
all the conductances connected directly to this node, 
which means that node ‘n’ constitutes one terminal 
for each of these conductances, whereas other nodes 
constitute the other terminals.

 2. The voltage of every other node is multiplied by the 
conductance connected directly between this node 
and node ‘n’, with a negative sign. A conductance 
is directly connected between two nodes, if each node 
is a terminal for the conductance. If there is no such 
conductance, the coefficient is zero.

 3. The LHS of the node-voltage equation for node ‘n’ 
is the sum of the terms from the preceding steps, 
ordered as the unknown node voltages. This sum is 
the total current leaving node ‘n’ through the con-
ductances connected to this node.

 4. The RHS of the equation is equal to the algebraic 
sum of source currents entering node ‘n’. Thus, a 
source current entering node ‘n’ will have a positive 
sign, whereas a source current leaving node ‘n’ will 
have a negative sign.

It must be remembered that in the node-voltage 
 equations, KCL at any essential node, other than 
the   reference node, is satisfied by having the LHS and 
the RHS in the following form:

Sum of currents leaving a node through conductances con-
necting this node to other nodes = Algebraic sum of currents 
entering the node from sources connected to the node

Note that a conductance connected to a node and is in 
series with an ideal, dependent or independent current 
source is redundant as far as the rest of the circuit is con-
cerned. It does not affect the current entering or leaving 
the node, so it does not appear in the node-voltage equa-
tions (see Problems 5.28 and 5.29).

Example 6.1: Node-Voltage Method

It is required to analyze the circuit of Figure 6.3 using 
the node-voltage method.

Solution: 
Taking node ‘d’ as a reference node and following the 
aforementioned standard procedure, the node-voltage 
equations are

 Node a‘ ’ : . / . / .0 5 1 3 0 1 1 3 0 1 6+ +( ) - ( ) - =V V Va b c  (6.5)

 Node b‘ ’ : / / . / .- ( ) + + +( ) - =1 3 1 3 0 25 1 12 0 25 0V V Va b c  
(6.6)

 Node c‘ ’ : . . . . .- - + + +( ) =0 1 0 25 0 25 0 25 0 1 0V V Va b c  
(6.7)

Equations 6.5 through 6.7 can be simplified to

 14 15 1 3 0 1 6/ / .( ) ( ) =V V Va b c- -  (6.8)

 – / / – .1 3 2 3 0 25 0( ) + ( ) =V V Va b c  (6.9)

 – . – . /0 1 0 25 3 5 0V V Va b c+ ( ) =  (6.10)

Equations 6.8 through 6.10 can be solved by any of the 
usual methods for solving linear simultaneous equations 
or by using appropriate calculators to give: Va  =  9  V, 
Vb = 6 V, and Vc = 4 V. The determinant method for solv-
ing simultaneous equations is explained in Appendix E.

Linear simultaneous equations can be conveniently 
solved using MATLAB. To do so, the conductance coef-
ficients on the LHS of the node-voltage equations are 
entered as a square matrix, and the source currents on 
the RHS of the node-voltage equations are entered as a 
column matrix. In the example under consideration, the 
matrix of coefficients is entered in MATLAB as follows:

C = - - - - - -éë ùû14 15 1 3 0 1 1 3 2 3 0 25 0 1 0 25 3 5/ / . / / . . . / ., , , , , ,; ;

In MATLAB, a matrix is entered between square 
brackets. Elements in a row are separated by commas, 
whereas rows are separated by semicolons. The matrix 
of source currents is entered as

 S = éë ùû6 0 0; ; . 

The command C\S is equivalent to [inv(C)]*S and 
gives a column matrix of the node voltages in the order 
Va, Vb, and Vc. MATLAB returns the solution to the equa-
tions as
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FIGURE 6.3
Figure for Example 6.1.
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Simulation: The circuit is entered as in Figure 6.4. 
After selecting ‘Bias Point’ under ‘Analysis type’ in 
the Simulation Settings and running the simulation, 
 pressing the I and V buttons displays the currents and 
voltages indicated in Figure 6.4.

Example 6.2: Node-Voltage Method 
with More than One Current Source

It is required to analyze the circuit of Figure 6.5 using 
the node-voltage method. The circuit is of the same form 
as that in Figure 6.3, but with different circuit param-
eters and with the uppermost conductance replaced by 
a current source.

Solution:

Recall that in writing the node-voltage equation for a 
given node as a KCL equation, the LHS of the equation 
represents current leaving the node through conduc-
tances, and the RHS represents source current entering 
the node. Hence, in writing the node-voltage equation 
for node ‘a’, a source current leaving the node must be 
entered on the RHS with a negative sign. Alternatively, 
it may be considered that the net source current entering 
node ‘a’ is (12 − 6) A. The equation for node ‘a’ is

 Node a‘ ’ : . . .0 5 0 25 0 25 0 12 6+( ) - - ´ = -V V Va b c  (6.11)

Note that since there is no conductance that directly 
connects node ‘a’ to node ‘c’, the mutual conductance 
between these two nodes is zero, which means that Vc 
no longer appears in the node-voltage equation for node 
‘a’ nor does Va appear in the node-voltage equation for 
node ‘c’. The remaining node-voltage equations are

 Node b‘ ’: . / . . .- + + +( ) - =0 25 1 3 0 25 0 5 0 5 0V V Va b c  (6.12)

 Node c‘ ’ : . . .0 0 5 0 25 0 5 6´ - + +( ) =V V Va b c  (6.13)

The solution to these equations gives Va  =  11  V, 
Vb = 9 V, and Vc = 14 V.

Simulation: The circuit is entered as in Figure 6.6. 
After selecting ‘Bias Point’ under ‘Analysis type’ in 
the Simulation Settings and running the simulation, 
pressing the I and V buttons displays the currents and 
 voltages indicated in Figure 6.6.

Exercise 6.1

Verify that KVL is satisfied around the other meshes in 
Figure 6.1a.

Primal Exercise 6.2

Verify that KCL and Ohm’s law are satisfied in Figure 6.6.

Primal Exercise 6.3

Reverse the direction of the 6  A source in the circuit 
of Figure 6.5, derive the node-voltage equations, and 
determine Va, Vb, and Vc. Simulate the circuit and verify 
the values of the node voltages, KCL, and Ohm’s law.

Ans. Va = 25 V, Vb = 3 V, and Vc = −6 V.
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6.1.1  Change of Reference Node

Consider Figure 6.1a. Any branch voltage is the dif-
ference between two node voltages. For example, 
Vab = Va − Vb. If the same quantity is added to both Va 
and Vb, it will cancel out from the RHS, leaving Vab the 
same. In Example 6.1, node ‘d’ is taken as a reference 
and the node voltages are Va = 9 V, Vb = 6 V, and Vc = 4 V, 
with Vd  =  0 because it is the reference node. Suppose 
that after finding the node voltages with respect to node 
‘d’ as reference, we wish to determine the node voltages 
with respect to another node, say, node ‘b’, as reference. 
This means that Vb must be zero. To make Vb = 0 without 
changing the branch voltages, we simply subtract 6 V 
from all the node voltages, which gives Va = 3 V, Vb = 0 V, 
Vc = −2 V, and Vd = −6 V. The branch voltages remain the 
same. Thus, with node ‘d’ as reference, Vab = 9 − 6 = 3 V, 
and with node ‘b’ as reference, Vab = 3 − 0 = 3 V. If the 
branch voltages remain the same, then the branch cur-
rents and KCL will also remain the same.

Concept: In any circuit, the branch voltages and currents are 
independent of the choice of reference node.

Primal Exercise 6.4

Redo Example 6.1 with node ‘b’ as reference and verify 
the new values of node voltages.

6.1.2  Nontransformable Voltage Source

When the node-voltage method is to be used in a circuit 
that has an ideal voltage source in series with a resis-
tance, the combination is conveniently transformed to 
a current source in parallel with the same resistance. 
But when the ideal voltage source does not have a resis-
tance in series with it, it cannot be transformed to a cur-
rent source and must be left unaltered. The circuit of 
Figure 6.7, for example, is the same as that of Figure 6.5, 
but with the 6 A source replaced by a 3 V source that 
cannot be transformed to a current source. In applying 

the node-voltage method, an unknown current IX is 
assigned an arbitrary direction through the voltage 
source and the standard procedure followed, treating IX 
like a source current, in accordance with the substitution 
theorem. The node-voltage equations become

Node a‘ ’ : . . .0 5 0 25 0 25 0 12+( ) - - ´ = -V V V Ia b c X  (6.14)

Node b‘ ’ : . / . . .- + + +( ) - =0 25 1 3 0 25 0 5 0 5 0V V Va b c  (6.15)

Node c‘ ’ : . . .0 0 5 0 25 0 5´ - + +( ) =V V V Ia b c X (6.16)

IX can be eliminated by adding together Equations 
6.14 and 6.16 for the two nodes between, which the volt-
age source is connected. The resulting equation is

 0 75 0 75 0 75 12. . .V V Va b c- + =  (6.17)

Equation 6.17 is sometimes referred to as the equa-
tion of a “supernode” that results from combining 
nodes ‘a’ and ‘c’. The node-voltage equation for the 
supernode can be written following the usual proce-
dure, without having to introduce an unknown source 
current. However, introducing such a current is more 
fundamental,  transparent, and less likely to cause an 
error.

Adding two node-voltage equations to eliminate the 
unknown source current reduces the number of inde-
pendent voltage equations derived by one. But an addi-
tional equation in the node voltages is provided by 
the relation between the node voltages and the source 
 voltage. In Figure 6.7,

 V Vc a- = 3 (6.18)

Equations 6.15, 6.17, and 6.18 are the three indepen-
dent equations that can be solved to give Va  =  11  V, 
Vb = 9 V, and Vc = 14 V. These values are the same as 
in Example 6.2, because in this example Vc − Va  =  3, 
as for the voltage source between nodes ‘a’ and ‘c’ in 
Figure 6.7.

Exercise 6.5

Simulate the circuit of Figure 6.7 and verify that KCL, 
KVL, and Ohm’s law are satisfied.

6.1.3  Dependent Sources in Node-Voltage Method

Dependent current sources are treated in exactly the 
same manner as independent current sources. Consider, 
for example, the circuit of Figure 6.8, which is the same 
as that of Figure 6.5 but with the 6  A independent 
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FIGURE 6.7
Nontransformable voltage source.
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source replaced by a dependent current source. The 
node- voltage equations are written in the usual  manner 
as follows:

 Node a‘ ’ : . . .0 5 0 25 0 25 0 12 2+( ) - - ´ = -V V V Ia b c b 
(6.19)

 Node b‘ ’ : . / . . .- + + +( ) - =0 25 1 3 0 25 0 5 0 5 0V V Va b c  
(6.20)

 Node c‘ ’ : . . .0 0 5 0 25 0 5 2´ - + +( ) =V V V Ia b c b (6.21)

Note that in these equations, the net current entering 
node ‘a’ is 12 − 2Ib and the current entering node ‘c’ is 2Ib. 
Leaving the 0 coefficient in the equations maintains the 
symmetry in the array of coefficients.

In order to solve the node-voltage equations, the con-
trolling variable, Ib in this case, should be expressed in 
terms of the node voltages. In the circuit of Figure 6.8, 
Ib = Vb/3 A. Substituting and moving the term in Vb to 
the LHS, Equations 6.19 through 6.21 become

 Node a‘ ’ : . . . /0 5 0 25 0 25 2 3 0 12+( ) - -( ) - ´ =V V Va b c  
(6.22)

 Node b‘ ’ : . / . . .- + + +( ) - =0 25 1 3 0 25 0 5 0 5 0V V Va b c  
(6.23)

 Node c‘ ’ : . / . .0 0 5 2 3 0 25 0 5 0´ - +( ) + +( ) =V V Va b c  
(6.24)

Solving these equations gives Va = 11 V, Vb = 9 V, and 
Vc = 14 V, the same as in Example 6.2, because in this 
example Ib = 3 A, and 2Ib = 6 A, the same as the indepen-
dent source current. Note that the array of coefficients is 
symmetrical with respect to the diagonal in Equations 
6.19 through 6.21, when 2Ib is on the RHS, but the sym-
metry is destroyed in Equations 6.22 and 6.23 when 2Ib 
is substituted for in terms of Vb and moved to the LHS.

In the case of dependent voltage sources, if the source 
is in series with a resistance, the dependent voltage 
source is transformed to a dependent current source in 
parallel with this resistance, and the standard proce-
dure followed. If the dependent voltage source cannot 
be transformed to a current source, an unknown cur-
rent is assigned to the voltage source, and the procedure 
explained in connection with Figure 6.7 is followed. 
Several examples of this type are included in problems 
at the end of this chapter.

Based on the preceding discussion, we can note 
that the effect of the dependent source in Figure 6.8 is 
to modify some of the conductance coefficients in the 
node-voltage equations, leaving only the values of 
independent source on the RHS of the equations. This 
is in accordance with the argument in Section 4.1, that 
dependent sources alone do not excite a circuit and with 
the argument in connection with Equation 5.10, that 
dependent sources modify the values of resistance coef-
ficients in circuit equations.

Primal Exercise 6.6

Simulate the circuit of Figure 6.8 and verify that KCL, 
KVL, and Ohm’s law are satisfied.

6.2  Mesh-Current Method

Concept: In the mesh-current method, the unknown mesh 
currents are assigned in such a manner that KCL is automati-
cally satisfied at every essential node. Equations based on KVL 
are then written for each mesh directly in terms of Ohm’s law.

The mesh-current method will be illustrated by the 
circuit of Figure 6.9. The first step is to assign a  current to 
each mesh. Conventionally, mesh currents are assigned 
in a clockwise direction, as illustrated by I1, I2, and I3 in 
the figure. Since the same mesh current enters and leaves 
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any given node, KCL is automatically satisfied at each 
of the essential nodes ‘a’, ‘b’, ‘c’, and ‘d’. To verify this, 
consider node ‘a’. The mesh current I1 enters node ‘a’ 
through Rsrc and leaves this node through R1. The mesh 
current I2 enters node ‘a’ though R1 and leaves this 
node through R5. The current leaving node ‘a’ through 
R1 is therefore (I1 − I2). Equating the current I1 entering 
node ‘a’ through Rsrc to the total current leaving node ‘a’ 
through R1 and R5 gives I1 = I1 − I2 + I2 = I1, which satisfies 
KCL. The same is true at every other node (Exercise 6.7).

The next step is to write KVL around each mesh. 
Figure 6.10 indicates the voltage drop across each resis-
tor due to the mesh currents flowing through the resistor. 
Considering R1, for example, the net current through R1 is 
(I1 − I2) in the direction of I1, as indicated in Figure 6.9. The 
voltage drop across R1 due to this current is R1(I1 − I2) in 
the direction of I1. This voltage drop is (R1I1 − R1I2), where 
the first term R1I1 is a voltage drop in R1, in the direction 
of I1, due to this current alone, and R1I2 is a voltage drop 
in the direction of I2 but is a voltage rise in the direction of 
I1 due to I2 flowing in R1. The sign of R1I2 is therefore neg-
ative in the expression for the net voltage drop R1(I1 − I2) 
in the direction of I1. Similarly, the net voltage drop across 
R2 is R2(I1 − I3) in the direction of I1. The total voltage drop 
in the direction of I1 due to the resistances in the mesh is 
therefore RsrcI1 + R1(I1 − I2) + R2(I1 − I3). According to KVL, 
the total voltage drop due to the resistances in the mesh 
must be equal to the voltage rise due to any sources in the 
mesh. This voltage rise in mesh 1 is VSRC in the direction 
of I1. Equating the voltage drop to the voltage rise and 
collecting terms in the mesh currents give

 R R R I R I R I Vsrc SRC+ +( ) =1 2 1 1 2 2 3– –  (6.25)

The term (Rsrc + R1 + R2)I1 is the voltage drop in mesh 1 
due to I1 alone. As explained previously, the negative 
sign of the terms R1I2 and R2I3 is due to the fact that these 
terms represent voltage rises in mesh 1 in the direction 
of I1 and would therefore have a negative sign as voltage 
drops in mesh 1 in the direction of I1.

In mesh 2, the net current in R1 in the direction of I2 
is (I2 − I1) and the voltage drop in R1 in the direction 
of I2 is R1(I2 − I1). Similarly, the net current in R3 in the 
direction of I2 is (I2 − I3) and the voltage drop in R3 in 
the direction of I2 is R3(I2 − I3). The total voltage drop 
in the direction of I2 due to the resistances in mesh 2 is 
R1(I2 − I1) + R5I2 + R3(I2 − I3). As there are no sources in 
mesh 2, this total voltage drop must be equal to zero. 
Collecting terms in the mesh currents gives the mesh-
current equation for mesh 2 as

 – –R I R R R I R I1 1 1 3 5 2 3 3 0+ + +( ) =  (6.26)

In mesh 3, the net current in R2 in the direction of I3 
is (I3 − I1) and the voltage drop in R2 in the direction 
of I3 is R2(I3 − I1). Similarly, the net current in R3 in the 
direction of I3 is (I3 − I2) and the voltage drop in R3 in 
the direction of I3 is R3(I3 − I2). The total voltage drop 
in the direction of I3 due to the resistances in mesh 3 is 
R2(I3 − I1) + R4I3 + R3(I3 − I2). As there are no sources in 
mesh 3, this total voltage drop must be equal to zero. 
Collecting terms in the mesh currents gives the mesh-
current equation for mesh 3 as

 – –R I R I R R R I2 1 3 2 2 3 4 3 0+ + +( ) =  (6.27)

Comparing Equations 6.25 through 6.27 reveals a pat-
tern that allows writing the mesh-current equations by 
inspection:

 1. In the equation for a given mesh, the coeffi-
cient multiplying the mesh current is the sum 
of all the resistances in the mesh. Thus, in 
the equation for mesh 1 (Equation 6.25), I1 is 
multiplied by (Rsrc + R1 + R2). Similarly, in the 
equation for mesh 2 (Equation 6.26), I2 is mul-
tiplied by (R1  +  R3  +  R5), and in the equation 
for mesh 3 (Equation 6.27), I3 is multiplied by 
(R2 + R3 + R4).These coefficients are known as the 
self- resistances of the meshes.

 2. In the equation for a given mesh, the coefficient 
multiplying the current of each of the other 
meshes is the resistance that is common to the 
two meshes, with a minus sign. Thus, in the 
equation for mesh 1 (Equation 6.25), I2 is mul-
tiplied by −R1, where R1 is the resistance that is 
common between meshes 1 and 2, and the minus 
sign is because R1I2 is a voltage rise in mesh 1 
(Figure 6.10). I3 is multiplied by −R2, where R2 is 
the resistance that is common between meshes 
1 and 3. The same is true of the other mesh 
equations. These coefficients are known as the 
mutual resistances between the meshes. If there 
is no resistance that is common between a cer-
tain mesh with the mesh in question, the corre-
sponding mutual resistance is zero.
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If the coefficients of the mesh currents in Equations 6.25 
through 6.27 are arranged in an array, as illustrated in 
Figure 6.11, the array has the following features that are 
a useful check on the correctness of the mesh-current 
equations:

 1. The self-resistances are the diagonal entries in 
the array from top left to bottom right.

 2. The array is symmetrical with respect to this 
diagonal, as illustrated by the coefficients 
pointed to by the double-sided arrows in 
Figure  6.11. This symmetry is because the 
same resistance that is common between two 
meshes appears in the equation of each of the 
two meshes as a multiplier of the current in the 
other mesh, the resistance being independent 
of the direction of current. It will be shown in 
the next section that this symmetry is destroyed 
when the dependency relations of dependent 
sources are taken into account.

 3. In any row or column, the mutual resistances are 
part of the self-resistance in that row or  column. 
The remaining resistance is that exclusive to the 
mesh.

The procedure for writing the mesh-current equation 
for a given mesh ‘n’ can be summarized as follows:

 1. The current of mesh ‘n’ is multiplied by the sum of 
all the resistances in the mesh.

 2. The current of every other mesh is multiplied by the 
resistance that is common between this mesh and 
mesh ‘n’, with a negative sign. If there is no such 
resistance, the coefficient is zero.

 3. The LHS of the mesh-current equation for mesh ‘n’ 
is the sum of the terms from the preceding steps, 
ordered as the unknown mesh currents. This sum is 
the total voltage drop, in the direction of the mesh 
current, due to all the resistances in the mesh.

 4. The RHS of the equation is equal to the algebraic sum 
of source voltages in mesh ‘n’. A source voltage that 
is a voltage rise in the direction of the mesh current 
has a positive sign, whereas a source voltage that is a 
voltage drop in the direction of the mesh current has 
a negative sign.

It must be remembered that in the mesh-current equa-
tions, KVL around any mesh is satisfied by having the 
LHS and the RHS in the following form:

Sum of voltage drops in the direction of the mesh current due to 
the resistances in the mesh = Algebraic sum of voltage rises in the 
direction of the mesh current due to voltage sources in the mesh.

Example 6.3: Mesh-Current Method

It is required to analyze the circuit of Figure 6.9 using 
the mesh-current method.

Solution:

The circuit is redrawn in Figure 6.12 with values of the 
circuit parameters indicated. Following the standard 
procedure, the mesh-current equations are written as 
follows:

 Mesh 1 2 3 12 3 12 121 2 3: + +( ) =I I I- -  (6.28)

 Mesh 2 3 3 4 10 4 01 2 3: - -I I I+ + +( ) =  (6.29)

 Mesh 3 12 4 4 4 12 01 2 3: - -I I I+ + +( ) =  (6.30)

These equations reduce to

 17 3 12 121 2 3I I I– – =  (6.31)

 -3 17 4 01 2 3I I I+ =–  (6.32)

 - + =12 4 20 01 2 3I I I–  (6.33)

The solution to these equations gives I1  =  1.5  A, 
I2 = 0.5 A, and I3 = 1 A.
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Simulation: The circuit is entered as in Figure 6.13. 
After selecting ‘Bias Point’ under ‘Analysis type’ in the 
Simulation Settings and running the simulation, press-
ing the I and V buttons displays the currents and volt-
ages indicated in Figure 6.13.

Example 6.4: Mesh-Current Method 
with More than One Voltage Source

It is required to analyze the circuit of Figure 6.14 using the 
mesh-current method. The circuit is of the same form as 
that in Figure 6.12, but with different circuit parameters 
and with the 3 Ω resistance replaced by an 8 V source.

Solution:

Following the standard procedure and starting with 
mesh 1, the self-resistance of this mesh is (2 + 8) Ω; the 
mutual resistance with mesh 2 is zero, since there is no 
common resistance with this mesh; and the mutual resis-
tance with mesh 3 is 8 Ω. The LHS of the mesh-current 
equation, which accounts for the total voltage drop 
in the direction of I1 due to the resistances in mesh 1 is 
(2 + 8)I1 + 0 × I2 − 8I3. The source voltage of the 12 V source 
is a voltage rise in the direction of I1, and the source volt-
age of the 8 V source is a voltage drop in the direction 
of I1. The net voltage rise in the direction of I1 due to the 

voltage sources in mesh 1 is (12 − 8) V. The mesh-current 
equation for mesh 1 is therefore

 Mesh 1 2 8 0 8 12 81 2 3: +( ) ´ =I I I- - -  (6.34)

The mesh-current equations for the other two meshes, 
in accordance with the standard procedure are

 Mesh 2 0 8 8 8 81 2 3: ´ + +( ) =I I I-  (6.35)

 Mesh 3 8 8 20 01 2 3: - + =I I I-  (6.36)

These equations reduce to

 10 0 8 41 2 3I I I– –´ =  (6.37)

 0 16 8 81 2 3´ + =I I I–  (6.38)

 - + =8 8 20 01 2 3I I I–  (6.39)

The solution to these equations gives I1  =  1  A, 
I2 = 0.875 A, and I3 = 0.75 A. Note the symmetry of the 
coefficients with respect to the diagonal.

Simulation: The circuit is entered as in Figure 6.15. 
After selecting ‘Bias Point’ under ‘Analysis Type’ in the 
Simulation Settings and running the simulation, press-
ing the I and V buttons displays the currents and volt-
ages indicated in Figure 6.15. I1 is the same as the current 
in the 12 V source, I2 is the same as the current in the 
upper 8 Ω resistance, and I3 is the same as the current in 
the 4 Ω resistance.

Exercise 6.7

Verify that KCL is satisfied at nodes ‘b’, ‘c’, and ‘d’ in 
Figure 6.9.
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Primal Exercise 6.8

Verify that KVL and Ohm’s law are satisfied in 
Figure 6.15.

Primal Exercise 6.9

Reverse the polarity of the 8  V source in the circuit 
of Figure 6.14, derive the mesh-current equations, 
and determine I1, I2, and I3. Simulate the circuit and 
 verify  the values of the mesh currents, KVL, and 
Ohm’s law.

Ans. I1 = 3 A, I2 = 0.125 A, and I3 = 1.25 A.

★6.2.1  Generalization of Mesh-Current Method

It is sometimes convenient not to take all mesh currents 
in the same sense or to consider as a variable a loop cur-
rent rather than a mesh current. Compared to Figure 6.12, 
for example, I1 in Figure 6.16 is the current in the outer 
loop, I2 is the current in the same mesh 2, and I3 is the cur-
rent in the same mesh 3 but in a counterclockwise sense. 
How can the equations relating I1, I2, and I3 be written in 
the same form as the previously described mesh-current 
equations? Doing so enhances the understanding of how 
KVL is applied in a more general context.

Considering loop 1, the self-resistance of the loop is 
(2 + 10 + 4) Ω. The voltage drop in the direction of I1 due 
to the self-resistance of the loop is (2  +  10  +  4)I1. The 
mutual resistance between loop 1 and mesh 2 is the 10 Ω 
resistance. But I1 and I2 flow in the same direction in this 
resistance so that the voltage across this resistance due 
to I2 is a voltage drop 10I2 in loop 1 in the direction of I1, 
just like the voltage drop 10I1 in this resistance due to I1. 
The mutual resistance between loop 1 and mesh 3 is the 
4 Ω resistance. But with I1 and I3 flowing in opposite 
directions in this resistance, I3 produces a voltage rise 4I3 
in loop 1, which subtracts from the total voltage drop in 
the direction of I1 in loop 1. The net voltage drop in the 

direction of I1 in loop 1 is therefore (2 + 10 + 4)I1 + 10I2 − 
4I3 = 16I1 + 10I2 − 4I3. The voltage rise due to source volt-
ages in loop 1 is 12 V. Hence, the loop-current equation 
for this loop is

 16 10 4 121 2 3I I I+ =–  (6.40)

Considering mesh 2, the voltage drop in the direction 
of I2 due to the self-resistance of the mesh is (10 + 4 + 3)I2. 
I1 flowing in the 10 Ω resistance and I3 flowing in the 4 Ω 
resistance common with mesh 3 both add to the voltage 
drop in mesh 2. The total voltage drop in the direction 
of I2 in mesh 2 is therefore (10 + 4 + 3)I2 + 10I1 + 4I3 = 
17I2+ 10I1 + 4I3. With no sources in mesh 2, the mesh-
current equation for mesh 2 is

 10 17 4 01 2 3I I I+ + =  (6.41)

Considering mesh 3, the voltage drop in the direction 
of I3 due to the self-resistance of the mesh is (12 + 4 + 4)I3. 
I1 flowing in the common 4 Ω resistance on the right 
produces a voltage rise in mesh 3, whereas I2 flowing 
in the common 4 Ω resistance produces a voltage drop 
in mesh  3. The net voltage drop in the direction of I3 
in mesh 3 is therefore (12 + 4 + 4)I3 − 4I1 + 4I2 = 20I2 − 
4I1 + 4I2. With no sources in mesh 3, the mesh-current 
equation for mesh 3 is

 - + + =4 4 20 01 2 3I I I  (6.42)

Equations 6.40 through 6.42 are the three indepen-
dent equations that can be solved to give I1  =  1.5  A, 
I2 = −1 A, and I3 = 0.5 A. These values are in agreement 
with those derived for the same circuit in Example 6.3. 
The current in the 12 V source is 1.5 A, the current in 
the 10 Ω  resistance is I1 + I2 = 0.5 A, and the current in the 
4 Ω resistance on the side is I1 − I3 = 1 A.

When using loop currents, with or without mesh 
 currents, the following should be noted:

 1. The only modification from the standard proce-
dure is that if the loop or mesh currents flow in 
the same direction in a mutual resistance, this 
resistance is written with a positive sign in the 
mesh-current equations.

 2. The number of independent equations is the 
same as the number of meshes in the circuit.

 3. The array of coefficients is symmetrical 
with respect to the diagonal, in the absence 
of dependent sources, as in Equations 6.40 
through 6.42. The symmetry also applies in 
the presence of dependent sources, before the 
dependency relations are taken into account, 
as discussed in connection with Equations 6.22 
and 6.23.
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Primal Exercise 6.10

Redo Example 6.4 using the same loop and mesh 
 currents as in Figure 6.16.

6.2.2  Nontransformable Current Source

When the mesh-current method is to be used in a cir-
cuit that has an ideal current source in parallel with a 
resistance, the combination is conveniently transformed 
to a voltage source in series with the same resistance. 
But when the ideal current source does not have a 
resistance in parallel with it, it cannot be transformed 
to a voltage source and must be left unaltered. The cir-
cuit of Figure 6.17, for example, is the same as that of 
Figure 6.14, except that the 8 V source has been replaced 
by a current source that cannot be transformed to a volt-
age source. An unknown voltage VX of arbitrary polar-
ity is assumed across the current source and is treated 
like a source voltage, in accordance with the substitu-
tion theorem. The mesh-current equations become

 Mesh 1 2 8 0 8 121 2 3: +( ) ´ =I I I VX- - -  (6.43)

 Mesh 2 0 8 8 81 2 3: ´ + +( ) =I I I VX-  (6.44)

 Mesh 3 8 8 8 8 4 01 2 3: - + + +( ) =I I I-  (6.45)

VX can be eliminated by adding together Equations 
6.43 and 6.44 for the two meshes between which the cur-
rent source is connected, which gives

 10 16 16 121 2 3I I I+ =–  (6.46)

Equation 6.46 is sometimes referred to as the equation 
of a “supermesh” that results from combining meshes 
1 and 2. The mesh-current equation for the supermesh 
can be written following the usual procedure, with-
out  having to introduce an unknown source voltage. 
However, introducing such a voltage is more fundamen-
tal, transparent, and less likely to cause an error.

Adding two mesh-current equations reduces the 
 number of independent mesh-current equations derived 
by one. But an additional equation is provided by the 
relation between the mesh currents and the source 
 current. From Figure 6.17,

 I I1 2 0 125– .=  (6.47)

Equations 6.45 through 6.47 are the three independent 
equations that can be solved to give I1 = 1 A, I2 = 0.875 A, 
and I3 = 0.75 A. These values are the same as in Example 
6.4, because I1 − I2 = 0.125 A, as for the current source 
between meshes 1 and 2.

Primal Exercise 6.11

Simulate the circuit of Figure 6.17 and verify that KCL, 
KVL, and Ohm’s law are satisfied.

6.3  Dependent Sources in Mesh-Current 
Method

Dependent voltage sources are treated in exactly the 
same manner as independent voltage sources. Consider, 
for example, the circuit of Figure 6.18, which is the same 
as that of Figure 6.13 but with the 8 V independent source 
replaced by a dependent voltage source. The mesh- 
current equations are written in the usual way as follows:

 Mesh 1 2 8 0 8 12 321 2 3: +( ) ´ =I I I Ib- - -  (6.48)

 Mesh 2 0 8 8 8 321 2 3: ´ + +( ) =I I I Ib-  (6.49)

 Mesh 3 8 8 8 8 4 01 2 3: - + + +( ) =I I I-  (6.50)

Note that in these equations, the net voltage rise in 
mesh 1 is 12 − 32Ib and the voltage rise in mesh 2 is 32Ib. 
Leaving the 0 coefficient in the equations maintains the 
symmetry in the array of coefficients.
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In order to solve the mesh-current equations, the con-
trolling variable, Ib in this case, should be expressed in 
terms of the mesh currents. In the circuit of Figure 6.18, 
Ib = I1 − I3. Substituting and moving the term in Ib to the 
LHS, Equations 6.48 through 6.50 become

 Mesh 1 10 32 0 40 121 2 3: +( ) ´ =I I I- -  (6.51)

 Mesh 2 32 8 8 24 01 2 3: - I I I+ +( ) + =  (6.52)

 Mesh 3 8 8 8 8 4 01 2: - + + +( ) =I I Vc-  (6.53)

Solving these equations gives I1  =  1  A, I2  =  0.875  A, 
and I3 = 0.75 A, the same as in Example 6.4, because in 
this example Ib = 0.25 A and 32Ib = 8 V, the same as the 
independent source voltage. Note that the array of coef-
ficients is symmetrical with respect to the diagonal in 
Equations 6.48 through 6.50, when 32Ib is on the RHS, 
but the symmetry is destroyed in Equations 6.51 through 
6.53 when 32Ib is substituted for in terms of I1 and I3 and 
moved to the LHS. Again, the effect of the dependent 
source is to modify some of the  resistance coefficients in 
the mesh-current equations.

In the case of dependent current sources, if the 
source is in parallel with a resistance, the dependent 
current source is transformed to a dependent voltage 
source, and the standard procedure followed. If the 
dependent current source cannot be transformed to a 
current source, an unknown voltage is assigned across 
the current source, and the procedure explained in con-
nection with Figure 6.17 is followed. Several examples 
of this type are included in problems at the end of this 
chapter.

Primal Exercise 6.12

Simulate the circuit of Figure 6.18 and verify that KCL, 
KVL, and Ohm’s law are satisfied.

6.4  Problem-Solving Approach Updated

The main procedural steps of the ISDEPIC approach are 
summarized and updated in the following in light of the 
material covered in this chapter:

Step 1—Initialize:

 (a) Mark on the circuit diagram all given values 
of circuit parameters, currents and voltages, as 
well as the unknowns to be determined.

 (b) Label the nodes, as this may be generally helpful.
 (c) If the solution requires that a given value of cur-

rent or voltage be satisfied, assume this value 
from the very beginning.

Step 2—Simplify: Consider, as may be appropriate, the 
following:

 (a) Redrawing the circuit.
 (b) Replacing series and parallel combinations of 

circuit elements by an equivalent circuit element,
 (c) Applying star-delta transformation.
 (d) Removing resistors that are redundant as far as 

the variables of interest are concerned.
 (e) Using shunt-connected ideal voltage sources or 

series-connected ideal current sources to parti-
tion the circuit.

 (f) Exploiting symmetry.

Step 3—Deduce: Determine any values of current or volt-
age that follow immediately from direct application of 
Ohm’s law, KCL, or KVL, without introducing any addi-
tional unknowns.

Step 4—Explore: Examine each of the following alterna-
tives, as may be applicable:

 (a) Consider the nodes and meshes in the circuit to 
see if KCL or KVL can be satisfied by assign-
ment of a single unknown current or voltage, 
and if this unknown can then be directly deter-
mined from KCL or KVL.

 (b) Apply source transformation.
 (c) Use TEC or NEC to (i) determine a voltage or a 

current through a given circuit element, or (ii) 
simplify part of the circuit.

 (d) Apply the substitution or source absorption 
theorems.

 (e) Apply superposition if more than one source is 
present in the circuit.

 (f) Use output scaling.
 (g) Rearrange sources.

Step 5—Plan: Think carefully and creatively about the 
problem in the light of circuit fundamentals and circuit 
analysis techniques. Consider alternative solutions and 
select what seems to be the simplest and most direct 
solution, including the node-voltage or mesh-current 
method.

Step 6—Implement: Carry out your planned solution.

Step 7—Check: your calculations and results.

 (a) Check that your results make sense, in terms of 
magnitude and sign.

 (b) Check that Ohm’s law is satisfied across every 
resistor, that KCL is satisfied at every node, and 
that KVL is satisfied around every mesh.
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 (c) Seek an alternative solution to see if it gives the 
same result.

 (d) Whenever feasible, check simulation with PSpice.

Learning Checklist: What Should 
Be Learned from This Chapter

• In the node-voltage method, voltages of essen-
tial nodes are assigned with respect to one of the 
essential nodes taken as a reference. This auto-
matically satisfies KVL in every mesh in the cir-
cuit. Equations based on KCL are then written 
directly in terms of Ohm’s law for each essential 
node other than the reference node.

• The procedure for writing the node-voltage 
equation for a given essential node ‘n’ can be 
summarized as follows:

 1. The voltage of node ‘n’ is multiplied by 
the sum of all the conductances connected 
directly to this node, which means that node 
‘n’ constitutes one terminal for each of these 
conductances.

 2. The voltage of every other node is mul-
tiplied by the conductance connected 
directly between this node and node ‘n’, 
with a negative sign. A conductance is 
directly connected between two nodes, 
if each node is a terminal for the conduc-
tance. If there is no such conductance, the 
coefficient is zero.

 3. The LHS of the node-voltage equation for 
node ‘n’ is the sum of the terms from the 
preceding steps, ordered as the unknown 
node voltages. This sum is the total current 
leaving node ‘n’ through the conductances 
connected to this node.

 4. The RHS of the equation is equal to the alge-
braic sum of source currents entering node 
‘n’. Thus, a source current entering node ‘n’ 
will have a positive sign, whereas a source 
current leaving node ‘n’ will have a negative 
sign.

• In any circuit, the branch voltages and cur-
rents are independent of the choice of reference 
node.

• In the mesh-current method, the unknown 
mesh currents are assigned in such a manner 
that KCL is automatically satisfied at every 
essential node. Equations based on KVL are 
then written for each mesh directly in terms of 
Ohm’s law.

• The procedure for writing the mesh-current 
equation for a given mesh ‘n’ can be summa-
rized as follows:

 1. The current of mesh ‘n’ is multiplied by the 
sum of all the resistances in the mesh.

 2. The current of every other mesh is mul-
tiplied by the resistance that is common 
between this mesh and mesh ‘n’, with a neg-
ative sign. If there is no such resistance, the 
coefficient is zero.

 3. The LHS of the mesh-current equation for 
mesh ‘n’ is the sum of the terms from the 
preceding steps, ordered as the unknown 
mesh currents. This sum is the total voltage 
drop, in the direction of the mesh current, 
due to all the resistances in the mesh.

 4. The RHS of the equation is equal to the alge-
braic sum of source voltages in mesh ‘n’. A 
source voltage that is a voltage rise in the 
direction of the mesh current has a positive 
sign, whereas a source voltage that is a volt-
age drop in the direction of the mesh current 
has a negative sign.

• In writing the node-voltage and mesh-current 
equations, dependent sources are treated in 
exactly the same way as independent sources.

Problem-Solving Tips

 1. A useful check on the node-voltage and mesh-
current equations is that the array of coefficients 
on the left-hand side of the equations should be 
symmetrical about the diagonal, from top left to 
bottom right. For the purpose of this check, zero 
coefficients must be included and dependent 
sources should appear as sources on the right-
hand side of the equations.

 2. An additional check is that in any row or col-
umn, the mutual conductances (resistances) are 
part of the self-conductances (resistances) in 
that row or column.

Problems

Verify solutions by PSpice simulation.

Node-Voltage Method

Use the node-voltage method in Problems P6.1 through P6.30.

P6.1 The node-voltage equation for node ‘b’ in Figure P6.1 
can be expressed as AVa + BVb + CVc = 2, where A, B, 
and C are constants that depend on the conductances 
only. Determine C.

 Ans. −0.25 S.
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P6.2 Given that Va = 25 V and Vb = 12 V in Figure P6.2, with 
node ‘c’ grounded, determine Va if node ‘b’ is grounded 
instead of node ‘c’.

 Ans. 13 V.

P6.3 (a) Determine Va in Figure P6.3 by transforming the 
voltage sources to current sources and writing the 
node-voltage equation for node ‘a’. (b) Write the same 
node-voltage equation based on KCL, without trans-
forming the sources.

 Ans. 10 V.

P6.4 Determine the node voltages Va and Vb in Figure P6.4.

 Ans. Va = 0, Vb = −5/3 V.

P6.5 (a) Determine VO in Figure P6.5 and the voltages of 
the middle nodes, taking the lower node as reference. 
(b) Repeat (a) taking node ‘n’ as reference. 

 Ans. (a) VO  =  12  V, voltage of both nodes is 6  V; 
(b) VO = 12 V, voltage of middle nodes is zero.

P6.6 (a) Determine VO in Figure P6.6 and the voltage of 
the middle node, taking the lower node as reference. 
(b) Determine VO taking the middle node as reference.

 Ans. (a) VO  =  10  V, voltage of middle node = 5  V; 
(b) VO = 10 V.

P6.7 (a) Determine IO in Figure P6.7, taking the bottom node 
as reference. (b) Repeat (a), taking node ‘n’ as reference.

 Ans. (a) and (b) IO = 20 A.

P6.8 Determine VL and IA in Figure P6.8.

 Ans. 12.1 V, 0.35 A.
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P6.9 Determine the power delivered or absorbed by the cur-
rent sources in Figure P6.9.

 Ans. 15 A source absorbs 19.5 W, 30 A source delivers 
66 W.

P6.10 Determine the node voltages in Figure P6.10.

 Ans. Va = 36.43 V, Vb = 23.57 V, Vc = 37.86 V

P6.11 Determine VO in Figure P6.11.

 Ans. 1.818 V.

P6.12 Determine VO in Figure P6.12.

 Ans. 20 V.

P6.13 Determine the branch voltages in Figure P6.13.

 Ans. VL = 200/11 V, 350/11 V rise across the 5 A source, 
and 150/11 V rise across the dependent source.

P6.14 Determine VO in Figure P6.14.

 Ans. −10/3 V.
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P6.15 Determine in Figure P6.15, (a) Vab and (b) IX, assuming 
all resistances are 1 Ω.

 Ans. (a) −0.5 V; (b) −2 A.

P6.16 Determine VO in Figure P6.16.

 Ans. 30 V.

P6.17 Determine VO in Figure P6.17.

 Ans. −2 V.

P6.18 Determine VO in Figure P6.18.

 Ans. 0.

P6.19 Determine ISRC1 and ISRC2 in Figure P6.19.

 Ans. ISRC1 = 1 A, ISRC2 = 95 A.

P6.20 Determine IX in Figure P6.20.

 Ans. 0.5 A.

P6.21 Determine VO in Figure P6.21.

 Ans. 760/49 = 15.51 V.
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P6.22 Determine IO in Figure P6.22.

 Ans. 15.51 A.

P6.23 Determine IO in Figure P6.23.

 Ans. −10/3 A.

P6.24 Determine VO in Figure P6.24.

 Ans. 4 V.

P6.25 Determine IO in Figure P6.25.

 Ans. −22 A.

P6.26 Determine VO in Figure P6.26 taking node ‘a’ as 
reference.

 Ans. 1400/133 = 10.53 V.

P6.27 Determine the node voltages in Figure P6.27.

 Ans. Va = 12 V, Vb = 34/3 V; Vc = 8 V; Vd = 20/3 V.

P6.28 Determine VO in Figure P6.28 assuming that all resis-
tances are 2 Ω.

 Ans. 4.90 V.
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P6.29 Determine Va, Vb, and Vc in Figure P6.29 assuming all 
resistances are 0.5 Ω.

 Ans. Va = −4 V, Vb = −5 V, Vc = −3 V.

P6.30 Determine VTh and RTh looking into terminals ‘cd’ in 
Figure P6.30.

 Ans. VTh = Vcd = −8/3 V, RTh = −10 Ω.

Mesh-Current Method

Use the mesh-current method in Problems P6.31 through P6.55.

P6.31 Determine ISRC1 and ISRC2 in Figure P6.31.

 Ans. ISRC1 = 0, ISRC2 = 5/3 A.

P6.32 Determine ISRC1 and ISRC2 in Figure P6.32.

 Ans. ISRC1 = −1.3 A, ISRC2 = 2.2 A.

P6.33 Determine IO in Figure P6.33.

 Ans. 0.

P6.34 Determine VO in Figure P6.34.

 Ans. 12.5 V.

P6.35 Determine VO in Figure P6.35.

 Ans. 12.1 V.

P6.36 Determine IO in Figure P6.36.

 Ans. 0.65 A.

P6.37 Determine IX in Figure P6.37.

 Ans. −1.864 A

P6.38 Determine VO in Figure P6.38.

 Ans. 40 V.

P6.39 Determine IX in Figure P6.39.

 Ans. −1.43 mA.

P6.40 Determine VX and VY in Figure P6.40, assuming all 
resistances are 2 Ω.

 Ans. VX = 1.5 V, VY = −9.5 V.

P6.41 Determine IA in Figure P6.41.

 Ans. 1.38 A.
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P6.42 Determine VO in Figure P6.42.

 Ans. 20 V.

P6.43 Determine IO in Figure P6.43.

 Ans. 15.51 A.

P6.44 Determine IO in Figure P6.44.

 Ans. –10/3 A.

P6.45 Determine the power delivered or absorbed by each 
current source in Figure P6.45.

 Ans. 2 A source delivers 2 W and 4 A source delivers 
380 W.

P6.46 Determine IY and VS in Figure P6.46, assuming all resis-
tances are 1 kΩ.

 Ans. 22/25 mA, −62/25 V.

P6.47 Determine IO in Figure P6.47.

 Ans. −22 A.
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P6.48 Determine VO in Figure P6.48.

 Ans. −14.25 V.

P6.49 Determine VO in Figure P6.49.

 Ans. 15.51 V.

P6.50 Determine the power delivered or absorbed by each 
independent source in Figure P6.50.

 Ans. 10 A source delivers 800 W, 20 V source 0 W.

P6.51 Determine IX and VY in Figure P6.51.

 Ans. −0.5 A, −10 V.

P6.52 Determine VO in Figure P6.52, assuming all resistances 
are 2 Ω.

 Ans. −8.67 V.
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P6.53 Determine VX in Figure P6.53.

 Ans. −28.57 V.

P6.54 Determine VO in Figure P6.54.

 Ans. 21 V.

P6.55 Determine IX and IY in Figure P6.55.
 Ans. IX = 4A and IY = 1A
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Objective and Overview

This chapter considers the fundamental properties of 
capacitors and inductors and introduces the very useful 
concept of duality in electric circuits.

The preceding chapters dealt with the analysis of 
resistive circuits only, in the dc steady state. Before 
discussing circuits in the sinusoidal steady state in 
the following chapters, the present chapter introduces 
some fundamental considerations on capacitors and 
inductors, including the capacitance and inductance of 
prototypical devices, voltage–current relations, stored 
energy, and the equivalent capacitance and induc-
tance of capacitors and inductors in series or in paral-
lel. Before discussing inductors, some basic notions on 
electromagnetism are considered.

The chapter concludes with an introduction of the 
very useful concept of duality in electric circuits, start-
ing with duality of the relations for capacitors and 
inductors. Duality can be a useful aid in analyzing elec-
tric circuits involving energy storage elements.

7.1  Voltage–Current Relation of a Capacitor

Concept: The fundamental attribute of a capacitor is its abil-
ity to store energy in the electric field resulting from separated 
positive and negative electric charges.

The ability of a capacitor to store electric energy under-
lies its use in electric circuits to account for the electric 
energy stored in the electromagnetic field, as discussed 
in Section 1.9.

Figure 7.1a shows a prototypical capacitor consist-
ing of two parallel metal plates, d m apart, each having 
an area of A m2. The space between the plates is filled 
with a dielectric material of permittivity, or dielectric 
 constant, ε farads/m. If the capacitor is momentarily 
connected to a source of voltage v, it acquires a charge 
+q on the plate connected to the positive terminal of the 
source and an equal and opposite charge −q on the plate 
connected to the negative terminal (Figure 7.1b). In an 
ideal capacitor, the charge on the capacitor is directly 
proportional to the voltage across it:

 q Cv=  (7.1)

where C  is the capacitance of the capacitor. C is a 
 positive constant for an ideal capacitor, so q and v are 
linearly related. If q is in coulombs and v is in volts, C  is 
in farads (F). Moreover, there is no power dissipation in 
an ideal capacitor. This implies that the insulation of the 
dielectric is perfect, that is, there is no leakage of charge 
between the plates of the capacitor, through the dielec-
tric, so that the initial charge of an ideal, isolated capaci-
tor is retained indefinitely.

The capacitance of the parallel-plate capacitor shown 
in Figure 7.1 can be readily calculated from elemen-
tary principles of electrostatics, with some simplifying 
assumptions. It will be assumed that the electric field ξ 
everywhere between the plates is normal to the surface 
of the plates and given by v/d V/m. This neglects fringe 
effects, which cause the electric field to curve outwards 
near the edges of the plates. If a cylinder of cross- 
sectional area ΔA m2 is imagined to be oriented so that 
its sides are normal to the upper plate and extend above 
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and below this plate, without reaching the lower plate 
(Figure 7.1c), then the charge enclosed by the cylinder 
may be denoted as σΔA, where σ is the charge density 
q/A, assumed to be uniform all over the plate. From 
Gauss’s law of electrostatics, the electric displacement 
D is equal to σ, where D = εξ. Substituting D = q/A and 
ξ = v/d, in this relation,

 
q

A
d

v= e
 

(7.2)

Comparing with Equation 7.1, C for the parallel-plate 
capacitor is

 
C

A
d

= e
 

(7.3)

In general, capacitors can take many different 
forms, depending on the nature of the system and its 
geometry, which dictate how the electric field varies 
throughout the system. As exemplified by Equation 
7.3, it is  generally true that capacitance increases 
(1) with the permittivity of the dielectric between the 
conductive surfaces, (2) with the area of these sur-
faces, and (3) as the separation between these surfaces 
decreases. Note that, from Equation 7.3, the units of ε 
are farads/meter.

The charge q on the capacitor is related to the current 
i through the capacitor, by the defining relation for cur-
rent as i(t) = dq/dt, or

 
q t idt idt Q

t

( ) = = +ò ò 0
0  

(7.4)

where Q0 is any initial charge on the capacitor at t = 0. 
Note that the indefinite integral in Equation 7.4 does 
not explicitly involve Q0, which is in fact the constant of 
integration in this case. On the other hand, Q0 appears 
explicitly as the constant of integration in the expression 
for q in terms of the definite integral from t = 0 to any 
time t. From Equations 7.1 and 7.4,

 
v t

q
C C

idt
C

idt V
t

( ) = = = +ò ò1 1
0

0  
(7.5)

where V0 = Q0/C is the initial voltage across the capaci-
tor at t  =  0. Differentiating both sides of Equation 7.5 
with respect to time and multiplying by C,

 
i t C

dv
dt

( ) =
 

(7.6)

Note that Equation 7.5 is more general than Equation 
7.6 in that it explicitly involves V0.

7.1.1  Sign Convention

It should be noted that a definite sign convention is 
implied in writing Equations 7.5 and 7.6 with a posi-
tive sign on the RHS. The positive sign applies when the 
capacitor current i is assigned in the direction of a volt-
age drop v across the capacitor. But if i is assigned in the 
direction of a voltage rise v, then a negative sign should 
be used. This change of sign can be associated with the 
passive sign convention (Section 1.7) but will be justified 
next by the inherently positive value of C and by the 
flow of charge in a capacitor due to a change in voltage 
across the capacitor.

Suppose that i is in the direction of a voltage drop v, as 
in Figure 7.2. Since C is a positive quantity for a physical 
capacitor, then the value of i must be positive when the 
value of dv/dt is positive in Equation 7.6. If i > 0, then 
positive charges can be considered to flow into the posi-
tively charged plate (Figure 7.2a), thereby increasing the 
charge on the capacitor and hence the voltage across the 
capacitor, which means dv/dt > 0. With both i and dv/dt 
positive, then for C to be positive, a positive sign should 
be used in Equations 7.5 and 7.6.

On the other hand, if i  <  0, positive charges can be 
 considered to flow out of the positively charged plate 
(Figure 7.2b). The charge on the capacitor, and hence the 
voltage across it, will decrease, which means dv/dt  <  0. 
With both i and dv/dt negative, C is again positive in 
Equations 7.5 and 7.6. This justifies writing these equations 
with a positive sign when i is in the direction of a voltage 
drop v.

Whereas for an ideal resistor, the assigned positive 
directions of v and i are always such that i is in the direc-
tion of a voltage drop v, this does not apply to a capaci-
tor. The reason is that a resistor that obeys Ohm’s law 
always dissipates power. On the other hand, a capaci-
tor may actually absorb power when it is charging, or it 
may actually deliver power when it is discharging.

In Figure 7.2, for v positive as shown, a positive i 
gives a positive p = vi for power absorbed, as argued 
in Example 1.4. If power is actually being delivered, 
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then the value of vi in Figure 7.2 is negative. To obtain 
a positive value for power delivered, as is convenient 
in some cases, the assigned positive directions of v 
and i in Figure 7.1 must be reversed relative to one 
another, as in Figure 7.3, where the assigned positive 
direction of i is reversed. But now, a positive i implies 
that positive charges are flowing out of the positively 
charged plate, which means that v is decreasing, so that 
dv/dt < 0 (Figure 7.3a). To have a positive value of C 
in the voltage–current relation, Equations 7.5 and 7.6 
must be written with a negative sign as

 
v t

C
idt( ) = - ò1

 
(7.7)

and

 
i t C

dv
dt

( ) = -
 

(7.8)

If i in Figure 7.3b has a negative value, then charges are 
flowing into the positively charged plate, v is increasing, 
so that dv/dt > 0. With i negative and dv/dt positive, C is 
again positive in Equations 7.7 and 7.8.

It should be noted that since the insulation in an ideal 
capacitor is perfect, and a perfect insulator does not 
allow movement of charge through it, the current in a 
capacitor cannot be a conduction current due to move-
ment of charge from one plate of the capacitor to the 
other, through the insulation. Rather, the capacitor cur-
rent is a displacement current. A simple interpretation 
of this current is to consider that the current i flowing 
into the positive terminal of the capacitor increases the 
positive charge on the positive plate of the capacitor by 
an amount d q in a time d t, where d dq i t= . The positive 
charge d q “displaces”, through electrostatic repulsion, 
an equal positive charge d q from the negative plate. The 
displaced positive charge d q flows out of the negative 
terminal, thereby completing the current path through 
the capacitor, without any conduction current actually 
flowing between the plates of the capacitor. At the end 

of the time interval d t, the charge on the positive plate 
of the capacitor is + +( )q qd  and that on the negative pate 
is - -( )q qd .

7.1.2  Steady Capacitor Voltage

By a steady capacitor voltage is meant a voltage across 
the capacitor that is constant for a specified duration. In 
contrast, a dc voltage is, strictly speaking and from a sig-
nal analysis viewpoint, a steady voltage over all time, 
from t = −∞ to t = +∞. An example of a steady capacitor 
voltage is the voltage from t = 1 s to t = 2 s in Figure 7.5. 
A steady current is defined in a similar manner as a cur-
rent that is constant for a specified duration.

When the capacitor voltage is a steady voltage VSD, the 
charge on the capacitor does not change with time, so 
that i(t) = CdVSD/dt = 0, in accordance with Equation 7.6. 
In other words, the capacitor acts as an open circuit when 
the voltage across the capacitor is steady, as illustrated in 
Figure 7.4a. The same is true, of course, of a dc voltage, 
VDC, since dVDC/dt = 0. A capacitor is said to “block” cur-
rent due to a dc voltage and is often used in electronic 
circuits for this purpose.

However, it must be noted that a steady current can 
be forced through a capacitor by an ideal, steady cur-
rent source ISD (Figure 7.4b). Assuming the capacitor is 
initially uncharged, then from Equation 7.5,

 
v t

C
I dt

I
C

tSD
SD

t

( ) = =ò1
0  

(7.9)

The capacitor voltage increases linearly with time, at 
a rate ISD/C, during the interval in which the capacitor 
current is steady and therefore constant with respect to 
time (Figure 7.4b). Conversely, a capacitor voltage that 
increases linearly with time produces a steady capacitor 
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current. Thus, it follows from Figure 7.4b that if a  voltage 
v = ISDt/C is applied to a capacitor, i(t) = Cdv/dt = ISD.

7.1.3  Stored Energy

The energy stored in the electric field of a capacitor is 
equal to the work done in separating the charges +q and 
−q, in opposition to the force of attraction between them. 
If a capacitor is being charged, and referring to Figure 7.2, 
the power input to the capacitor at any instant of time is 
p = vi = vdq/dt. The energy w absorbed by the capacitor in 
building up the charge on the capacitor from 0 to a value 
q is the time integral of p, in accordance with Equation 1.9. 
Assuming that the voltage is applied at t = 0 with q = 0 for 
t ≤ 0, the energy supplied over the interval from t = 0 to t is

 
w t pdt v

dq
dt

dt vdq
t t q

( ) = = =ò ò ò0 0 0  
(7.10)

where the integration is from t = 0, when q = 0, to time t, 
when the charge is q. From Equation 7.1, dq  =  Cdv. 
Substituting in Equation 7.10,

 
w t C vdv Cv

q
C

qv
v

( ) = = = =ò 1
2

1
2

1
2

2
2

0  
(7.11)

Primal Exercise 7.1

Determine the capacitance of a parallel-plate capacitor 
having plates of 4 × 3 cm, separated by 0.5 cm filled with 
an insulator having a relative permittivity 5000ε0, where 
ε0 = 8.85 × 10−12 F/m is the permittivity of free space.

Ans. 10.62 nF.

Primal Exercise 7.2

An ideal, parallel-plate capacitor of 10  μF is charged 
to 1  V. If the separation between the parallel plates is 
doubled, determine the voltage across the capacitor. 
Compare the stored energies before and after the dis-
tance is doubled and explain the difference.

Ans. 2  V. Stored energy is doubled from 5 J to 10 J 
because of work done against attraction between plates. 

Primal Exercise 7.3

If the voltage across a 1 μF capacitor is 2cost V, express 
the capacitor energy as a function of time and determine 
the difference between the maximum and minimum 
energy stored in the capacitor.

Ans. w(t) = (cos2t – 1) μJ, 2 μJ.

Example 7.1:  Capacitor Response 
to a Trapezoidal Voltage

The voltage shown in Figure 7.5 is applied to a 1mF capac-
itor that is initially uncharged. Determine as a function 
of time (a) the charge on the capacitor, (b) the capaci-
tor current, (c) the power absorbed by the capacitor, and 
(d) the energy absorbed by the capacitor. Assume the 
assigned positive directions of Figure 7.2.

Solution:
 (a) Since various quantities are required as a function 

of time, v should be expressed analytically as a 
function of time. Thus, v(t) = 5t V 0 ≤ t ≤ 1 s, and 
v(t) = 5 V, 1 ≤ t ≤ 2 s; v(t) in the range 2 ≤ t ≤ 2.5 s 
can be conveniently derived as follows: the slope 
of v with respect to t is −5/0.5 = −10 V/s in this 
range. The function v(t) = −10t has the same slope 
but passes through the origin. The required func-
tion is displaced by 2.5 s to the right, so its equa-
tion is obtained by substituting (t – 2.5) for t, 
giving: v(t) = −10(t – 2.5) V, 2 ≤ t ≤ 2.5 s. As a check, 
v(t) = 5 V when t = 2 s, and v(t) = 0 when t = 2.5 s.

From Equation 7.1, q = Cv = 10−6 × v coulombs = v 
microcoulombs (μC). It follows that q(t) = 5t μC, 
0 ≤ t ≤ 1 s; q(t) = 5 μC, 1 ≤ t ≤ 2 s; q(t) = 10(2.5 – t) 
μC, 2 ≤ t ≤ 2.5 s; and q(t) = 0, t ≥ 2.5 s (Figure 7.6a).

 (b) i(t) = dq/dt; hence, i(t) = 5 μC/s = 5 μA, 0 ≤ t ≤ 1 s; 
i(t) = 0, 1 ≤ t ≤ 2 s during the time that v is steady; 
i(t) = −10 μA, 2 ≤ t ≤ 2.5 s; and i(t) = 0, t ≥ 2.5 s 
(Figure 7.6b). Note that since q starts and ends 
with zero, the positive area of the i vs. t graph is 
equal in magnitude to the negative area.

 (c) p = vi; multiplying v and i over the various time 
ranges gives p(t)  =  25t  μW, 0  ≤  t  ≤  1  s; p(t)  =  0, 
1 ≤ t ≤ 2 s; p(t) = −100(2.5 – t), 2 ≤ t ≤ 2.5 s; and 
p(t)  =  0, t  ≥  2.5  s (Figure 7.6c). Note that the 
capacitor charges and absorbs power during the 
interval 0 ≤ t ≤ 1 s while v and i are positive. No 
power is absorbed or delivered during the inter-
val 1  ≤  t  ≤  2  s when i  =  0. During the interval 
2 ≤  t ≤  2.5  s, i < 0, the capacitor discharges and 
delivers power. At t = 2.5 s, q = 0, and the capacitor 
is fully discharged. This means that all the energy 
absorbed during the interval 0 ≤ t ≤ 1 s is returned 
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FIGURE 7.5
Figure for Example 7.1.
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to the supply during  the interval 2  ≤  t  ≤  2.5  s. 
Since energy is the area under the power curve, 
the positive area of the triangle extending from 
t  =  0 to t  =  1  s, which is 12.5  μJ, must be equal 
in magnitude to the negative area extending from 
t = 2 to t = 2.5 s, which is in fact −12.5 μJ.

 (d) Energy as a function of time is obtained as 

w t pdt
t

( )= ò0 . Thus, w t dt t
t

( ) = =ò 25 12 5 2

0
. , 0 ≤ t ≤ 1 s.  

During  the  interval 1 ≤ t ≤ 2  s, when no power 
is absorbed or delivered, the energy stored 
stays at 12.5 μJ. During the interval 2 ≤ t ≤ 2.5 s, 

w t t dt t t
t

( ) = - -( ) + = - +( ) =ò 100 2 5 12 5 50 5 6 25
2

2. . .
 

50 (t −2.5)2; w(t) = 0 at t = 2.5 s, and since p(t) = 0 
for t ≥ 2.5 s, w(t) = 0 for t ≥ 2.5 s. The variation of w 
with t is shown in Figure 7.6d. Note that since the 
voltage returns to zero for t ≥ 2.5 s, w = 0.

Simulation: The circuit is entered as in Figure 7.7. The 
capacitor is entered from the ANALOG_P library, because 
this capacitor has terminals 1 and 2 marked for convenience 
in determining unambiguously the assigned positive 
directions of capacitor voltage and current. The conven-
tion in PSpice is that positive current flows from terminal 
1 to terminal 2 through any circuit element and that posi-
tive voltage is that of terminal 1 with respect to terminal 2. 

When using time-domain analysis, as in this case, initial 
conditions of energy storage elements should be specified, 
even if they are zero. To do so, display the Property Editor 
spreadsheet for the capacitor and enter 0 in the IC column. 
To display this entry, click on the Display button and select 
‘Name and Value’ under ‘Display Format’. The source is 
VPWL (piecewise-linear voltage source) from the source 
library, with the breakpoints entered as voltage values at 
the corresponding times in the Property Editor spread-
sheet for the source (Appendix C). They are displayed in 
the same manner as the initial conditions for the capaci-
tor just described. In the Simulation Settings, ‘Analysis 
type’ is ‘Time Domain (Transient)’, ‘Run to time’ is 3  s, 
‘Start Saving Data After’ is 0, and ‘Maximum Step size’ is 
0.5 m. After the simulation is run, then in order to display 
the current and power dissipated to appropriate vertical 
scales, select Trace/Add Trace in the Schematic1 window 
and enter 10*I(C1:1),W(C1). The time variation of capacitor 
current and dissipated power is displayed, as in Figure 7.8.

Primal Exercise 7.4

Repeat Example 7.1 assuming the voltage increases 
 linearly from 0 to 5 V in 0.5 s, stays at 5 V for 1 s, then 
decreases linearly to zero in 1 s.
Ans. 0 < t < 0.5 s: q(t) = 10t μC, i(t) = 10 μA, p(t) = 100t μW, 
w(t) = 50t2 μJ; 0.5 < t < 1.5 s: q(t) = 5 μC, i(t) = 0, p(t) = 0, 
w(t) = 12.5 μJ; 1.5 < t < 2.5 s: q(t) = –5t + 12.5 μC, i(t) = –5 μA, 
p(t) = 25t − 62.5 μW, w(t) = 12.5t2 − 62.5t + 78.125 μJ.

Example 7.2: Capacitive Circuit in dc State

It is required to determine VL in Figure 7.9a under dc con-
ditions and the total energy stored in the two capacitors.

Solution:

Under dc conditions, the two capacitors act as open 
 circuits (Figure 7.9b). No current flows in the 2  μF 
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capacitor, nor in the 1  μF capacitor, nor in the 6 Ω 
 resistor. The same current IS flows in the 4 and 8 Ω resis-
tors. Hence, these resistors are in series, so that voltage 

division applies. It follows that VL =
+

´ =8
8 4

12 8 V, and 
IS = 12/12 = 1 A.

Since no current flows in the 6 Ω resistor, the  voltage 
across the 1  μF capacitor is 8  V, the same as VL. The 
voltage across the 2  μF capacitor is the same as that 
across the 4 Ω resistor. From voltage division, this is 

4
8 4

12 4
+

´ = V. As a check, KVL in the loop consist-

ing of the voltage source and the 4 and 8 Ω resistors is 
12 – 8 = 4 V. The energy stored in the 2 μF capacitor is 
1
2

1
2

2 4 162 2
CV = ´ ´( ) = mJ, and the energy stored in the

 

1  μF capacitor is 
1
2

1
2

1 8 322 2
CV = ´ ´( ) = mJ. The total

 
stored energy is 48 μJ.

Simulation: The circuit is entered as in Figure 7.10. After 
selecting ‘Bias Point’ under ‘Analysis type’ in the Simu-
lation Settings and running the simulation, pressing the 
V and I buttons displays the voltages and current shown.

Problem-Solving Tip

• A capacitor is replaced by an open circuit under dc 
or steady conditions.

Primal Exercise 7.5

Repeat Example 7.2 assuming the source voltage is 18 V 
and interchanging the locations of the 4 Ω and 8 Ω resistors.
Ans. VL = 6 V; W = 162 μJ.

7.2  Voltage–Current Relation of an Inductor

Before considering the v–i relation for the ideal induc-
tor, some basic notions of electromagnetism will be 
reviewed.

7.2.1  Magnetic Fields and Related Quantities

A permanent magnet is surrounded by a magnetic 
field, in which a force is exerted on a magnetic object 
such as a compass needle, which is itself a small perma-
nent  magnet. The magnetic field can be conveniently 
visualized by means of imaginary lines referred to as 
magnetic field lines, as illustrated in Figure 7.11 for a 
bar magnet. Magnetic field lines are considered to be 
directed from the north pole of the magnet to its south 
pole, as indicated by the arrows on the lines. At any 
point along a field line, the direction of the tangent to 
the field line is the direction of the magnetic field at 
that point.

Magnetic field lines not only give the direction of 
the magnetic field but their density is indicative of the 
strength of the magnetic field, where density refers to 
the number of lines per unit area oriented normal to the 
direction of the lines.
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The totality of magnetic field lines emanating from 
the north pole of a magnet, or converging onto its south 
pole, is the magnetic flux of the magnet. The stronger 
the magnet, the larger the flux, the higher is the density 
of the magnetic field lines, and the stronger is the mag-
netic field. The unit of magnetic flux in SI units is the 
weber (Wb).

A magnetic field is associated with moving electric 
charges. The magnetic field lines for a long and straight 
current-carrying wire form concentric circles around 
the wire, in any plane normal to the wire (Figure 7.12). 
The direction of the magnetic field is related to that of 
the current by the right-hand rule: If the wire is gripped 
with the right hand, with the thumb extended in the 
direction of the current, the fingers point in the direction 

of the magnetic field. A basic quantity of the magnetic 
field is the magnetic field strength vector 

�
H, related to 

current by Ampere’s circuital law:

 
H dl I H dl Il enc enc� �

� �
ò ò= =or ×

 
(7.12)

where the circle around the integral signifies integra-
tion around a closed path, dl is an increment of distance 
along this closed path, and Ienc is the current enclosed 
in traversing the closed path once. 

�
H is a vector having 

magnitude and direction. In the first form of the integral 
in Equation 7.12, Hl is the component of 

�
H in the direc-

tion of dl
�
. Alternatively, Ampere’s law can be expressed 

in the form of the second integral in Equation 7.12, as 
the scalar product of the two vectors 

�
H and dl

�
. It is 

seen from Equation 7.12 that the unit of H in SI units is 
amperes/meter (A/m).

In the case of a long, straight wire carrying a dc cur-
rent, 

�
H is of constant magnitude H around a circle of 

radius r centered on the wire in a plane normal to the 
wire (Figure 7.12a), and 

�
H is directed tangentially at 

every point along the circumference of the circle. The 
line integral over a circle of radius r is simply 2πrH in 
this case, and Ienc = I. Substituting in Equation 7.12,

 
H

I
r

=
2p  

(7.13)

Another basic quantity of the magnetic field is the 
magnetic flux density, 

�
B, that is, flux per unit area. 

�
B is 

related to 
�
H as

 
� �
B Hr= m m0  (7.14)

where μ0 is the permeability of free space (4π × 10−7 N/A2 
or henries/m, the henry being the unit of inductance, as 
explained in Section 7.4) and μr is the relative perme-
ability of the medium with respect to that of free space; 
that is, μr is the ratio of the permeability of the given 
medium to that of free space. Permeability is an impor-
tant magnetic property of the medium, as discussed 
later. For the current-carrying conductor of Figure 7.12a, 
the flux density is the flux per unit area in the plane of 
the wire (Figure 7.12b). It is denoted by Bn, where the 
subscript ‘n’ emphasizes that the flux density is normal 
to the plane of the wire. Being flux density, the unit of B 
is the tesla (T), equivalent to 1 Wb/m2.

An essential difference between H and B is that H is 
directly related to current, independently of the mag-
netic properties of the medium surrounding the current- 
carrying conductor. B, on the other hand, is directly 
related to voltage, through Faraday’s law (Equation 7.18, 
discussed later), independently of the magnetic 
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FIGURE 7.11
Magnetic field lines around a permanent magnet.
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FIGURE 7.12 
(a) Magnetic field of a long, straight wire, the directions of the current 
and the field being related by the right-hand rule and (b) magnetic 
flux density indicated as density of lines per unit cross-sectional area 
oriented normal to the direction of the field.
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properties of the medium. This implies that B and H must 
be related by the magnetic properties of the medium, as 
in Equation  7.14. Evidently, the stronger the magnetic 
field, the stronger is the magnetic field strength, H, and 
the larger is the magnetic flux density, B. The magnetic 
properties of a medium arise from the magnetic fields 
generated internally in the material in response to the 
applied magnetic field. In materials of high permeability, 
the magnetic effects due to the material play a dominant 
role in the magnetic behavior of the material.

7.2.2  Magnetic Flux Linkage

Consider a single turn of wire through which mag-
netic flux passes (Figure 7.13a). The magnetic flux link-
ing the turn is simply the magnetic flux passing through 
the area enclosed by the turn, in the direction normal to 
the plane of the turn. This flux is the integral, over the 
area of the turn, of Bn, the component of magnetic flux 
density B that is normal to the plane of the turn, multi-
plied by 1 for a single turn:

 
l f= æ

è
ç

ö
ø
÷´ = ´ò B dAn

A
n1 1

 
(7.15)

In Equation 7.15, the integral in brackets is ϕn, the 
normal component of the flux through the turn; ϕn 
multiplied by ‘1’ for a single turn is the magnetic flux 
 linkage λ. With the unit of ϕn being a weber (Wb), the 
unit of magnetic flux linkage is the weber-turn (Wb-T).

For two turns of thin wire that are closely packed (Figure 
7.13b), the same magnetic flux may be assumed to pass 
through each turn, and in the same direction, so that ϕn is 
the same for each turn. The flux linkage of the two turns 
is ϕn multiplied by ‘2’ for two turns, that is, λ = ϕn × 2. In 
effect, having two turns doubles the area through which 
flux passes, which doubles the flux linkage.

In the case of a coil of one or more turns, the relative 
directions of current in the coil and magnetic flux in the 
coil can be determined by the right-hand rule, which in 

this case can be alternatively expressed as follows: wrap 
the fingers of the right hand around the coil, with the 
fingers pointing in the direction of current in the turns of 
the coil. The extended thumb will point in the direction 
of flux in the coil (Figure 7.13c). Note that the right-hand 
rule of Figure 7.12 can still be applied, but one must be 
careful as to whether the flux whose direction is being 
determined is inside or outside the coil. Thus, current 
in the front part of the coil flows from left to right. If the 
thumb of the right hand points in the direction of this 
current, the fingers will be inside the coil and will point 
upwards, in the direction of flux inside the coil. However, 
the current in the rear part of the coil flows from right to 
left. If the thumb of the right hand points in the direction 
of this current, the fingers will be outside the coil and will 
point downwards, in the direction of flux in the return path 
outside the coil.

The definition of λ can be extended to a coil of N turns. 
However, when the coil is in a medium of small rela-
tive permeability, as in air or other nonmagnetic, or 
weakly magnetic material, not all the flux lines will 
pass through all the turns. Some of the flux lines will 
loop back around some of the turns of the coil without 
passing through all the turns of the coil, as illustrated in 
Figure 7.14a. λ can be formally defined as

 
l f=

=
å

j

N

nj

1  
(7.16)

where ϕnj, the normal component of flux through the jth 
turn, is summed over all the N turns. In other words, 
flux linkage is the total flux through all the turns of the coil in 
the direction normal to the plane of each turn.

A convenient conceptualization is to define an effec-
tive flux ϕeff that passes through every turn of the coil, 
in the direction normal to the plane of each turn, as in 
Figure 7.14b, and which when multiplied by N gives the 
true value of flux linkage as in Equation 7.16. Thus,

 l f= ´eff N  (7.17)
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i i
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FIGURE 7.13 
Magnetic flux linking a single turn (a) and two closely-packed turns (b), and (c) the directions of the current in the turn and the flux through the 
turn are related by another form of the right-hand rule.
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The importance of magnetic flux linkage stems from 
the fact that Faraday’s law of electromagnetic induction 
is expressed in terms of flux linkage as

 
v t

d
dt

N
d
dt

eff( ) = =l f

 
(7.18)

In Equation 7.18, λ is time varying and could be posi-
tive or negative. v(t) is the voltage induced in the coil. 
The magnitude symbol is used on both sides of Equation 
7.18 to emphasize that it is the magnitude of  v(t) that is 
given by the equation. The polarity of v(t) is determined 
by Lenz’s law, according to which the polarity of the 
induced voltage is such that it opposes the change in the 
magnetic flux linkage that induces the voltage. Lenz’s 
law will be illustrated in the discussion on induced volt-
age in the following section.

According to Equation 7.18, an alternative unit of 
magnetic flux linkage is the volt-second (Vs), which 
is also used in connection with voltages applied to 
coils. Note that Equation 7.18 makes ϕeff a well-defined 
quantity that can be determined from experimental 
measurements. For if a time-varying voltage is applied 
to a coil, it is possible, from measurement of this volt-
age, the coil current, and the coil resistance, to deter-
mine v across the ideal inductor component of the coil 
(Figure 7.14c). According to Equation 7.18, λ is the inte-
gral of this voltage with respect to time and is the area 
under the curve. ϕeff is then this area divided by the 
number of turns of the coil.

An important case that arises in practice, and which is 
conveniently simple to consider, is that of a coil wound 
around a toroidal core of high permeability (Figure 7.15a). 

The circular shape of the core, which naturally conforms 
to the circular path of the flux in the core, together with 
the high permeability, ensure that the same flux in the core 
passes through every turn of the coil in a direction normal to 
the plane of each turn. ϕeff for the flux in the core is in this 
case the same as the actual flux in the core.

To express Ampere’s circuital law in the case of a 
toroidal core, consider a plane that is normal to the axis 
of the toroid and which cuts the toroid into two halves, 
one of which is shown in the cross section in Figure 
7.15b. If we follow a path in this plane around a circle of 
radius r inside the toroid and centered on the axis of the 
toroid, we find that the current I in each of the N turns of 
the coil crosses the inside of the circle in the same direc-
tion in all the turns, as illustrated in Figure 7.15b for 
three turns. As the circle is traversed once, the current I 
is enclosed N times, once for each turn of the coil, so that 
Ienc in Equation 7.12 is NI. H is everywhere tangential to 
a given circle of radius r (Figure 7.15b) and is considered 
to have the same value at each point on the circumfer-
ence of the circle. This follows from the fact that the flux 
is the same through any transverse cross section of the 
core that is normal to the tangent to the circle at any 
point on the circumference of this circle. B and hence H 
are therefore the same at any point on the circumference 
of the given circle of radius r. From Equation 7.12,
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2
p

p
rH NI H

NI
r

= =or
 

(7.19)

Primal Exercise 7.6

The area of a 500-turn coil is 50  cm2. Determine the 
 voltage induced in the coil by a magnetic field of flux 
density that increases at a constant rate from 0 to 
5 × 10−4 Wb/m2 in 0.1 s.

Ans. 12.5 mV.
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FIGURE 7.14
(a) Magnetic field lines of a multi-turn coil in a medium of low 
 magnetic permeability, (b) effective flux of the  solenoid, and (c) flux 
linkage of the solenoid.
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FIGURE 7.15 
(a) Coil wound on a toroidal core of high magnetic  permeability and (b) 
section through the toroidal core showing the magnetic field in the core.
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7.2.3  Inductance

Concept: The fundamental attribute of an inductor is its abil-
ity to store energy in the magnetic field resulting from current 
flow in a conductor.

As mentioned in Chapter 1, an ideal inductor accounts 
for the magnetic energy of the electromagnetic field. The 
circuit parameter associated with this energy storage 
ability is the inductance, defined as follows:

Definition: The inductance of a coil is the flux linkage of the 
coil per unit current in the coil.

According to this definition, the inductance L of a 
 current-carrying coil is

 
L

i
Li= =l lor

 
(7.20)

In an ideal inductor, L is a positive constant, so that λ 
and i are linearly related, and there is no power dissipa-
tion. With L positive, λ and i in Equation 7.20 must have 
the same sign, which means that a positive direction for 
λ should be associated with the positive direction for i. If 
i has a negative value, λ also has a negative value. This is 
analogous to the relation between q and v for a capacitor.

If the coil is in air or in a low-permeability medium, 
the effective flux can be used in the expression for flux 
linkage, as in Equation 7.18, to give

 
L

i
N

i
eff= =l f

 
(7.21)

A simple expression for the inductance of the coil in 
Figure 7.15 can be readily derived, based on two simpli-
fying assumptions: (1) that the current-carrying wire is 
tightly wound around the core and that the wire diam-
eter and thickness of insulation around the wire are 
sufficiently small so that the flux outside the core is neg-
ligible; in other words, all of the coil flux is confined to 
the core, and (2) that the diameter of the core is small 
compared with the mean diameter, a, of the toroid, so 
that H can be assumed constant across the transverse 
cross section of the core. It follows from Equation 7.19 
that H = NI/πa, independently of r. From Equation 7.14, 
B = μH, where μ = μrμ0 (Equation 7.14). Hence,

 
B

a
NI= m

p  
(7.22)

The flux in the core is ϕ = BA, where A is the cross-
sectional area of the core. The flux linkage is

 
l f m

p
= =N

A
a

N I2

 
(7.23)

Dividing by the current gives the inductance of the 
coil as

 
L

A
a

N= m
p

2

 
(7.24)

Note that inductance is proportional to permeability 
and to the square of the number of turns in the coil.

7.2.4  Voltage–Current Relation

Differentiating both sides of Equation 7.20 with respect to 
time and using Faraday’s law, |v|=|dλ/dt| (Equation 7.18),

 
v t L

di
dt

( ) =
 

(7.25)

where the magnitude designation has been dropped 
because of a definite sign convention associated with 
Equation 7.25, as will be explained shortly. When v is in 
volts, i in amperes, and t in seconds, L is in henries (H). 
Integrating both sides gives the equivalent i–v relation:

 
i t

L
vdt

L
vdt I

t

( ) = = +òò1 1
0

0  
(7.26)

As mentioned in connection with Equation 7.6, 
Equation 7.26 is more general than Equation 7.25 in that 
it explicitly involves the initial inductor current at t = 0.

Since L is a positive quantity, a definite sign conven-
tion is implied in writing Equations 7.25 and 7.26 with 
a positive sign on the RHS, in that v must be positive 
when di/dt is positive. It will be argued next that in 
order to satisfy this requirement, the assigned positive 
direction of i and the polarity of v must be such that i is 
in the direction of a voltage drop v, as in Figure 7.16a. 
The justification can be explained with reference to 
Figure 7.16b and will be illustrated by a simulation of 
the circuit, assuming L = 0.4 H and Rsrc = 2 Ω. From KVL,

 v R i vSRC src- - = 0 (7.27)
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FIGURE 7.16 
Assigned positive directions associated with a positive sign in 
Equation 7.25. (a) Current assigned in the direction of a voltage drop 
across the coil and (b) circuit for determining the polarity of the induced 
voltage.
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or

 i v v RSRC src= ( )– /  (7.28)

Let vSRC be a steady voltage of 4 V, initially and up to 
t = 0.5 s (Figure 7.17a). When vSRC has been steady for 
a sufficiently long time, i does not change with time so 
that v = Ldi/dt = 0. It follows from Equation 7.28 that i is 
steady at vSRC/Rsrc = 2 A (Figure 7.17a).

When vSRC increases with time, starting at t = 0.5 s, it 
is to be expected from Figure 7.16b and from Equation 
7.28 that i, the current in the circuit, will also increase 
with vSRC, so that di/dt  >  0. According to Lenz’s law, 
v opposes the increase in i by having a positive value 
that subtracts from vSRC in Equation 7.28, as illustrated 
by the lower trace in Figure 7.17a. With di/dt and v, 
both positive, Equation 7.25 should have a positive 
sign so that L is positive.

On the other hand, if vSRC decreases with time, as 
in Figure 7.17b for t > 0.5 s, i will decrease with time, 
in accordance with Equation 7.28, so that di/dt  <  0. 
To oppose this decrease, in accordance with Lenz’s 
law, the value of v becomes negative, as in the lower 
trace, which adds to vSRC in Equation 7.28 and therefore 
opposes the decrease in i. It is seen that in both cases 
of i increasing or i decreasing with time, assigning i in 
the direction of a voltage drop v across the coil ensures 
that L has a positive value while satisfying Lenz’s law. 
This  justifies having a positive sign on the RHS of 
Equations 7.25 and 7.26.

As mentioned previously, an inductor is an energy 
storage element that can store magnetic energy and 
can deliver the stored energy to the rest of the circuit. 
Having i in the direction of a voltage drop v means that 
power absorbed by the inductor is positive and power 
delivered is negative. To make the power delivered pos-
itive, as is convenient in some cases, the relative direc-
tions of i and v should be reversed, as in Figure 7.18a, in 
which i is in the direction of a voltage rise v. It will be 
shown that in order to have a positive value of L under 

these conditions, the v–i relations for the inductor must 
be written with a negative sign:

 
v t L

di
dt

( ) = -
 

(7.29)

and

 
i t

L
vdt

L
vdt I

t

( ) = - = - +ò ò1 1
0

0  
(7.30)

The negative sign can be justified with reference to 
Figure 7.18b, in which the polarity of vSRC is reversed in 
order to reverse the direction of i. From KVL,

 - + - =v R i vSRC src 0 (7.31)

or

 
i

v v
R

SRC

src
= +

 
(7.32)

When vSRC decreases with time, i will also decrease 
with time in accordance with Equation 7.32, so that 
di/dt  <  0. v opposes the decrease in i by having a 
positive value that adds to vSRC in Equation 7.32, as 
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illustrated by the lower trace in Figure 7.19a. With 
di/dt negative and v positive, the negative sign 
in Equation 7.29 ensures that L is positive. On the 
other hand, if vSRC increases with time, i will increase 
with time, in accordance with Equation 7.32, so 
that di/dt  >  0. To oppose this increase, the value of 
v becomes negative, as in the lower trace in Figure 
7.19b, which subtracts from vSRC in Equation 7.32. The 
negative sign in Equation 7.29 again ensures that L is 
positive. It is seen that in both cases of i increasing or 
i decreasing with time, assigning i in the direction of 
a voltage rise across the coil ensures that L has a posi-
tive value while satisfying Lenz’s law. This justifies 
writing Equations 7.29 and 7.30 with a negative sign 
on the RHS.

In both cases of Figures 7.16 and 7.18, the following 
concept applies:

Concept: If the current through an inductor increases with 
time, this increase is opposed, in accordance with Lenz’s law, 
by an induced voltage in the inductor that is a voltage drop 
in the direction of current. Conversely, if the current through 
an inductor decreases with time, this decrease is opposed by 
an induced voltage in the inductor that is a voltage rise in the 
direction of current.

In the case of both capacitors and inductors, the 
 following sign convention applies, consistent with the 
passive sign convention (Section 1.7):

Sign Convention: If the assigned positive direction of cur-
rent through a capacitor or an inductor is in the direction of 
a voltage drop across the circuit element, the voltage–current 
relations for the capacitor or the inductor are written with 
a positive sign. On the other hand, if the assigned positive 
direction of current through the capacitor or inductor is in 
the direction of a voltage rise across the circuit element, the 
voltage–current relations for the capacitor or the inductor 
are written with a negative sign. The foregoing ensures that 
C and L are positive quantities irrespective of the assign-
ment of the positive direction of current through the circuit 
element and the positive polarity of voltage across the circuit 
element.

7.2.5  Steady Inductor Current

When the inductor current is a steady current ISD, the 
flux linkage in the inductor does not change with time, 
v(t) = LdISD/dt = 0, in accordance with Equation 7.25. 
In  other words, the inductor acts as a short circuit 
when  the inductor current is steady, as illustrated in 
Figure 7.20a.

However, it should be noted that if an ideal steady volt-
age source VSD is applied across the inductor, with no ini-
tial flux in the inductor, it follows from Equation 7.26 that

 
i t
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tSD
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t

( ) = =ò1
0  

(7.33)

The inductor current increases linearly with time at a 
rate VSD/L, as illustrated in Figure 7.20b. Conversely, an 
inductor current that increases linearly with time pro-
duces a steady inductor voltage. Thus, it follows from 
Figure 7.20b that if the inductor current is VSDt/L, the 
inductor voltage is v = Ldi/dt = VSD.
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7.2.6  Stored Energy

The energy stored in the magnetic field of an inductor 
is equal to the work done in establishing the flux in the 
inductor against the induced voltage, which opposes 
the increase in inductor current during the establish-
ment of the flux. Consider that the assigned direction of 
i through an inductor is that of a voltage drop v across L, 
as in Figure 7.16a. The instantaneous power input to the 
inductor is p = vi. Assuming that the voltage is applied 
at t = 0 with i = 0 and λ = 0 for t < 0, the energy supplied 
over the interval from t = 0 to t is

 
w t pdt vidt

t t

( ) = =ò ò0 0  
(7.34)

Substituting dλ = vdt from Faraday’s law and dλ = Ldi 
from Equation 7.18, Equation 7.34 becomes
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(7.35)

It should be kept in mind that electric energy in an 
electric circuit is represented by energy stored in capaci-
tors. It is a function of voltages across these capacitors 
and represents potential energy of current carriers with 
respect to an arbitrary zero reference. On the other hand, 
magnetic energy in an electric circuit is represented by 
energy stored in inductors. It is a function of currents 
through these inductors and represents kinetic energy 
of current carriers.

Primal Exercise 7.7

Determine the inductance of a coil of 500 turns on a 
toroidal core, as in Figure 7.15, having a mean diam-
eter of 10  cm, a cross-sectional area of 0.8  cm2, and 
μr = 2000.

Ans. 1.6 H.

Example 7.3: Inductor Response 
to Trapezoidal Current

The current shown in Figure 7.21 is applied to a 1 μH 
inductor of zero initial flux. Determine as a function of 
time (a) the flux linkage of the inductor, (b) the induc-
tor voltage, (c) the power absorbed by the inductor, 
(d)  and the energy absorbed by the inductor. Assume 
the assigned positive directions of Figure 7.16.

Solution:

 (a) The first step is to express the current as a  function 
of time, as explained in Example 7.1. Thus, 
i(t) = 5t A, 0 ≤ t ≤ 1 s; i(t) = 5 A, 1 ≤ t ≤ 2 s; and 
i(t) = −10(t – 2.5) A = 10(2.5 – t), 2 ≤ t ≤ 2.5 s.

From Equation 7.20, λ = Li = 10−6 × i Vs = i μVs. 
It follows that λ(t) = 5t μVs, 0 ≤ t ≤ 1 s; λ(t) = 5 
μVs, 1 ≤ t ≤ 2 s; λ(t) = 10(2.5 – t) μVs, 2 ≤ t ≤ 2.5 s; 
and λ(t) = 0, t ≥ 2.5 s (Figure 7.22a).

 (b) v(t)  =  dλ/dt; hence, v(t)  =  5 μVs/s  =  5  μV, 
0 ≤ t ≤ 1 s; v(t) = 0, 1 ≤ t ≤ 2 s during the time that 
i is steady; v(t) = −10 μV, ≤ t ≤ 2.5 s; and v(t) = 0, 
t ≥ 2.5 s (Figure 7.22b). Note that since λ starts and 
ends with zero, the positive area of the v vs. t graph 
is equal in magnitude to the negative area.

  (c) p  =  vi; multiplying v and i over the various time 
ranges gives p(t)  =  25t  μW, 0  ≤  t  ≤  1  s; p(t)  =  0, 
1 ≤  t ≤  2  s; p(t) = −100(2.5 – t), 2 ≤  t ≤  2.5  s; and 
p(t) = 0, t ≥ 2.5 s (Figure 7.22c). Note that the flux 
linkage of the inductor increases and the inductor 
absorbs power during the interval 0 ≤ t ≤ 1 s while v 
and i are positive. No power is absorbed or delivered 
during the interval 1 ≤ t ≤ 2 s when v = 0. During the 
interval 2 ≤ t ≤ 2.5 s, i < 0, the flux linkage decreases, 
and the inductor delivers power. At t = 2.5 s, λ = 0. 
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This means that all the energy absorbed during the 
interval 0 ≤ t ≤ 1 s is returned to the supply during the 
interval 2 ≤ t ≤ 2.5 s. Since energy is the area under 
the power curve, the positive area of the triangle 
extending from t = 0 to t = 1 s, which is 12.5 μJ, must 
be equal in magnitude to the negative area extending 
from t = 2 to t = 2.5 s, which is in fact −12.5 μJ.

 (d) The energy as a function of time is obtained as 

w t pdt
t

( ) = ò0 . Thus, w t dt t
t

( )= =ò 25 12 5 2

0
. , 0 ≤ t ≤ 1 s. 

During the interval 1 ≤ t ≤ 2 s, when no power 
is absorbed or delivered, the energy stored 
stays at 12.5 μJ. During the interval 2 ≤ t ≤ 2.5 s, 

w t t
t

( ) = - -( )ò 100 2 5
2

. dt + 12.5 = 50(t2 − 5t + 6.25) = 

50(t − 2.5)2; w = 0 at t = 2.5 s, and since p(t) = 0 for 
t ≥ 2.5 s, w(t) = 0 for t ≥ 2.5 s. The variation of w(t) 
with t is shown in Figure 7.22d. Note that since 
the current returns to zero for t ≥ 2.5 s, w = 0.

Simulation: The circuit is entered as illustrated in 
 Figure 7.23. The inductor is entered from the Analog 
library and has a marked terminal indicating that cur-
rent entering this terminal is considered positive. Zero 
initial condition is entered as explained in Example 7.1. 
In the Simulation Settings, ‘Analysis  type’ is ‘Time 
Domain (Transient)’, ‘Run to time’ is 3s, ‘Start Saving 
Data After’ is 0, and ‘Maximum Step size’ is 0.5m. 
After the simulation is run, then in order to display the 
current and power dissipated to appropriate vertical 
scales, select Trace/Add Trace in the Schematic1 win-
dow and enter 10*V(L1:1),W(L1). The time  variation 
of inductor voltage and dissipated power is displayed, 
as in Figure 7.24, which is similar to Figure 7.8.

Primal Exercise 7.8

Repeat Example 7.3 assuming the current increases 
 linearly from 0 to 5 A in 0.5 s, stays at 5 A for 1 s, then 
decreases linearly to zero in 1 s.
Ans. 0 < t < 0.5 s: λ(t) = 10t μWb-T, v(t) = 10 μV, p(t) = 
100t μW, w(t) = 50t2 μJ; 0.5 < t < 1.5 s: λ(t) = 5 μWb-T, 
i(t) = 0, p(t) = 0, w(t) = 12.5 μJ; 1.5 < t < 2.5 s: λ(t) = –5t + 
12.5 μWb-T, v(t) = –5 μV, p(t) = 25t – 62.5 μW, w(t) = 
12.5t2 – 62.5t + 78.125 μJ.

Primal Exercise 7.9

Determine the energy stored in the circuit of Figure 7.25 
under dc conditions.

Ans. 13 μJ.

7.3  Series and Parallel Connections 
of Initially Uncharged Capacitors

Ohm’s law (Equation 2.2) and the v–i relation for a 
capacitor (Equation 7.6) are

 
i Gv i t C

dv
dt

= ( ) =and
 

(7.36)

Comparing these relations, it is seen that v is multi-
plied by G in the case of a resistor, whereas a function 
of v (its derivative) is multiplied by C in the case of a 
capacitor. This makes the derivations of the equivalent 
series and parallel elements analogous in both cases, 
which results in capacitances combining in series and in 
parallel in the same manner as conductances.

7.3.1  Series Connection of Initially 
Uncharged Capacitors

Figure 7.26a shows a series connection of 3 capacitors 
to which is applied a test current iT that is an arbitrary 

–10µV

–5µV

0µV

5µV

–50µW

0µW

50µW

Time
0s 1.0s 2.0s 3.0s

v

p

FIGURE 7.24
Figure for Example 7.3.

+ –

1 µF

1 H
3 V2 k

4 k1 mA

IL

FIGURE 7.25
Figure for Primal Exercise 7.9.

T1 = 0

T2 = 1

T3 = 2

T4 = 2.5

I1 = 0

I2 = 5

I3 = 5

I4 = 0

1IC = 0

0

–
+

FIGURE 7.23
Figure for Example 7.3.



Capacitors, Inductors, and Duality 181

function of time (Figure 7.26c). The area under the iT vs. t 
curve represents the charge that is applied by the source. 
Considering iT as the flow of positive charge, iT adds a pos-
itive charge +q to the left plate of C1 and removes a positive 
charge +q from the left plate of C3, leaving a charge of −q on 
this plate. Through electrostatic charge induction, charge 
is redistributed in the three capacitors so that each capaci-
tor will have a charge of +q on one plate and −q on the 
opposite plate. With no initial charges on the  capacitors, 
and no external connections to the plates of C1 and C2 that 
are  connected together, nor to the plates  of C2 and  C3 
that are connected together, the charges on the plates that 
are connected together add to zero, before and after iT is 
applied. This is in accordance with conservation of charge.

If the voltage across the series combination is vT, then 
according to KVL,

 v v v vT = + +1 2 3 (7.37)

The voltage across any capacitor is of the form

 
v t

C
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t

( ) = + ( )ò1
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0  
(7.38)

Assuming zero initial charge, v(0) = 0. Substituting for 
each voltage in Equation 7.37 and factoring out the time 
integral of current,
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The bracketed sum defines an equivalent series 

c apacitor that has the same vT, iT, and hence i dtT

t

0ò  
(Figure 7.26b). It follows from Equation 7.39 that
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(7.40)

It is seen that the reciprocals of capacitances in series 
add, just like conductances. It is to be expected, therefore, 
that voltage divides between capacitors in series as in 
the case of conductances. The voltage across any of the 
capacitors, say, C1, is
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Dividing Equation 7.41 by Equation 7.39,
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Similarly, repeating the same procedure for v2 and v3,
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It follows from Equations 7.42 and 7.43 that
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The voltages across any two of the capacitors in 
series, without initial charges, are in inverse ratio to the 
capacitances.

The same iT applied to Ceqs results in the same charge 

q t i dtT

t

( ) = ò0  on this capacitor, as on each of the series- 

connected capacitors (Figure 7.26c), so that

 q qeqs=  (7.45)

If Equation 7.37 is multiplied by qeqs/2 or by the equal 
quantity q/2,
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In words, the energy stored in Ceqs is the same as the 
total energy stored in the three capacitors. This is to be 
expected, because vT and iT are the same, so the power 
input and energy are the same, in accordance with 
 conservation of energy.

Although derived for the case of three capacitors, the 
preceding results can be generalized to any number of 
initially uncharged capacitors in series. In particular, if n 
identical capacitors, each of capacitance C, are connected 
in series, Ceqs = C/n and the voltage across each capacitor 
is vT/n. Moreover, Ceqs is smaller than the smallest of the 
series-connected capacitances, as in the case of conduc-
tances in series.
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7.3.2  Parallel Connection of Initially 
Uncharged Capacitors

Consider a parallel connection of 3 capacitors across 
which a time-varying test voltage vT is applied 
(Figure 7.27a). If the test current is iT, the capacitor 
 currents are, from KCL,

 i i i iT = + +1 2 3 (7.47)

The current through any capacitor is of the form i(t) = 
CdvT/dt. Substituting for each current in Equation 7.47 
and factoring out the voltage derivative,
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(7.48)

The bracketed sum defines an equivalent paral-
lel capacitor that has the same iT, vT, and hence dvT/dt 
(Figure 7.27b). Thus,

 C C C Ceqp = + +1 2 3 (7.49)

It is seen that capacitances in parallel add, just like con-
ductances. It is to be expected, therefore, that current 
divides between capacitors in parallel as in the case of 
conductances. The current through any of the capaci-
tors, say, C1, is
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Dividing Equation 7.50 by Equation 7.48,
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Similarly,
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It follows from Equations 7.51 and 7.52 that
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(7.53)

The charge on any capacitor, say, C1, is

 
q t i dt q t
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(7.54)

Since vT is the same for the paralleled capacitors, and 
q = CvT for each capacitor, the charge on each capacitor 
is proportional to its capacitance. Hence, each current 
in Equations 7.51 through 7.53 can be replaced by the 
corresponding charge.

If both sides of Equation 7.49 are multiplied by 
the common voltage vT, and substituting the relation 
q = Cv,

 q q q qeqp = + +1 2 3 (7.55)

That is, the total charge on the upper node in 
Figure 7.27a is the sum of the charges on all the capaci-
tors and is the same as the charge on the equivalent 
parallel capacitor. This is to be expected, since the same 
current iT delivers the same charge to the three capaci-
tors in parallel as to Ceqp.

If both sides of Equation 7.55 are multiplied by vT/2,
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In words, the energy stored in Ceqp is the sum of the 
energies stored in the individual capacitors.

Although derived for the case of three capacitors, 
the preceding results can be generalized to any num-
ber of capacitors in parallel. In particular, if n identical 
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capacitors, each of capacitance C, are connected in 
parallel, Ceqp = nC and the charge on each capacitor is 
q  =  qeqp/n. Moreover, Ceqp is larger than the largest of 
the parallel-connected capacitances, as in the case of 
conductances.

Summary: In a series connection of initially uncharged 
capacitors, (i) the reciprocal of the equivalent series capaci-
tance is the sum of the reciprocals of the individual capaci-
tances, (ii) voltages divide inversely as the capacitances, and 
(iii) the charges on each of the capacitors and on the equivalent 
series capacitor are equal.

In a parallel connection of initially uncharged capacitors, (i) 
the equivalent parallel capacitance is the sum of the individual 
capacitances, (ii) currents divide directly as the capacitances, 
and (iii) the charge on the equivalent parallel capacitance is 
the sum of the charges on the paralleled capacitances.

In both the series and parallel connections, the energy in 
the equivalent capacitor is the sum of the energies in the 
 individual capacitors.

Primal Exercise 7.10

Determine the equivalent capacitance between termi-
nals ‘ab’ in Figure 7.28, assuming all capacitances are 1 F.

Ans. 5/8 F.

7.4  Series and Parallel Connections 
of Initially Uncharged Inductors

Ohm’s law (Equation 2.1) and the v–i relation for an 
inductor (Equation 7.25) are
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Comparing these relations, it is seen that i is multi-
plied by R in the case of a resistor, whereas a function 
of i (its derivative) is multiplied by L in the case of an 
inductor. This makes the derivations of the equivalent 
series and parallel elements analogous in both cases, 
which results in inductances combining in series and in 
parallel in the same manner as resistances.

7.4.1  Series Connection of Initially 
Uncharged Inductors

Consider a series connection of 3 inductors to which 
a  time-varying test current iT is applied (Figure 7.29a). 
If the test voltage is vT, KVL gives in terms of the  voltages 
across the inductors

 v v v vT = + +1 2 3 (7.58)

The voltage across any inductor is of the form 
v(t)  =  LdiT/dt. Substituting in Equation 7.58 for the 
voltage across each inductor and factoring out the 
diT/dt term,

 
v t L L L

di
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L
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T
T

eqs
T( ) = + +( ) =1 2 3

 
(7.59)

The bracketed sum defines an equivalent series induc-
tor that has the same vT, iT and hence diT/dt (Figure 7.29b). 
Thus,

 L L L Leqs = + +1 2 3 (7.60)

It is seen that inductances in series add, just like resis-
tances. To determine how the voltage divides between 
the inductors, we note that the voltage across any of the 
inductors, say, L1, is v1(t) = L1diT/dt. Dividing this equa-
tion by Equation 7.59,
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Similarly,
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It follows from Equations 7.61 and 7.62 that
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(7.63)
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FIGURE 7.28
Figure for Primal Exercise 7.10.
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It is seen from Equations 7.63 that voltages across 
inductors in series divide in the same ratio as the 
inductances.

The flux linkage of any inductor, say, L1, is

 
l l1 1 1

0
0 0t v dt t t

t

( ) = ( ) = £ò ,
 

(7.64)

Since iT is the same for the series-connected inductors, 
and λ = LiT for each inductor, the flux linkage of  each 
inductor is proportional to its inductance. Hence, 
each  voltage in Equations 7.61 through 7.63 can be 
replaced by the corresponding flux linkage.

If both sides of Equation 7.60 are multiplied by iT 
and the relation λ = Li substituted for each element, the 
resulting equation is

 l l l leqs = + +1 2 3 (7.65)

The flux linkage in the equivalent series inductor is 
therefore the sum of the flux linkages in the individual 
inductors. This follows from the fact that the voltage 
across Leqs is the sum of the voltages across the individ-
ual inductors, so that the time integral of the voltage 
across Leqs, which is the flux linkage in Leqs, is the sum 
of the integrals of the voltages across the individual 
inductors.

If both sides of Equation 7.65 are multiplied by iT/2,
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(7.66)

In words, the energy stored in Leqs is the same as the 
total energy stored in the three capacitors.

Although derived for the case of three inductors, the 
preceding results can be generalized to any number of 
inductors in series. In particular, if n identical inductors, 
each of inductance L, are connected in series, Leqs = nL 
and the voltage v across each inductor is vT/n, where 
vT is the total voltage across the series combination. 
Moreover, Leqs is larger than the largest of the series- 
connected inductances, as in the case of resistances.

7.4.2  Parallel Connection of Initially 
Uncharged Inductors

Consider a parallel connection of 3 inductors across 
which is applied a test voltage vT that is an arbitrary 
function of time (Figure 7.30c). The area under the vT vs. 
t curve represents flux linkage that is established by the 
source. If the test current is iT, it follows from KCL that

 I i i iT = + +1 2 3 (7.67)

The current through any inductor is 

i t
L

v dtT

t

( ) = ò1
0

, a ssuming no initial current, and hence 

no initial flux linkage in the inductors. Substituting 
in Equation 7.67 for  the current in each inductor and 

f actoring out the v dtT

t

0ò  term,
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The bracketed sum defines an equivalent parallel 
inductor that would have the same iT, vT, and hence 

v dtT

t

0ò  (Figure 7.30b). Thus,
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FIGURE 7.30
Parallel connection of inductors (a), equivalent parallel inductor (b), and inductor voltage and flux linkage (c).
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It is seen that the reciprocals of inductances in paral-
lel add, just like resistances. To determine how the cur-
rent divides  between inductors in parallel, we note 
that the current through any of the inductors, say, L1, is 

i t
L

v dtT

t

1
1 0

1( ) = ò . Dividing by Equation 7.68,
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Similarly,
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Applying Equations 7.70 and 7.71 to any two currents,
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From Faraday’s law in the form l t v dtT
o

t

( ) = ò  

(Figure 7.30c), with no initial current in the inductors, 
and since vP is the same for all inductors in parallel,

 l l l l1 2 3= = = eqp (7.73)

As vT builds up between 0 and t, the same flux linkage 
is established in all the paralleled inductors and in λeqp.

Multiplying both sides of Equation 7.67 by the 
 common λ/2,
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(7.74)

The energy stored in Leqp is therefore the sum of the 
energies stored in the individual inductors.

Although derived for the case of three inductors, the 
results of this section can be generalized to any num-
ber of inductors in parallel. In particular, if n identical 
inductors, each of inductance L, are connected in paral-
lel, Leqp = L/n and the current i in each inductor is i = iT/n, 
where iT is the current through the parallel combination. 
Moreover, Leqp is smaller than the smallest of the parallel 
connected inductances, as in the case of resistors.

Summary: In a series connection of initially uncharged induc-
tors, (i) the equivalent series inductance is the sum of the individ-
ual inductances, (ii) voltages divide directly as the inductances, 
and (iii) the flux linkage of the equivalent series inductance is 
the sum of the flux linkages of the individual inductors.

In a parallel connection of initially uncharged inductors, 
(i)  the reciprocal of the equivalent parallel inductance is the 
sum of the reciprocals of the individual inductances, (ii) cur-
rents divide inversely as the inductances, and (iii) the flux 

linkages of each of the inductors and of the equivalent parallel 
inductance are equal.

In both the series and parallel connections, the energy 
in the equivalent inductor is the sum of the energies in the 
 individual inductors.

Primal Exercise 7.11

Determine the equivalent inductance between terminals 
‘ab’ in Figure 7.31.

Ans. 2.2 H.

7.5  Duality

Duality in electric circuits is an important and useful 
concept that facilitates circuit analysis in some cases 
and provides a better understanding of the comparative 
behavior of inductive and capacitive circuits.

The basis of duality is the sameness of expressions 
when voltage and current, as well as some circuit 
parameters, are interchanged in v–i relations. Consider 
the two expressions of Ohm’s law and the v–i relations 
of capacitors and inductors:

 v Ri i Gv= =  (7.75)

 
v t L

di
dt

i t C
dv
dt

( ) = ( ) =
  

(7.76)

The two expressions of Ohm’s law (Equations 7.75) 
are of the same form. If v and i are interchanged in the 
first expression (v  =  Ri), and R is replaced by G, the 
second expression (i = Gv) is obtained. Conversely, if 
i and v are interchanged in the second expression, and 
G is replaced by R, the first expression is obtained. The 
two expressions of Ohm’s law become dual relations if 
the quantities being interchanged also have the same 
numerical values. For example, in the case of a 10 Ω 
resistor carrying a current of 2  A, Ohm’s law, in the 
form v = Ri, is 20 (V) = (10 Ω) × (2 A). Its dual relation, 
in the form i = Gv, is 20 (A) = (10 S) × (2 V). In these rela-
tions, 20 V, 10 Ω, and 2 A in v = Ri are replaced, respec-
tively, by 20 A, 10 S, and 2 V in i = Gv. This expression 
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FIGURE 7.31
Figure for Primal Exercise 7.11.
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now refers to a resistor of 10  S conductance, across 
which 2 V are applied.

Similarly, Equations 7.76 are of the same form, and 
one reduces to the other when v and i, as well as L and C, 
are interchanged. If 10 V are applied across a 2 H induc-
tor, the v–i relation is 10 (V) =  (2 H) ×  (di/dt A/s). The 
dual relation is 10 (A) = (2 F) × (dv/dt V/s) and represents 
a 2 F capacitor to which a 10 A current source is applied. 
In these dual relations, di/dt and dv/dt would have the 
same numerical values.

Formally, dual relations can be defined as follows:

Definition: Two v–i relations are duals if one relation reduces 
to the other when the following are interchanged: (i) v and i, 
AND (ii) R and G, as well as L and C. Moreover, the quanti-
ties interchanged should have the same numerical values.

The quantities involved in these interchanges are 
referred to as dual quantities. Thus, v and i are dual cir-
cuit variables, R and G are dual circuit parameters. A 
number of duality relationships are listed in Table 7.1. 
Dual circuit variables are not only the primary circuit 

variables of voltage and current. Thus, for a capacitor, 
q = Cv, whereas for an inductor λ = Li, and the relation 
i  =  dq/dt is the dual of Faraday’s law, v  =  dλ/dt. Since 
v is the dual of i and C is the dual of L, then q is the 
dual of λ. Independent voltage sources and indepen-
dent current sources are duals. In the case of depen-
dent sources, duality applies to the controlling variable 
as well. Thus, a CCVS and a VCCS are duals, as are a 
CCCS and a VCVS. KVL, according to which the alge-
braic sum of voltages around a mesh or a loop is zero, is 
the dual of KCL, according to which the algebraic sum 
of currents at a node is zero. It follows that the dual of 
a node is a mesh or a loop. A short circuit and an open 
circuit are duals, since the current in an open circuit is 
zero, whereas the voltage across a short circuit is zero. 
Similarly, a series connection and a parallel connection 
are duals, since in a series connection all the elements 
have the same current, whereas in a parallel connection 
all the elements have the same voltage. Consequently, 
voltage division and current division are duals.

In fact, duality extends to whole circuits as well. Thus,

Definition: Two circuits are duals if the node-voltage equa-
tions of one circuit are the dual relations of the mesh-current 
equations of the other circuit.

Duality can be used to derive a relation from its dual, 
or to check relations by comparing them with their 
duals, or to enhance understanding of the behavior of 
circuits by comparing them with that of their duals. 
Once a circuit is analyzed, its dual circuit is automati-
cally analyzed at the same time.

We have already encountered the following examples 
of duality in the present chapter, as listed in Table 7.2:

 1. Bearing in mind that L and C are dual circuit 
parameters, and that the series and parallel 
connections are dual connections (Table 7.1), 
it follows that the series connection of capaci-
tors (Equation 7.40) and the parallel connection 
of inductors (Equation 7.69) are dual relations, 

TABLE 7.1

Dual Circuit Entities

Dual Circuit Variables and Quantities
v i
q l

Dual circuit parameters

R G

C L

Dual relations

Resistor: v Ri= Resistor: i Gv=

Capacitor: i
dq
dt

=

q Cv= ,
 

i C
dv
dt

=

Inductor: v
d
dt

=
l

l = Li,
 

v L
di
dt

=

KVL: å =v 0 algebraically 
around a loop

Voltage division: voltages across 
series-connected resistors divide 
in proportion to resistances

KCL: å =i 0 algebraically at a 
node

Current division: currents in 
paralleled resistors divide in 
proportion to conductances

Dual sources

Ideal voltage source: vSRC is 
specified for all i

Ideal current source: iSRC  is 
specified for all v

Voltage-controlled voltage 
source: v vSRC =a f

Current-controlled current 
source: i iSRC =a f

Current-controlled voltage 
source: v iSRC = b f

Voltage-controlled current 
source: i vSRC = b f

Dual circuit connections

Open circuit or open switch: i = 0 
for all v

Short circuit or closed switch: 
v = 0 for all i

Series connection: same current 
flows in circuit elements

Parallel connection: same 
voltage appears across circuit 
elements

Mesh: voltages add algebraically Node: currents add algebraically

TABLE 7.2

Examples of Duality

1 1 1 1

1 2 3C C C Ceqs

= + +
1 1 1 1

1 2 3L L L Leqp

= + +

Ceqp = C1 + C2 + C3 Leqs = L1 + L2 + L3

Capacitor current is zero when 
capacitor voltage is steady, the 
capacitor acting like an open 
circuit

Inductor voltage is zero when 
the inductor current is steady, 
the inductor behaving as a 
short circuit

ISRC applied to a capacitor produces 
a voltage (ISRC/C)t

VSRC applied to an inductor 
produces a current (VSRC/L)t

Example 7.1: Voltage variation, 
capacitance value, variation of 
q and i

Example 7.2: Current variation, 
inductance value, variation of 
λ and v
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as are the parallel connection of capacitors 
(Equation 7.49) and the series connection of 
inductors (Equation 7.60). That is, these rela-
tions are of the same form, and one can be 
obtained from the other by interchanging L and 
C having the same value.

 2. The capacitor current is zero when the capaci-
tor voltage is steady, the capacitor acting like 
an open circuit (Figure 7.4a). From duality, the 
inductor voltage is zero when the inductor cur-
rent is steady, the inductor acting as a short circuit 
(Figure 7.20a). The dual entities that are inter-
changed are voltage and current, inductance and 
capacitance, and open circuit and short circuit.

 3. A dc current source ISRC applied to a capaci-
tor produces a voltage (ISRC/C)t (Figure 7.4b). 
From duality, A dc voltage source VSRC applied 
to an inductor produces a current (VSRC/L)t 
(Figure  7.20b). Voltage and current are inter-
changed, as are inductance and capacitance.

 4. The voltage variation in Example 7.1 (Figure 7.5) 
and the capacitance value are the same as the 
current variation in Example 7.3 (Figure 7.21) 
and the inductance value. The variations of q 
and i in Example 7.1 (Figure 7.6) are the same 
as the variations of λ and v in Example 7.3 
(Figure  7.22). Voltage and current are inter-
changed, as are charge and flux linkage.

Duality is further illustrated in the problems on 
 capacitor and inductor relations at the end of this chapter.

Example 7.4: Dual of Loaded Linear-Output 
Voltage Source

It is required to derive the dual of the voltage source and 
load shown in Figure 7.32a.

Solution:

From KVL,

 0 5 5 5 12. .I IL L+ = V (7.77)

where the coefficients multiplying IL are resistances. 
From Equation 7.77, IL = 2 A. In the dual circuit equation 
VL replaces IL so that

 0 5 5 5 12. .V VL L+ = A (7.78)

where the coefficients multiplying VL are conductances. 
Equation 7.78 is KCL for a circuit consisting of a 12 A 
source in parallel with a source conductance of 0.5 S and 
a load conductance of 5.5 S, as shown in Figure 7.32b. 
From Equation 7.78, VL = 2 V. The following should be 
noted concerning these dual circuits:

 1. Each element in the series circuit of Figure 7.32a 
is replaced by its dual circuit element, of the same 
value, in the parallel circuit of Figure 7.32b. Thus, 
the 12 A source is the dual of the 12 V source, the 
0.5 S source conductance is the dual of the 0.5 Ω 
source resistance, and the 5.5 S load conductance 
is the dual of the 5.5 Ω load resistance.

 2. The voltage and current values for each of the dual 
circuit elements are interchanged. Thus, for the 
voltage source, the voltage is 12 V and the current 
is 2 A, whereas for the current source, the  current is 
12 A and the voltage is 2 V. For the source resistance, 
the current is 2 A and the voltage is 0.5 × 2 = 1 V, 
whereas for the source conductance, the voltage is 
2 V and the current is 0.5 × 2 = 1 A. For the load 
resistance, the current is 2  A and the voltage is 
5.5 × 2 = 11 V, whereas for the load conductance, 
the voltage is 2 V and the current is 5.5 × 2 = 11 A.

 3. Since voltage and current are interchanged for each 
circuit element, their product remains the same, 
which means that the power delivered or absorbed 
by each circuit element is the same as that deliv-
ered or absorbed by its dual circuit element. Both 
the voltage source and the current source deliver 
12  ×  2  =  24  W. Both the source resistance and 
source conductance dissipate 1 × 2 = 2 W, and both 
the load resistance and load conductance  dissipate 
11 × 2 = 22 W.

 4. The dual circuit is of the same form as the equiva-
lent current source (Example 3.5), but the values of 
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FIGURE 7.32
Figure for Example 7.4.
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the circuit elements are different. This is because the 
criterion for source equivalence is that the v–i rela-
tion is the same at the source terminals, whereas in 
the dual circuit, v and i at these terminals are inter-
changed. In both cases, however, the same power 
is delivered to the load.

Simulation: The circuit is entered as in Figure 7.33. 
After selecting ‘Bias Point’ under ‘Analysis type’ in the 
Simulation Settings and running the simulation, press-
ing the pressing the I, V, and W buttons displays the cur-
rents, voltages, and powers, respectively, (Figure 7.33). 
The voltages and currents are duals in both cases. The 
same power of 24 W is delivered by both ideal source ele-
ments, the same power of 2 W is dissipated in the source 
resistances, and the same 22 W of power is delivered to 
the load.

A general procedure for deriving the dual of a planar 
circuit is presented in Appendix 7A. By a planar circuit 
is meant a circuit that can be drawn in two dimensions 
without any obligatory crossover connections. However, 
it is sufficient for our purposes to derive the dual of a 
circuit from duality between series and parallel connec-
tions. This is illustrated by the following example.

Example 7.5: Dual of Capacitive Voltage Divider

It is required to derive the dual of the circuit of Figure 7.9a 
and to determine its response under dc conditions.

Solution:

The circuit of Figure 7.9a, reproduced in Figure 7.34, con-
sists of a 12 V source in series with two branches that are 
shown encircled by dashed ovals. The dual circuit con-
sists of a 12 A source in parallel with two branches, each 
of which is the dual of the corresponding branch in the 
circuit of Figure 7.34a. The dual of the branch consisting 
of the 4 Ω resistor in parallel with 2 μF is a branch con-
sisting of a 4 S resistor in series with a 2 μH inductor, as 
illustrated in Figure 7.34. Similarly, the dual of the branch 
consisting of 8 Ω in parallel with a series combination of 

2 μF and 6 Ω is a branch consisting of 8 S in series with 
a parallel combination of 6 S and 1 μH (Figure 7.34). The 
circuit becomes as shown in Figure 7.35a.

Under dc conditions, the inductors act as short circuits 
(Figure 7.35b). The 12 A current divides into 4 A in the 4 S 
resistor and 8 A in the 8 S resistor in accordance with cur-
rent division between conductances (Equations 3.19 and 
3.20). The voltage across each of these resistors, as well as 
the current source, is 4 A/4 S = 8 A/8 S = 1 V.

Duality between the two circuits is exemplified by 
the fact that the voltage and current values for each of 
the dual circuit elements are interchanged. This is sum-
marized in Table 7.3. The first column lists all the corre-
sponding dual elements in the two circuits. The second 
and third columns list the voltages and currents in the 
capacitive circuit, as shown in Figure 7.9b, whereas the 
last two columns list the currents and voltages in the 
inductive circuit of Figure 7.35b. For example, the 12 V 
source in the capacitive circuit has a voltage of 12 V and 
a current of 1 A. The dual 12 A source in the inductive 
circuit has a current of 12 A and a voltage of 1 V. The 4 Ω 
resistor in the capacitive circuit has a voltage of 4 V and 
a current of 1 A. Its 4 S dual in the inductive circuit has a 
current of 4 A and a voltage of 1 V. The 1 μF capacitor in 
the capacitive circuit acts as an open circuit (I = 0) with 
8 V across it. Its 1 μH dual in the inductive circuit acts as 
a short circuit (V = 0) with 8 A through it, similarly for 
the other elements.
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The circuit of Figure 7.9b under dc conditions has one 
mesh. Its KVL equation is 4 + 8 = 12. The circuit of Figure 
7.35b is a two-essential-node circuit having the KCL 
equation 4 + 8 = 12.

Simulation: The circuit is entered as in Figure 7.36. 
After selecting ‘Bias Point’ under ‘Analysis type’ in the 
Simulation Settings and running the simulation, press-
ing the V and I buttons displays the voltages and current 
shown.

Problem-Solving Tip

• An inductor is replaced by a short circuit under dc 
or steady conditions.

Primal Exercise 7.12

Verify that the power delivered by the independent 
source is the same as that absorbed by the resistors in 
both the circuit of Figure 7.34 and its dual.

Primal Exercise 7.13

If the power dissipated in the 5 Ω resistor in Figure 7.37 
is 1  W, determine the power dissipated in the dual of 
the 5 Ω resistor in the circuit that is the dual of the given 
circuit.

Ans. 1 W.

Exercise 7.14

Derive the dual circuit of Figure 7.35a by applying the 
procedure of Appendix 7A.

Learning Checklist: What Should 
Be Learned from This Chapter

• The fundamental attribute of a capacitor is its 
ability to store energy in the electric field result-
ing from separated positive and negative elec-
tric charges.

• If the assigned positive directions of current 
and voltage are such that the current through 
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TABLE 7.3

Voltages and Currents in Dual Circuits

 
Capacitive 

Circuit
Inductive 

Circuit

Element V, V I, A I, A V, V

12 V/12 A sources 12 1 12 1
4 Ω/4 S resistors 4 1 4 1
6 Ω/6 S resistors 0 0 0 0
8 Ω/8 S resistors 8 1 8 1
1 μF/1 μH elements 8 0 8 0
2 μF/2 μH elements 4 0 4 0
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Figure for Example 7.5.
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a capacitor (or inductor) is in the direction of a 
voltage drop across the capacitor (or inductor), 
the voltage–current relation for the capacitor (or 
inductor) is written with a positive sign. On the 
other hand, if the assigned positive directions are 
such that the current through the capacitor (or 
inductor) is in the direction of a voltage rise across 
the capacitor (or inductor), the voltage–current 
relation for the capacitor (or inductor) is written 
with a negative sign. The foregoing ensures that 
C (or L) is a positive quantity irrespective of the 
assignment of the positive direction of capacitor 
(or inductor) current and the positive polarity of 
capacitor (or inductor) voltage.

• A capacitor acts as an open circuit when the 
voltage across the capacitor is steady, whereas 
an inductor acts as a short circuit when the 
inductor current is steady.

• The energy stored in a capacitor can be expressed 
as ½qv, or ½Cv2, or ½q2/C.

• Magnetic field strength H is directly related to 

current by ampere’s circuital law, H dl Il enc=ò� , 
independently of the magnetic properties of 
the medium surrounding the current-carrying 
conductor. Magnetic flux density B is directly 
related to voltage by Faraday’s law, inde-
pendently of the magnetic properties of the 
medium. B and H are related by the permeabil-
ity of the medium: B = μrμ0H.

• The magnetic flux linkage λ of a coil is the sum, 
over all the turns of the coil, of the magnetic flux 
through each turn in the direction normal to the 
plane of the turn.

 1. When the same flux does not link all the 
turns of a coil, an effective flux can be 
defined that if multiplied by the number of 
turns gives the true flux linkage of the coil.

 2. In a toroidal core of high permeability, the 
same flux in the core passes through every 
turn of the coil in a direction normal to the 
plane of each turn.

• Faraday’s law may be expressed as 
|v| = |dλ/dt|, where |v| is the magnitude of 
the voltage induced by the time-varying flux 
linkage λ. The polarity of v is determined by 
Lenz’s law, according to which the polarity of 
the induced voltage is such that it opposes the 
change in the magnetic flux linkage that induces 
the voltage.

• The fundamental attribute of an inductor is 
its ability to store energy in the magnetic field 
resulting from current flow in a conductor.

• The inductance of a coil is the flux linkage of the 
coil per unit current in the coil.

• If the current through an inductor increases with 
time, this increase is opposed, in accordance 
with Lenz’s law, by an induced voltage in the 
inductor that is a voltage drop in the direction 
of current. Conversely, if the current through an 
inductor decreases with time, this decrease is 
opposed by an induced voltage in the inductor 
that is a voltage rise in the direction of current.

• In a series connection of initially uncharged 
capacitors, (1) the reciprocal of the equivalent 
series capacitance is the sum of the reciprocals 
of the individual capacitances, (2) voltages 
divide inversely as the capacitances, and (3) 
the charges on each of the capacitors and on the 
equivalent series capacitor are equal.

• In a parallel connection of initially uncharged 
capacitors, (1) the equivalent parallel capaci-
tance is the sum of the individual capacitances, 
(2) currents divide directly as the capacitances, 
and (3) the charge on the equivalent parallel 
capacitance is the sum of the charges on the par-
alleled capacitances.

• In both the series and parallel connections, the 
energy in the equivalent capacitor is the sum of 
the energies in the individual capacitors.

• In a series connection of initially uncharged 
inductors, (1) the equivalent series induc-
tance is the sum of the individual inductances, 
(2) voltages divide directly as the inductances, 
and (3) the flux linkage of the equivalent series 
inductance is the sum of the flux linkages of the 
individual inductors.

• In a parallel connection of initially uncharged 
inductors, (1) the reciprocal of the equivalent 
parallel inductance is the sum of the recipro-
cals of the individual inductances, (2) currents 
divide inversely as the inductances, and (3) the 
flux linkages of each of the inductors and of the 
equivalent parallel inductance are equal.

• In both the series and parallel connections, the 
energy in the equivalent inductor is the sum of 
the energies in the individual inductors.

• Two v–i relations are duals if one relation reduces 
to the other when the following are interchanged: 
(1) v and i, AND (2) R and G, as well as L and C. 
Moreover, the quantities being interchanged 
should have the same numerical values.

• Two circuits are duals if the node-voltage 
 equations of one circuit are the dual relations of 
the mesh-current equations of the other circuit.
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Problem-Solving Tips

 1. Under steady dc or steady conditions, a capaci-
tor is replaced by an open circuit and an induc-
tor by a short circuit

Appendix 7A: Derivation of the Dual  
of a Planar Circuit

The procedure is based on the mesh-current equations 
in the given circuit being the dual relations of the node-
voltage equations of the dual circuit to be derived. 
However, instead of writing the mesh-current and 
node-voltage equations, a graphical procedure can be 
followed. This procedure will be described using the 
circuit of Figure 7.38. It involves the following steps, 
illustrated in Figure 7.39:

 1. Inside each mesh, place a node of the same num-
ber as the mesh and place a node outside the 
circuit (node 4 in Figure 7.39). This node is iden-
tified as the reference node in the dual circuit. 

For convenience, this node can have multiple 
representations outside the circuit, all of these 
being connected together and considered to be 
the same node.

 2. The nodes are connected together by crossing 
all elements in the circuit. Whenever an ele-
ment is crossed by a connection, the dual circuit 
element is placed in that connection. Consider 
node 2 for example. This node is connected to 
the reference node by crossing the 1 Ω resistor 
and the 3 H inductor. The dual of 1 Ω resistor, 
which is 1 S resistor, is placed in the first connec-
tion, and the dual of the 3 H inductor, which is a 
3 F capacitor, is placed in the second connection. 
Node 2 is also connected to node 1 by crossing 
the 2 Ω resistor and placing its dual, a 2 S resis-
tor in this connection. Node 2 is also connected 
to node 3 by crossing the 2 F capacitor and plac-
ing its dual, a 2 H inductor in this connection.

 3. If a voltage source introduces a voltage rise in 
a given mesh when traversed in the clockwise 
direction of the mesh current, the direction of 
the dual current source is that of current enter-
ing the corresponding node. Conversely, if the 
voltage source introduces a voltage drop in a 
given mesh when traversed in the clockwise 
direction of the mesh current, the direction of 
the dual current source is that of current leav-
ing the corresponding node. Thus, the 5  V 
source in mesh 1 in Figure 7.38 introduces volt-
age rise in mesh 1 in the direction of i1. Its dual, 
a 5 A source, causes current to enter node 1 in 
Figure 7.39.

 4. If a current source is in the direction of a mesh 
current, its dual voltage source will make the 
voltage of the node having the same number 
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as the mesh more positive, and conversely. 
In Figure 7.38, the direction of the 3  A source 
is opposite that of i3. Its dual is a 3  V source 
between node 3 and the reference node, and 
having a polarity that will make the voltage of 
node 3 negative with respect to that of the refer-
ence node.

 5. Dependent sources are treated in the same man-
ner as independent sources, the controlling 
variables being duals.

 6. After deriving the dual circuit, this circuit can be 
redrawn for clarity, as illustrated in Figure 7.40.

Problems

Verify solutions by PSpice Simulation whenever feasible.

Capacitor Relations

P7.1 A parallel-plate capacitor consists of two plates, each 
being 5 2cm , separated by 1  mm (Figure P7.1). Half 
the space between the plates, in the vertical direc-
tion, is filled by a dielectric of relative permittivity 10. 
Determine the capacitance, neglecting edge effects. 
Show that the capacitance can be considered as that of 
two capacitances in series.

 Ans. 40.23  pF, equivalent to 44.25  pF in series with 
442.5 pF.

P7.2 A parallel-plate capacitor consists of two plates, each 
being 5 cm square, separated by 1 mm (Figure P7.2), as 
in the preceding problem. Half the space between the 
plates, in the horizontal direction, is filled by a dielectric 

of relative permittivity 10. Determine the capacitance, 
neglecting edge effects. Show that the capacitance can 
be considered as that of two capacitances in parallel.

 Ans. 121.7 pF, equivalent to 11.06 pF in parallel with 
110.63 pF.

P7.3 A capacitor consists of two thin concentric cylinders l m 
long, the space between the two cylinders being filled 
with a dielectric of permittivity ε F/m. The radii of the 
inner and outer cylinders are a m and b m, respectively. 
Determine the capacitance, neglecting end effects. (Hint: 
Consider the voltage across a cylindrical shell of radius r 
and thickness dr, then integrate from a to b).

 Ans. 2pe l
b aln /( )

.

P7.4 A series of current pulses of 10 mA amplitude and 2 ms 
duration are applied to an initially uncharged, 5mF 
capacitor. How many pulses are required to charge the 
capacitor to 20 V?

 Ans. 5 pulses.

P7.5 A current pulse of amplitude 100 μA and 200 ms dura-
tion is applied at t = 0 to a 2 μF capacitor. Express the 
capacitor voltage as a function of time, assuming (a) the 
capacitor is initially uncharged and (b) the capacitor is 
initially charged to −10 V.

 Ans. (a) v(t) = 50t V, 0 ≤ t ≤ 200 ms and v(t) =10 V for 
t ≥  200 ms; (b) v(t) = 50t – 10 V, 0 ≤  t ≤  200 ms and 
v(t) = 0 for t ≥ 200 ms.

P7.6 The current in a 1 μF capacitor is shown in Figure P7.6 
as a function of time. Determine the total energy stored 
in the capacitor.

 Ans. 200 μJ.

P7.7 The current in a 2 μF capacitor is shown in Figure P7.7 
as a function of time. Determine the charge on the 
capacitor at t = 3.4 s.

 Ans. 5.6 C.
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P7.8 The voltage waveform shown in Figure P7.8 is applied 
to a 1 μF capacitor. Determine the maximum value of 
the current through the capacitor.

 Ans. 4 μA.

P7.9 The charge on a 0.1  μF capacitor varies with time as 
shown in Figure P7.9. Determine the average voltage 
across the capacitor.

 Ans. 10 V.

P7.10 When the switch is closed in Figure P7.10, a cur-
rent i flows that charges the capacitor. After a suffi-
ciently long time, the capacitor is fully charged to 2 V. 
Determine, when the capacitor is fully charged, (a) the 
energy stored in the capacitor and (b) the total energy 
delivered by the battery, by considering the total 
charge delivered by the battery.

 Ans. (a) 4 μJ; (b) 8 μJ.

P7.11 The voltage applied to an initially uncharged 5  μF 
capacitor is 10 5te t- V, where t is in ms. Derive the 
expressions, as functions of time, for the energy stored 
in the capacitor, the capacitor current, and the instan-
taneous power input to the capacitor.

 Ans. w t t e t( ) = -250 2 10 mJ, i t e tet t( ) = -( )- -50 55 5 mA, 

p t te t et t( ) = -( )- -500 510 2 10 mW, t is in ms.

P7.12 The current applied to an initially uncharged 5  μF 

capacitor is 10 5e t- mA, where t is in ms. Derive the 
expressions, as functions of time, for the capacitor volt-
age, the energy stored in the capacitor, and the instan-
taneous power input to the capacitor.

 Ans. v t e t( ) = -( )-0 4 1 5. V, w t e t( ) = -( )0 4 1 5 2
. mJ, 

p t e et t( ) = -( )- -4 15 5 mW, t is in ms.

P7.13 The voltage applied to an initially uncharged 0.1  μF 
capacitor is the first half-cycle of the waveform 
10sin500t V, where t is in seconds. Derive the expres-
sions, as functions of time, for the capacitor current, 
the energy stored in the capacitor, and the instanta-
neous power input to the capacitor. Sketch the time 
variation of these quantities.

 Ans. i(t)  =  0.5cos(0.5t) mA, w(t)  =  5sin2(0.5t) μJ, 
p(t) = 2.5sint mW, all for 0 ≤ t ≤ 2π ms, and are zero for 
t > 2π ms.

P7.14 The current applied to an initially uncharged 0.1  μF 
capacitor is the first half-cycle of the waveform 
10sin500t mA, where t is in seconds. Derive the expres-
sions, as functions of time, for the capacitor voltage, 
the energy stored in the capacitor, and the instanta-
neous power input to the capacitor. Sketch the time 
variation of these quantities.

 Ans. v(t) = 200(1 – cos0.5t) V, w(t) = 2(1 – cos0.5t)2 mJ, 
p(t) = 2sin0.5t – sint W, all for 0 ≤ t ≤ 2π ms, and are 
zero for t > 2π ms.

P7.15 The triangular voltage pulse of Figure P7.15 is applied 
to an initially uncharged 0.1 μF capacitor. Plot as func-
tions of time (a) the charge on the capacitor, (b) the 
energy stored in the capacitor, and (c) the instanta-
neous power input to the capacitor.

 Ans. (a) q t
t
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P7.16 Determine vC(t) at t = 7 s in Figure P7.16, assuming an 
initially uncharged capacitor.

 Ans. 0.5 V.

P7.17 The current waveform of Figure P7.17 is applied to 
an initially uncharged 0.5  μF capacitor. (a) Derive 
expressions, as functions of time, for the volt-
age across the capacitor during the time intervals: 
0 10£ £t ms, 10 40£ £t ms, 40 60£ £t ms , 60 80£ £t ms, 
and t > 80 ms. (b) What is the charge on the capacitor 
at t = 10 ms and at t = 50 ms? Check the final value 
of voltage against the final charge. (c) What is the 
energy stored in the capacitor at t = 80 ms? (d) How 
do the expressions for the voltage across the capaci-
tor derived in (a) above change if the capacitor was 
initially charged to 0.5 V?

 Ans. (a) v t t t v t t t( ) = £ £ ( ) = - + -1 5 0 10 502 2. ,mV s;m  
250 10 40mV s, £ £t m ; v t t t( ) ,=- + £ £30 1350 40 60mV sm ; 
v t t t t( )= - + £ £0 75 120 4050 60 802. ,mV sm ,  v(t) = −750 mV, 
t ³ 80 ms. (b) 75 nC at t = 10 μs, and −75 nC at t = 10 μs. 
(c) 0.14 μJ; (d) all voltages are increased by 0.5 V.

P7.18 Determine the energy stored in the capacitor in 
Figure P7.18, assuming a dc steady state.

 Ans. 4 J.

Inductor Relations

Note the duality with the corresponding problems on  capacitor 
relations.

P7.19 A current of 10 mA through a coil of 100 turns results 
in a flux of 10−6 Wb in the coil. Assuming that all the 
flux links all the turns, determine the inductance of 
the coil.

 Ans. 10 mH.

P7.20 A series of voltage pulses of 10  mV amplitude and 
2 ms duration are applied to an initially uncharged 
5mH  inductor. How many pulses are required 
to  bring the inductor current to 20 A? (Dual of 
Problem P7.4).

 Ans. 5 pulses.

P7.21 A voltage pulse of amplitude 100  μV and 200  ms 
duration is applied at t  =  0 to a 2  μH inductor. 
Express the inductor current as a function of time, 
assuming (a) the inductor is initially uncharged and 
(b) the inductor current is initially −10  A. (Dual of 
Problem P7.5).

 Ans. (a) i(t) = 50t A, 0 ≤ t ≤ 200 ms and i(t) =10 A for 
t ≥ 200 ms; (b) i(t) = 50t – 10 A, 0 ≤ t ≤ 200 ms and i(t) = 
0 for t ≥ 200 ms.

P7.22 The voltage across a 1  μH inductor is shown in 
Figure P7.22 as a function of time. Determine 
the  total  energy stored in the inductor. (Dual of 
Problem P7.6).

 Ans. 200 μJ.
P7.23 The voltage across a 2  μH inductor is shown in 

Figure  P7.23 as a function of time. Determine the 
flux linkage in the inductor at t  =  3.4  s. (Dual of 
Problem P7.7).

 Ans. 5.6 Wb-T.
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P7.24 The current waveform shown in Figure P7.24 is applied 
to a 1 μH inductor. Determine the maximum value of 
the voltage across the inductor. (Dual of Problem P7.8).

 Ans. 4 μV.

P7.25 The flux linkage in a 0.1 μH inductor varies with time 
as shown in Figure P7.25. Determine the average cur-
rent through the inductor. (Dual of Problem P7.9).

 Ans. 10 A.

P7.26 When the switch is opened in Figure P7.26, a voltage 
is applied that establishes flux linkage in the induc-
tor. After a sufficiently long time, the inductor is fully 
charged and the 2  A current flows in the inductor. 
Determine, when the inductor is fully charged, (a) the 
energy stored in the inductor and (b) the total energy 
delivered by the current source after the switch is 
opened. (Dual of Problem P7.10).

 Ans. (a) 4 μJ; (b) 8 μJ.

P7.27  The current applied to an initially uncharged 5  μH 
inductor is 10 5te t- A, where t is in ms. Derive the 
expressions, as functions of time, for the energy 
stored in the inductor, the inductor voltage, and the 
instantaneous power input to the inductor. (Dual of 
Problem P7.11).

 Ans. w t t e t( ) = -250 2 10 mJ, v t e tet t( ) = -( )- -50 55 5 mV, 

p t te t et t( ) = -( )- -500 510 2 10 mW, t is in ms.

P7.28  The voltage applied to an initially uncharged 5  μH 
inductor is 10 5e t- mV, where t is in ms. Derive the 
expressions, as functions of time, for the inductor 
current, the energy stored in the inductor, and the 
instantaneous power input to the inductor. (Dual of 
Problem P7.12).

 Ans. i t e t( ) = -( )-0 4 1 5. A, w t e t( ) = -( )0 4 1 5 2
. mJ, 

p t e et t( ) = -( )- -4 15 5 mW, t is in ms.

P7.29 The current applied to an initially uncharged 0.1  μH 
inductor is the first half-cycle of the waveform 
10sin500t A, where t is in seconds. Derive the expres-
sions, as functions of time, for the inductor voltage, the 
energy stored in the inductor, and the instantaneous 
power input to the inductor. Sketch the time variation 
of these quantities. (Dual of Problem P7.13).

 Ans. v(t)  =  0.5cos(0.5t) mV, w(t)  =  5sin2(0.5t) μJ, 
p(t) = 2.5sint mW, all for 0 ≤ t ≤ 2π ms, and are zero for 
t > 2π ms.

P7.30 The voltage applied to an initially uncharged 0.1 μH 
inductor is the first half-cycle of the waveform 
10sin500t mV, where t is in seconds. Derive the 
expressions, as functions of time, for the inductor 
current, the energy stored in the inductor, and the 
instantaneous power input to the inductor. Sketch 
the  time variation of these quantities. (Dual of 
Problem P7.14).

 Ans. i(t) = 200(1 – cos0.5t) A, w(t) = 2(1 – cos0.5t)2 mJ, 
p(t) = 2sin0.5t – sint W, all for 0 ≤ t ≤ 2π ms, and are 
zero for t > 2π ms.

P7.31 The voltage vL shown in Figure P7.31 is applied to the 
initially uncharged inductor. Determine the value of t 
at which iL = −0.5 A.

 Ans. 3.75 s.

P7.32 The triangular current pulse of Figure P7.32 is applied 
to an initially uncharged 0.1  μH inductor. Plot as a 
function of time (a) the flux linkage in the inductor, 
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(b)  the energy stored in the inductor, and (c) the 
instantaneous power input to the inductor. (Dual of 
Problem P7.15).

 Ans. (a) l( ) ,t
t
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P7.33 The voltage waveform in Figure P7.33 is applied to 
an initially uncharged 0.5  μH inductor. (a) Derive 
expressions for the inductor current during the time 
intervals: 0 10£ £t sm , 10 40£ £t ms, 40 60£ £t ms, 
60 80£ £t ms, and t > 80 ms. (b) What is the flux link-
age in the inductor at t = 10 ms and at t = 50 ms? Check 
the final value of current against the final flux link-
age. (c) What is the energy stored in the induc-
tor at t = 80 ms? (d) How do the expressions for the 
current through the inductor derived in (a) above 
change if the inductor current was initially 0.5  A? 
(Dual of Problem P7.17).

 Ans. (a) i t t t( ) = £ £1 5 0 102. ,mA sm ;

 i t t t t( ) = - + - £ £2 50 250 10 40mA s, m ;

 i t t t( ) = - + £ £30 1350 40 60mA s, m ;

 i t t t t( ) = - + £ £0 75 120 4050 60 802. ,mA sm ,
  v(t) = −750 mA, t ≥ 80 μs. (b) 75 nWb-T at t = 10 μs, and 

−75 nWb-T at t = 10 μs; (c) 0.14 μJ; (d) all currents are 
increased by 0.5 A.

P7.34 Given iSRC(t) = 0.1t A, t ≥ 0 s, in Figure P7.34, with no 
energy stored in the circuit for t  ≤  0. Determine t at 
which vL = vC.

 Ans. 0.1 ms.

P7.35 Given iSRC(t) shown in Figure P7.35, with zero initial 
energy storage for t ≤ 0. (a) Express vL and vC as func-
tions of time and sketch this variation. (b) Determine 
(i) the instantaneous power absorbed by L and C as a 
function of time, and (ii) the energy stored by L and C 
at t = 2 s.

 Ans. (a) vL(t) = 2 mV, 0 < t < 1 s, and vL(t) = 0, t > 1 s; 
vC(t) = t2 kV, 0 ≤ t ≤ 1 s, and vC(t) = (2t – 1) kV, t ≥ 1 s. 
(b) (i) pL(t) = 4  t mW, 0 <  t < 1 s, and pL(t) = 0, t > 1 s; 
pC(t) = 2t3 kW, 0 ≤ t ≤ 1 s; pC(t) = 4t – 2 kW, t ≥ 1 s; (ii) 4.5 kJ.

P7.36 Determine VX in Figure P7.36, assuming a dc steady 
state.

 Ans. 1.6 V.

P7.37 Determine IX in Figure P7.37, assuming a dc steady state.

 Ans. 1 A.

P7.38 Determine IX in Figure P7.38, assuming a dc steady 
state, all resistances are in ohms, all inductances are 
1 H, and all capacitances are 1 F.

 Ans. 75/14 = 5.36 A.
P7.39 Determine the energy stored in the inductor in Figure 

P7.39, assuming a dc steady state.
 Ans. 0.5 J.
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P7.40 Determine the energy stored in the circuit in Figure 
P7.40 in the dc state, assuming all resistances are 5 Ω.

 Ans. 0.45 J.
P7.41 Determine C in Figure P7.41 so that the same energy is 

stored in C as in the inductor under dc conditions.
 Ans. 0.5 mF.

P7.42 Derive the relation between R, L, and C in Figure P7.42 
so that the same energy is stored in L and in C under dc 
conditions.

 Ans. L = 4CR2.

Series and Parallel Connections 
of Capacitors and Inductors

P7.43 (a) Determine the equivalent capacitance between 
terminals ‘ab’ in Figure P7.43 if all the capacitances 
are 1 F. (b) Determine the equivalent inductance 
between terminals ‘ab’, assuming that all capacitors 
in Figure P7.43 are replaced by inductors of 1 H.

 Ans. (a) 2/3 F; (b) 3/2 H.

P7.44 (a) Determine the equivalent capacitance between 
 terminals ‘ab’ in Figure P7.44 if all the capacitances 
are 1F. (b) Determine the equivalent inductance 
between terminals ‘ab’, assuming that all capacitors in 
Figure P7.44 are replaced by inductors of 1 H.

 Ans. (a) 15
41

0 37= . F; (b) 
41
15

2 73= . H.

P7.45 (a) Determine the equivalent inductance between termi-
nals ‘ab’ in Figure P7.45 if all the inductances are 1 H. 
(b) Determine the equivalent capacitance between 
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terminals ‘ab’, assuming that all inductors in Figure 
P7.45 are replaced by capacitors of 1 F.

 Ans. (a) 1/5 H; (b) 5 F.

P7.46 (a) Determine the equivalent inductance between ter-
minals ‘ab’ in Figure P7.46. (b) Determine the equiva-
lent capacitance between terminals ‘ab’, assuming that 
all inductors in Figure P7.46 are replaced by capacitors 
of the same value in mF.

 Ans. (a) 18 mH; (b) 850/7 = 121.4 mF.

P7.47 (a) Determine the equivalent inductance between ter-
minals ‘ab’ in Figure P7.47, assuming all inductances 
are 2  μH (b) Determine the equivalent capacitance 
between terminals ‘ab’, assuming that all inductors 
in Figure P7.47 are replaced by capacitors of the same 
value in μF.

 Ans. (a) 3/4 μH; (b) 16/3 μF.

P7.48 Repeat Exercise 7.10 replacing capacitances by induc-
tances of 0.5 H (Figure P7.48).

 Ans. 0.8 H.

P7.49 Repeat Exercise 7.11 replacing inductances by capaci-
tances of equal value in farads (Figure P7.49).

 Ans. 40/131 = 0.31 F.

P7.50 Ten 1 μF capacitors are charged in parallel to 1000 V. 
Determine (a) Ceqp and (b) the energy stored in the 
equivalent parallel capacitor. (c) Verify that the energy 

stored in this capacitor is the sum of the energies stored 
in the individual capacitors. After the capacitors are 
fully charged, they are connected in series. Determine 
(d) the voltage across the equivalent series capacitor 
and (e) the energy stored in this capacitor. (f) Deduce 
Ceqs for the charged capacitors. Is it the same as that for 
initially uncharged capacitors?

 Ans. (a) 10 μF; (b) 5 J; (c) 0.5 J is stored per capacitor; 
(d) 10,000 V; (e) 5 J, (f) 0.1 μF, yes.

P7.51 All inductors in Figure P7.51 have an inductance L and 
all capacitors have a capacitance C. Determine Leq in 
series with Ceq that are equivalent to the combination 
of L and C shown between terminals ‘a’ and ‘b’.

 Ans. Leq = 11 L/6, Ceq = 3C/7.
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Duality

P7.52 Given the circuit of Figure P7.52, (a) derive the dual 
circuit, (b) compare the resistance or conductance seen 
by the independent source in each circuit, and (c) com-
pare the power delivered or absorbed by each circuit 
element in the two circuits.

 Ans. (a) 18 A source in parallel with 9, 12, and 15 S; 
(b) 36 Ω, 36 S; (c) sources deliver 9 W, 9 Ω/9 S resistors 
dissipate 2.25 W, 12 Ω/12 S resistors dissipate 3 W, and 
15 Ω/15 S resistors dissipate 3.75 W.

P7.53 Given the circuit of Figure P7.53, (a) derive the dual 
circuit, (b) compare the resistance or conductance seen 
by the independent source in each circuit, and (c) com-
pare the power delivered or absorbed by each circuit 
element in the two circuits.

 Ans. (a) 12  A source in parallel with 2  S and with a 
series combination of 6 and 122; (b) 6 Ω, 6 S; (c) sources 
deliver 24 W, the 2 Ω/2 S resistors dissipate 8 W, the 
6 Ω/6 S resistors dissipate 32/3 W, and the 12 Ω/12 S 
resistors dissipate 16/3 W.

P7.54 Given the circuit of Figure P7.54, (a) derive the dual 
circuit, (b) compare the resistance or conductance seen 
by the independent source in each circuit, and (c) com-
pare the power delivered or absorbed by each circuit 
element in the two circuits.

 Ans.(a) 30 A source in parallel with 10 S, 20 S and a 
series combination of 10 S and a CCVS; (b) 60 Ω, 60 S; 
(c) independent sources deliver 15 W, 10 Ω/10 S resis-
tors on the LHS dissipate 2.5  W, 20 Ω/20  S resistors 
dissipate 5 W, 10 Ω/10 S resistors on the RHS dissipate 
22.5 W, dependent sources deliver 15 W.

P7.55 Given the circuit of Figure P7.55, (a) derive the dual 
circuit, (b) compare the resistance or conductance seen 
by the independent source in each circuit, and (c) com-
pare the power delivered or absorbed by each circuit 
element in the two circuits.

 Ans. (a) 3 V source in series with a parallel combination 
of 5 and 10 S and a parallel combination of 4 S and a 
VCVS; (b) 5 Ω, 5 S; (c) independent sources deliver 45 W, 
5 Ω/5 S resistors dissipate 5 W, 10 Ω/10 S resistors dis-
sipate 10 W, 4 Ω/4 S resistors in parallel with dependent 
source dissipate 16 W, dependent sources absorb 14 W.

P7.56 (a) Derive the dual of the circuit of Figure P7.56; (b) rep-
resent the two circuits in the dc steady state; (c) compare 
voltage division in the given circuit with current divi-
sion in the dual circuit; (d) compare the power delivered 
or absorbed by each circuit element in the two circuits.

 Ans. Current source in parallel with 10 S, 10 μF, and 
a series connection of 20 S and 2 μH; (b) 15 V source 
applied to 10 Ω in series with 20 Ω, 15 A source applied 
to 10 S in parallel with 20 S; (c) 15 V divides in propor-
tion to resistances, 15 A divides in proportion to con-
ductances; (d) sources deliver 7.5 W, 10 Ω/10 S resistors 
dissipate 2.5 W, 20 Ω/20 S resistors dissipate 5 W.

P7.57 (a) Derive the dual of the circuit of Figure P7.57; (b) com-
pare Rin of the dual circuit with Rin in Figure P7.57.

 Ans. (b) Rin in Figure P7.57 is 10 Ω, Rin of dual circuit is 
0.1 Ω.

P7.58 (a) Derive the mesh-current equations using the mesh 
currents shown in Figure P7.58, (b) deduce the node-
voltage equations of the dual circuit, and (c) derive the 
circuit that will give these node-voltage equations with 
respect to a specified reference node.

 Ans. Y-connection of 1, 2, and 3 mF inscribed in a 
Δ-connection of 1, 2, and 3 A current sources.

P7.59 Verify that the mesh-current equations of the circuit of 
Figure 7.38 are the dual relations of the node-voltage 
equations of Figure 7.40.
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Objective and Overview

The chapter introduces phasor analysis, a powerful and 
very useful methodology that extends to the sinusoidal 
steady state all the concepts, theorems, and procedures 
applied to resistive circuits under dc conditions. The key 
underlying concept is the transformation of linear dif-
ferential equations describing the behavior of circuits 
involving capacitors and inductors under steady-state 
sinusoidal conditions to algebraic equations involving 
the imaginary unit j. Appendix D provides an introduc-
tion to complex quantities.

The chapter begins with highlighting some fun-
damental properties of the sinusoidal function and 
responses to sinusoidal excitation, followed by a discus-
sion of phasors and their properties. The v–i phasor rela-
tions for resistors, capacitors, and inductors are derived, 
leading to the concept of impedance. The representation 
of circuits in the frequency domain is then considered, 
including several illustrative examples. The chapter 
ends with a discussion of phasor diagrams.

8.1  The Sinusoidal Function

A voltage or a current that varies sinusoidally with time 
can be represented as

 y t Y tm( ) = +( )cos w q  (8.1)

where
Ym is the amplitude of the sinusoidal function
ω is its angular frequency in rad/s
θ is its phase angle (Figure 8.1)

Note that the argument (ωt + θ) of a trigonometric func-
tion is in radians, which is dimensionless, as is ωt, but it 
is customary to express θ in degrees.

The time interval between successive repetitions of 
the same full range of values of y is the period T. The 
period is conveniently taken as the interval between suc-
cessive maxima, or successive minima, or every other 
zero crossing, as illustrated in Figure 8.1 for successive 
zero crossings from positive to negative values of y(t). 

The full range of values of the function over a period is 
a cycle. The frequency f of repetitions of the function is

 
f

T
= =1

2
w
p  

(8.2)

where
T is in seconds
f is in cycles per second, or hertz (Hz)
ω is in rad/s

Voltages and currents that vary sinusoidally with time 
are designated in circuit analysis as ac quantities, where 
ac stands for ‘alternating current’.

As ω decreases, T increases (Equation 8.2), the sinusoid 
becoming “flatter.” If ω = 0, the sinusoid of Figure 8.1 
becomes a dc quantity of magnitude Ymcosθ.

The sinusoidal function is a periodic function, that is, 
a function consisting of cycles that repeat at a given fre-
quency. However, it is the only periodic function that 
is composed of a single frequency. All other periodic 
functions are composed of more than one frequency, in 
accordance with Fourier’s theorem (Chapter 16).

An important property of the sinusoidal function is 
embodied in the following concept:

Concept: When a sinusoidal excitation is applied to an 
LTI circuit, all the steady-state currents and voltages in 
the circuit are sinusoidal functions of the same frequency as 
the excitation, but which generally differ in amplitude and 
phase angle.

8
Sinusoidal Steady State

y

Ym

Ymcos(  )

–Ym

t

y = Ymcos( t + )

T = 2  /

FIGURE 8.1
The sinusoidal function.
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The reason for this is that voltages and currents in an LTI 
circuit are subject to linear operations such as (1) scaling 
or multiplication by a constant, as in Ohm’s law, volt-
age or current division, (2) addition or subtraction, as 
in KCL or KVL, and (3) differentiation and integration, 
as in the v–i relations of inductors and capacitors. When 
sinusoidal functions are subjected to any of these lin-
ear operations, they remain sinusoidal functions of the 
same frequency. The amplitudes and phase angles of the 
resulting sinusoidal functions will differ from those of 
the original functions, but no new frequencies are pro-
duced. It is assumed in this chapter that if more than a 
single source of excitation is applied to a given circuit, 
all the sources have the same frequency. Excitation by 
sources of more than one frequency is considered in 
Chapter 16.

Another important property of the sinusoidal 
 function, which is used in this chapter, is embodied in 
Euler's formula:

 Y e Y t jY tm
j t

m m
w w w= +cos sin  (8.3)

where
j = -1 is the imaginary unit
Ym is the amplitude of the sinusoidal function
Y em

j tw  is a complex quantity, whose real component 
is Ymcosωt and whose imaginary component 
is jYmsinωt. The term Ymsinωt, without j, is the 
 imaginary part. The real part and the real compo-
nent are one and the same.

Equation 8.3 can be plotted in the complex plane or 
Argand diagram, where the real part is plotted along the 
horizontal, or real, axis, and the imaginary part is plotted 
along the vertical, or imaginary, axis (Figure 8.2). Y em

j tw  
is plotted in polar form, as a position vector OP, that is a 
vector drawn from the origin, whose magnitude is Ym 
and whose angle with respect to the positive horizontal 
axis is ωt. This angle increases with time, so that the vec-
tor OP rotates counterclockwise (CCW) about the ori-
gin at an angular frequency ω rad/s. In rectangular form, 
Ymcosωt is the projection of Y em

j tw  on the real axis, and 
Ymsinωt is its projection on the imaginary axis. As time 
progresses, the lengths of these projections vary sinusoi-
dally with time, as illustrated by the dashed extensions in 
Figure 8.2. As a vector, OP = = +Y e Y t jY tm

j t
m m

w w wcos sin  
as in Equation 8.3.

Analysis of the sinusoidal steady state is the deri-
vation of the currents and voltages in a circuit after a 
sinusoidal excitation has been applied for a sufficiently 
long time. When any periodic excitation is suddenly 
applied to a circuit, there is generally an initial “tran-
sient,” or temporary, response that dies out with time, 
as explained in later chapters. After this transient dies 

out, a steady state remains, in which the currents and 
voltages repeat according to some pattern that depends 
on the time variation of the excitation.

Analysis of the sinusoidal steady state is of funda-
mental importance for the following reasons:

 1. The sinusoidal steady state is used in several 
practical cases, as in the frequency responses 
of systems (Chapter 14) and in power system 
analysis (Chapters 17 and 25). Electric power is 
efficiently generated, transmitted, and distrib-
uted as sinusoidal voltages and currents.

 2. The methodology used in steady-state sinusoi-
dal analysis is based on expressing sinusoidal 
voltages and currents as phasors and the v–i rela-
tions in terms of impedance. This is extremely 
convenient in that it extends to the sinusoidal 
steady state all the concepts, theorems, and pro-
cedures that apply to resistive circuits under dc 
conditions.

 3. The representation of sinusoidal voltages and 
currents as phasors and the v–i relations in 
terms of impedance are later applied to the 
analysis of frequency responses of circuits 
(Chapter 14), the responses to periodic inputs 
(Chapter 16), power calculations (Chapter 17), 
three-phase systems (Chapter 25), and the 
Fourier transform (Chapter 22). Moreover, the 
phasor representation can be readily general-
ized to the most powerful method for analyz-
ing linear systems, namely, that of the Laplace 
transform (Chapter 21).
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FIGURE 8.2
A rotating position vector on an Argand diagram.
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Primal Exercise 8.1

Given y(t) = 15cos(200πt + 30°), determine (a) the dura-
tion of 10 cycles and (b) the time of occurrence of the 
first zero of the 11th cycle.
Ans. (a) 100 ms; (b) 101.67 ms.

8.2  Responses to Sinusoidal Excitation

8.2.1  Excitation in Trigonometric Form

Consider the circuit of Figure 8.3a in which a current 
source iSRC(t) = Imcosωt A is applied to a series RL cir-
cuit. It is desired to determine the voltage v across 
the series combination. Note that a tilde symbol (~) is 
added to the source to denote a steady-state sinusoidal 
excitation.

From KVL, v = vR + vL, where vR = RiSRC and vL = 
LdiSRC/dt. Substituting for vR and vL,

 
v t Ri L

di
dt

SRC
SRC( ) = +

 
(8.4)

Substituting, iSRC(t) = Imcosωt,

 v t RI t LI tm m( ) = -cos sinw w w  (8.5)

To combine the sine and cosine terms into a  single func-

tion, the RHS is multiplied and divided by R L2 2 2+w  
to give

v t I R L
R

R L
t

L

R L
tm( )= +

+
-

+

æ

è
çç

ö

ø
÷÷

2 2 2

2 2 2 2 2 2
w

w
w w

w
wcos sin

 
(8.6)

We now define an angle whose cosine is R R L/ 2 2 2+w  

and whose sine is w wL R L/ 2 2 2+  (Figure 8.3b). Equation 

8.6 becomes

v t I R L t t

I R L t V

m

m

( ) = + -( )
= + +( )( ) =

2 2 2

2 2 2

w q w q w

w w q

cos cos sin sin

cos mm tcos w q+( ) (8.7)

where V I R Lm m= +2 2 2w  is the amplitude of v. It is 
seen that this procedure for obtaining v is rather com-
plicated, even in this simple case, as it involves writing 
KVL using a time derivative, followed by manipulation 
of trigonometric functions. In contrast, V in a similar dc 
case (Figure 8.4) can be written from Ohm’s law as

 V R R ISRC= +( )1 2  (8.8)

A pertinent question, therefore, is how to reduce the 
derivation of voltage in Figure 8.3a to be much like 
that in Figure 8.4. We will outline the two major steps 
involved in achieving this objective, before examining 
these steps and their implications:

 1. The first step is to apply the excitation 
as a complex sinusoidal function I em

j tw  
rather than Imcosωt, so that v t RI eR m

i t( ) = w , 
and v t Ldi dt j LI eL m

i t( ) = =/ w w . Note that differ-
entiation has been reduced simply to multipli-
cation by jω. KVL in Figure 8.3 gives

 v t R j L I em
j t( ) = +( )w w

 (8.9)

 2. The second step is to set t = 0 in Equation 8.9, 
which makes the exponential term equal to 
unity, as this leads naturally to phasor notation 
and representation in the frequency domain. 
The RHS of Equation 8.9 becomes (R + jωL)Im 
and is of the same form as Equation 8.8 in that 
the voltage is the product of the amplitude of 
current and a complex quantity (R + jωL), that 
is a constant for a given circuit and frequency of 
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excitation. Moreover, (R + jωL) in polar coordi-
nates is R L e j2 2 2+w q, where θ is the same angle 
in Figure 8.3b. Substituting in Equation 8.9, with 
t = 0, the RHS becomes

 I R L e V em
j

m
j2 2 2+ =w q q

 (8.10)

  where V I R Lm m= +2 2 2w  is the amplitude of v, 
as in Equation 8.7. Equation 8.10 is in fact the 
precursor to phasor notation.

These two steps will be elaborated and justified in the 
following subsections, leading to the objective of apply-
ing “Ohm’s law” to the sinusoidal steady state.

8.2.2  Complex Sinusoidal Excitation

A complex sinusoidal excitation is not physically real-
izable, but is an important mathematical construct that 
can be interpreted in terms of physically realizable trig-
onometric excitations. From Euler's formula,

 I e I t jI tm
j t

m m
w w w= +cos sin  (8.11)

It is seen from Equation 8.11 that a complex sinusoidal 
excitation is a combination of a real trigonometric excita-
tion, Imcosωt, and an imaginary trigonometric  excitation 
whose imaginary part is a real trigono metric excitation 
Imsinωt. If (R + jωL) is expressed in polar coordinates as 
R L e j2 2 2+w q, as in Equation 8.10. Equation 8.9 becomes

 v t I R j L e I R L e V em
j t

m
j t

m
j t( ) = +( ) = + =+( ) +( )w ww w q w q2 2 2

 
(8.12)

Equation 8.12 is the complex sinusoidal voltage  
response to the complex sinusoidal current excitation 
I w
m

j te . Applying Euler's formula

 

v t I R L t

jI R L t

m

m

( ) = + +( )( )

+ + +( )( )

2 2 2

2 2 2

w w q

w w q

cos

sin  (8.13)

It is seen that the real component of v is the same 
as that derived directly from an excitation Imcosωt 
(Equation 8.7). This raises the question as to whether the 
imaginary part of the response in Equation 8.13 is the 
response to an excitation iSRC = Imsinωt. We will show 
that this is indeed the case.

The most direct way of doing this is to express 
Imsinωt as Imcos(ωt – 90°). This replaces ωt by (ωt − 90°) 
in Equations 8.5 through 8.7. Equation 8.7 becomes

 

v t I R L t

I R L t

m

m

( ) = + - ° +( )( )

= + +( )( )

2 2 2

2 2 2

90w w q

w w q

cos

sin  (8.14)

Multiplying Imsinωt by the constant j, as in Equation 
8.11 multiplies the response in Equation 8.14 by j, which 
gives the imaginary component of v in Equation 8.13.

What we have shown, therefore, is that applying the 
excitation I em

j tw  is equivalent to applying the two exci-
tations Imcosωt and Imsinωt at the same time, but with 
each of these excitations being independent of the other, 
as if it were applied alone. This underlies an important 
concept, namely,

Concept: When a complex sinusoidal excitation Ymejωt is 
applied to an LTI circuit, the response is a complex sinusoi-
dal function whose real part is the response to the real part of 
the excitation, Ymcosωt, applied alone, and whose imaginary 
part is the response to the imaginary part of the excitation, 
Ymsinωt, applied alone.

This is illustrated in Figure 8.5, where the excitation 
Vmejωt applied to an LTI circuit is the sum of two exci-
tations Vmcosωt and jVmsinωt. Any voltage or current 
response in the circuit due to Vmejωt is, by superposi-
tion, the sum of two responses: (1) the response due to 
a source equal to the real part of the excitation, Vmcosωt 
acting alone, with the source jVmsinωt set to zero and (2) 
the response due to a source equal to the imaginary part 
of the excitation, jVmsinωt acting alone, with the source 
Vmcosωt set to zero.

The reason for this separation of the responses is that 
in linear operations, the real and imaginary parts of a 
complex quantity do not mix; they retain their respec-
tive identities. Thus, if x = (a + jb) and y = (c + jd), then 
x + y = (a + b) + j(c + d), where the real part of (x + y) is the 
sum of the two real parts (a + b), and the imaginary part 
is the sum of the two imaginary parts (c + d). The same 
is true of other linear operations that are encountered 
in electric circuits, such as differentiation or integration. 
On the other hand, multiplying x and y, which is a non-
linear operation, gives xy = (ab – cd) + j(bc + ad), where 
the real and imaginary parts of xy are mixtures of the 
real and imaginary parts of x and y.

It follows that if the response to an excitation Kcosωt 
or Ksinωt is required, a complex sinusoidal excitation 
Kej tw  can be applied and the real and imaginary parts of 
the response will be the responses to Kcosωt and Ksinωt, 

–

+

–

+

Vmej   t

jVmsin   t

Vmcos   t
LTI

circuit

FIGURE 8.5
Complex sinusoidal excitation applied to an LTI circuit.
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respectively. This is summarized in Table 8.1, where the 
excitation is assumed to be a current and the response a 
voltage.

Primal Exercise 8.2

Given y(t) = 5cos(ωt + 30°) + 12sin(ωt + 30°), express y(t) 
as a single cosine function, as a single sine function, and 
in terms of complex exponentials.

Ans. 13cos(ωt – 37.4°), 13sin(ωt + 52.6°), 

2 5 6 2 5 6
30 30

. .-( ) + +( )+( ) - +( )j e j e
j t j tw � �w

.

8.3  Phasors

8.3.1  Phasor Notation

The complex excitation I em
j tw  and the complex response 

V em
j tw q+( ) (Equation 8.12) can be plotted as position vec-

tors on an Argand diagram (Figure 8.6a). Both vectors 
rotate CCW at an angular speed ω, retaining the phase 
angle θ between them as they rotate. The angular fre-
quency ω is the same because, as emphasized earlier, all 
the voltages and current responses in an LTI circuit have 
the same frequency as the excitation. The information 

of interest in Figure 8.6a is the magnitudes of the two 
vectors and their relative phase angle. It follows that 
no significant information is lost by freezing the rota-
tion of the vectors at a particular value of t or taking a 
snapshot of the rotating vectors at a time t, which can be 
conveniently taken as t = 0. I em

j tw  becomes I e Im m
0 = , and 

V em
j tw q+( ) becomes V em

jq , as in Figure 8.6b. Such complex 
quantities are denoted as phasors. Thus,

Definition: A phasor is a quantity such as Vmejθ represent-
ing a complex sinusoidal function of time, but with the time 
variation suppressed.

Phasors are written in boldface and expressed as a 
magnitude and phase angle:

 V = = ÐV e Vm
j

m
q q  (8.15)

It should be emphasized that phasors drawn on a 
given Argand diagram are implicitly complex sinusoi-
dal functions of time rotating at the same angular fre-
quency. Phasors that are implicitly rotating at different 
frequencies cannot, and should not, be drawn on the 
same Argand diagram. Nor should complex quantities, 
such as (R + jωL), be drawn on the same Argand dia-
gram as phasors (Figure 8.6c).

8.3.2  Properties of Phasors

Being position vectors, phasors have magnitude and 
direction, just like vectors, but with the additional prop-
erty that their horizontal component is a real quantity, 
and their vertical component is an imaginary quantity. 
They can therefore be scaled, added, and subtracted like 
vectors.

Thus, multiplying a phasor by a real quantity K mul-
tiplies its magnitude by K, without changing its phase 
angle. Two phasors Y1 1 1= ÐY q  and Y2 2 2= ÐY q  can be 
added by drawing Y2 such that its origin lies at the 
tip of Y1 (Figure 8.7a). The sum Y1 + Y2 is the phasor 
whose origin is that of Y1 and whose tip is that of Y2. 
The sum of Y1 and Y2 may be also obtained by apply-
ing the “parallelogram rule”, as in Figure 8.7a. The real 
part of Y1 + Y2 is Y1cosθ1 + Y2cosθ2, and its imaginary 
part is Y1sinθ1 + Y2sinθ2. It follows that the magnitude 
of Y1 + Y2 is

 Y Y1 2 1
2

2
2

1 2 2 12+ = + + -( )Y Y Y Y cos q q  (8.16)

The phase angle of Y1 + Y2 is

 
Ð +( ) = +

+
-Y Y1 2

1 1 1 2 2

1 1 2 2
tan

sin sin
cos cos

Y Y
Y Y

q q
q q  

(8.17)

(a)

Im

Im

V m

V m

Re

Imej   t

Vmej(   t+  )

t Im Im

(b)

Im

Re

V = Vmej

(c) R

R+ j   
L

L

FIGURE 8.6
(a) Phasors rotating at the same angular velocity; (b) rotation frozen at 
t = 0; (c) R + jωL drawn on a different Argand diagram.

TABLE 8.1

Complex Sinusoidal Excitation and Responses

Time Function
Complex 

Form Real Part Imaginary Part

Excitation I em
j tw Imcosωt Imsinωt

Response V em
j tw q+( ) Vmcos(ωt + θ) Vmsin(ωt + θ)
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The phasor difference Y1 − Y2 is obtained by adding 
Y1 and –Y2, where –Y2 is a phasor of the same magni-
tude as Y2 but having a phase angle (θ2 + π) (Figure 8.7b). 
Alternatively, the phasor Y1 − Y2 may be obtained as the 
phasor whose origin lies at the tip of Y2 and whose tip 
lies at the tip of Y1. Then Y1 = Y2 + (Y1 – Y2). The pha-
sor can be translated to the origin, without changing 
its magnitude and direction, so as to become a position 
 vector. A phasor Y = ÐY q  (Figure 8.8a) can be multiplied 
by a complex quantity AÐa  (Figure 8.8b)

 Ye Ae AYej j jq a q a´ = +( ) (8.18)

The product is a phasor of magnitude AY and phase 
angle (θ + α) (Figure 8.8a).

A phasor Y = ÐY q  can be divided by a complex quan-
tity AÐa :

 
Ye
Ae

Y
A
e

j

j
j

q

a
q a= -( )

 
(8.19)

The quotient is a phasor of magnitude Y/A and phase 
angle (θ − α) (Figure 8.8c).

A special case is multiplication and division by j. In 
the complex plane, j is an imaginary quantity of unit 
magnitude and a phase angle of π/2, that is,

 
j e j

j
= ´ = +1

2 2
2
p p p

cos sin
 

(8.20)

Multiplying a phasor by j rotates the phasor through 
an angle π/2 CCW without changing its magnitude 
(Figure 8.9a). Dividing a phasor by j, or multiplying it 
by −j, since 1 2/ /j j j j= = - , rotates the phasor through 
an angle π/2 clockwise without changing its magnitude 
(Figure 8.9b).

(a)

Y1
1

  2 –   1Y 1
+Y 2

2

Y2

Y1

Y2Y2sin  2

Y1sin  1

Y1cos  1
Y2cos  2

Im

Re

(b)

Y2

Y1

–Y2

–Y2

O
  +

  2
a

b

Im

Y
1 –Y

2

Y
1 –Y

2
Re

2

FIGURE 8.7
Phasor addition (a) and subtraction (b).

(c)

AY

AY

Y

Im

Im

Re

Y

Re

YY

(a)

(b)

Im

Re

A

Y/A

+

–

FIGURE 8.8
(a) Phasor Y multiplied by the complex number A shown in (b) and 
(c) Y divided by A.
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Phasor multiplication by j (a) and division by j (b).
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Primal Exercise 8.3

Determine the product and quotient of 12 5+( )j  and 
3 4+( )j  by working in rectangular coordinates and in 

polar coordinates.

Ans. Product: 16 63 65 75 8+ = Ð °j . ; quotient: 2 24 1 32. .- =j  
2 6 30 5. .Ð- °.

Example 8.1: Manipulation of Complex Quantities

It is required to determine the magnitude, phase, real, 
and imaginary parts of Y a jb c jd= +( ) +( )/ , where a, b, c, 
and d are positive constants.

Solution:

Let us rationalize Y, that is, make its denominator real, 
by multiplying numerator and denominator by the 
complex conjugate of the denominator, c − jd. Thus,

 
Y

a jb
c jd

c jd
c jd

ac bd
c d

j
bc ad
c d

=
+
+

´
-
-

= +
+

+ -
+2 2 2 2

 
(8.21)

The real part of Y is 
ac bd
c d
+
+2 2

, its imaginary part is 
bc ad
c d
-
+2 2 .

The magnitude of Y is obtained as the square 
root of the sum of the squares of the real and imagi-
nary parts. An easier way is to convert the numera-
tor and denominator to polar coordinates. Thus, 

Y
a b e

c d e

a b

c d e
e

j

j

j= +

+
= +

+
-( )

2 2

2 2

2 2

2 2

1

2

1 2
q

q

q q . The magnitude of Y 

is therefore a b c d2 2 2 2+ +/ . The phase angle of Y is 
(θ1 − θ2) = tan−1(b/a) − tan−1(d/c), that is, the phase angle 
of Y is the phase angle of the numerator minus that of 
the denominator. The following should be noted:

 (a) Whereas the magnitude of Y is the magnitude of 
the numerator divided by that of the denominator, 
the real part of Y is not the real part of the numera-
tor divided by that of the denominator. Nor is 
the imaginary part of Y the imaginary part of the 
numerator divided by that of the denominator.

 (b) In determining the phase angle from the real and 
imaginary parts, the actual signs of these parts 
must be retained without change, as illustrated 
in Figure 8.10. Otherwise, the angle will be incor-
rect. Thus, assuming a and b are positive con-
stants, tan−1(b/a) is an angle θ in the first quadrant. 
However, tan−1(−b/−a) is the ratio of two negative 
components, −b and −a, so that the angle is (π + θ) in 
the third quadrant. Similarly, tan−1(−b/a) is an angle 
−θ in the fourth quadrant, whereas tan−1(b/−a) is an 
angle (π − θ) in the second quadrant.

Problem-Solving Tip

• Complex quantities are conveniently added or sub-
tracted in rectangular form and are conveniently 
multiplied or divided in polar form.

Exercise 8.4

Show that the square root of the sum of the squares of 
the real and imaginary parts of the RHS of Equation 8.21 

reduces to a b c d2 2 2 2+ +/ .

Primal Exercise 8.5

The phasor (1 − j) is rotated 90° clockwise. Represent 
the rotated phasor in the time domain as the imaginary 
component of the complex sinusoidal function of time, 
assuming an angular frequency ω rad/s.

Ans. −cosωt − sinωt.

Primal Exercise 8.6

Given v1(t) = 12sin(ωt + 60°) V and v2(t) = −6cos(ωt + 30°) V. 
Express v1(t) as a cosine function, convert v1(t) and v2(t) 
to phasors, and draw them on a phasor diagram.

Ans. v1(t) = 12cos(ωt − 30°) V and v2(t) = 6cos(ωt + 210°) V, 
V1 = 12∠−30° V, V2 = 6∠210° V (Figure 8.11).
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Im
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FIGURE 8.10
Figure for Example 8.1.
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Primal Exercise 8.7

Given the phasors A = 4∠45° and B = 2∠−45°, deter-
mine the phasor A′/B′, where A′ is the phasor A multi-
plied by (1 + j) and B′ is the phasor B divided by (1 − j).

Ans. j4.

8.4  Phasor Relations of Circuit Elements

Having defined phasors, the next step is to express the 
v–i relations of the three passive circuit elements in pha-
sor notation.

8.4.1  Phasor Relations for a Resistor

If the current through a resistor is I em
j tw A, the volt-

age across the resistor is RI em
j tw V. In phasor notation 

I = Ð °Im 0 A, and V = Ð °RIm 0 V, (Figure 8.12a), or

 V I= =R Gor I V (8.22)

According to the interpretation of complex sinusoi-
dal excitation, a current Imcosωt A produces a voltage 
RImcosωt V, and a current Imsinωt V produces a volt-
age RImsinωt V. The voltage and current are in phase 
(Figure 8.12b).

If i(t) = Imcosωt and v(t) = RImcosωt, the instantaneous 
power dissipated by the resistor, based on the assigned 
positive directions of Figure 8.12a, is

 
p t vi RI t

RI
tm

m( ) = = = +( )2 2
2

2
1 2cos cosw w

 
(8.23)

p, plotted in Figure 8.12b, is never negative because 
a resistor does not deliver power. From Equation 8.23, 
p has an average component P RIm= 2 2/  and a sinusoi-
dal component of zero average, amplitude RIm

2 2/ , and 
frequency 2ω. The frequency of p is twice that of v or i 
because p is positive when v and i are both positive and 
both negative.

Formally, the average power P is obtained by integrat-
ing p over a period, which gives the energy dissipated 
over the period, and dividing by the period:

 

P
T

pdt
RI

t d t

RI
t t

T
m

m

= = +( ) ( )

= ( ) +

ò ò1 1
2 2

1 2

4
1
2

2

0

2

0

2

2

p
w w

w w

p

cos

sin
p
éé
ëê

ù
ûú

=
0

2 2

2

p RIm

 
(8.24)

Note that Im
2 2/  is the average, or mean, of the square 

of the current i t I tm
2 2 2( ) = ( )cos w , since this average is 

given by

 

1 1
2

2
1
2

1 2

2

0

2 2

0

2

2 2

T
i dt I td t

I
t d t

I

T

m

m m

= ( )

= +( ) ( ) =

ò òp w w

p
w w

p

cos

cos
220

2p

ò  
(8.25)

The square root of this mean is the root-mean-square, 
or rms value of i, which is denoted as Irms. Thus,

 
I

I Im m
rms = =

2

2 2  
(8.26)
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FIGURE 8.12
Sinusoidal responses of ideal resistors. (a) V and I for an ideal resistor shown as phasors and (b) v, i, and p for an ideal resistor in the time domain.
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Figure for Primal Exercise 8.6.



Sinusoidal Steady State 209

Substituting in Equation 8.24,

 P RI= rms
2

 (8.27)

Had we considered i(t) = Imsinωt instead of i(t) = 
Imcosωt, only the sign of cos2ωt changes in preced-
ing equations, but since the integral of this term aver-
ages to zero over the period, P and Irms are unchanged. 
Moreover, if we consider v(t) = Vmcosωt, where Vm = RIm, 
the same procedure yields

 
P

V
R

V
V

P
V
R

m m= = =
2 2

2 2
, ,rms

rms

 
(8.28)

It follows from Equations 8.24 and 8.28 that

 
P

RI RI I V I V I
V Im m m m m m m= =

( )
= = =

2

2 2 2 2 2
rms rms

 
(8.29)

Since the power dissipated in R by a dc current I is 
P VI RI V R= = =2 2/ , it follows from Equations 8.27 
through 8.29 that:

Concept: A current of rms value Irms, or a voltage of rms 
value Vrms, dissipate the same average power in a given resis-
tor as a dc current, or a dc voltage, of the same value. The 
average power dissipated in the sinusoidal steady state is, 
like dc power, a real quantity that is independent of time, fre-
quency, and phase angle.

Using rms values of sinusoidal currents and volt-
ages for power calculations results in expressions of the 
same form as under dc conditions. The rms value is also 
known as the effective value.

It should be emphasized that the rms value of a 
phasor current or voltage is a real number that is 1 2/  
of the amplitude of the current or voltage, independently 
of the time, frequency, and phase angle. For example, if 
I = (3 + j4) = 5∠53.1° A, so that i(t) = 5cos(ωt + 53.1°) 
expressed as a cosine function, then Irms / A= 5 2 .

8.4.2  Phasor Relations for a Capacitor

If the current through a capacitor is I em
j tw A, the voltage 

across the capacitor is

 
v t

C
idt

C
I e dt

I
j C

e
I
C

e Km
j t m j t m j t( ) = = = = +ò ò -( )1 1 2w w w p

w w
/

 
(8.30)

where K is the constant of integration that shifts the 
voltage in the vertical direction and defines its average 
value. When a purely sinusoidal current of zero average 
is applied to an uncharged capacitor, no net charge is 
deposited on the capacitor over a period, and the result-
ing steady-state voltage is sinusoidal, of zero average, 
so that K = 0.

In phasor notation, I = Ð °Im 0 A, and V = ( )Ð ° =I j Cm/ w 0   
I Cm/ Vw( )Ð- °90 , or

 
V I I= =1

j C
j C

w
wor V

 
(8.31)

(Figure 8.13a). The magnitude of V is (1/ωC) times that 
of I, and the phase angle of V is −90°, when the phase 
angle of I is zero (Figure 8.13a).

According to the interpretation of complex sinusoi-
dal excitation, a current Imcosωt A in a capacitor pro-
duces a voltage (Im/ωC) cos(ωt − π/2) = (Im/ωC) sinωt 
across the capacitor, and a current Imsinωt A produces 
a voltage (Im/ωC)sin(ωt − π/2) = −(Im/ωC)cosωt. The 
voltage lags the current by 90°, or the current leads the 
voltage by 90° (Figure 8.13). This can be ascertained 
by comparing the times of occurrence of the positive 
peaks of the waveforms of v and i in Figure 8.13b that 
are closest to one another. Since the peak of v occurs 
later in time than the nearest peak of i by a quarter of a 
period, v lags i by 90°.

The instantaneous power p absorbed by the capacitor 
in Figure 8.13b is
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(8.32)
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FIGURE 8.13
Sinusoidal responses of ideal capacitors. (a) V and I for an ideal capacitor shown as phasors and (b) v, i, and p for an ideal capacitor in the 
time domain.
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and
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The average power P is zero because an ideal capaci-
tor does not dissipate power. The power absorbed (p > 0) 
and stored as electric energy during a positive half-cycle 
of p is equal and opposite to the power delivered (p < 0) 
during a negative half-cycle of p, when the stored energy 
is returned to the supply. p varies at twice the frequency 
of v and i, as in the case of an ideal resistor and for the 
same reason previously mentioned. p is negative when 
either v or i is negative.

8.4.3  Phasor Relations for an Inductor

If the current through an inductor current is I em
j tw A, the 

voltage across the inductor is

 
v t L

di
dt

j LI e LI em
j t

m
j t( ) = = = +( )w ww w p/2

 
(8.34)

In phasor notation, I = Ð °Im 0 A, and V = Ð ° =j LImw 0   
wLImÐ90 V° , or

 
V I= =j L

j L
w

w
I Vor

1

 
(8.35)

The magnitude of V is ωL times that of I, and the 
phase angle of V is 90°, when the phase angle of I is zero 
(Figure 8.14a).

According to the interpretation of complex sinusoi-
dal excitation, a current Imcosωt A in the inductor pro-
duces a voltage ωLImcos(ωt + 90°) = −ωLImsinωt across 
the inductor, and a current Imsinωt A produces a volt-
age ωLImsin(ωt + 90°) = ωLImcosωt. The voltage leads 
the current by 90° or the current lags the voltage by 
90° (Figure  8.13b). This may be ascertained by com-
paring the times of occurrence of the positive peaks 

of the waveforms of v and I that are closest to one 
another. Since the peak of v occurs earlier in time than 
the nearest peak of i by a quarter of a period, v leads 
i by 90°.

The instantaneous power p absorbed by the inductor 
in Figure 8.14b is
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and
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The average power P is zero because an ideal inductor 
does not dissipate power. The power absorbed (p > 0) 
and stored as magnetic energy during a positive half-
cycle of p is equal and opposite to the power delivered 
(p < 0) during a negative half-cycle of p, when the stored 
energy is returned to the supply. p varies at twice the 
frequency of v and i, as in the case of an ideal capacitor 
and for the same reason previously mentioned.

From the preceding discussion, the corresponding v–i 
relations of capacitors and inductors in the time domain 
and in  phasor notation are as follows:

 
For a capacitor, andv t

C
idt

j C
( ) = =ò1 1

V I
w  

(8.38)

 
For an inductor, andv t L

di
dt

j L( ) = =V Iw
 

(8.39)

It is seen that the following concept applies:

Concept: In phasor notation, differentiation in time is 
expressed as multiplication by jω, and integration in time 
is expressed as division by jω. Thus, differential and inte-
gral relations are transformed to algebraic relations in jω for 
steady-state sinusoidal analysis only.
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FIGURE 8.14
Sinusoidal responses of ideal inductors. (a) V and I for an ideal inductor shown as phasors and (b) v, i, and p for an ideal inductor in the 
time domain.
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This concept in fact underlies the usefulness of phasor 
notation for steady-state sinusoidal analysis.

Another important observation is that v and i are in 
phase for an ideal resistor but are in phase quadrature 
for ideal capacitors and inductors. This is because an 
ideal resistor only dissipates power, which means that v 
and i are in phase. It does not store energy that must be 
returned later to the supply. If no power is delivered by 
an ideal resistor, p is never negative, so that v and i must 
be in phase.

On the other hand, ideal capacitors and inductors 
do not dissipate power, which means that the average 
power P over a period is zero. For this to be the case, v 
and i must be in phase quadrature, which means that if 
one is a cosine function, the other is a sine function, so 
that their product averages to zero over a period.

Concept: The sinusoidal voltage and current for an ideal 
resistor are in phase because such a resistor is purely dissipa-
tive. They are in phase quadrature for ideal energy storage 
elements because these elements are nondissipative.

Primal Exercise 8.8

The voltage applied to a 10 W resistor is 80 35Ð ° V peak, 
the frequency being 50 Hz. Determine (a) the expression 
for the current in the time domain, assuming the voltage 
is a cosine function; and (b) the power dissipated in the 
resistor.

Ans. (a) 8 100 35cos( )p t + ° A; (b) 320 W.

Primal Exercise 8.9

The current through a series combination of a 10 mH 
inductor and a 50 mF capacitor is 15 75Ð- ° mA rms. 
Determine the voltage across the inductor, and the volt-
age across the capacitor, (a) as phasors, (b) as functions 
of time, assuming that the frequency is 200 Hz and the 
time variation is a sine function.

Ans. (a) VL = 60π∠15° mV rms, VC = (750/π)∠−165° mV rms; 
(b) vL(t) = 60π 2 sin(400πt + 15°) mV rms, vC(t) = (750 2 /π)
sin(400πt − 165°) mV rms.

Primal Exercise 8.10

A current i(t) = 4cos5t A is applied to a series combina-
tion of 4 Ω resistor, 1 H inductor, and 0.1 F capacitor. 
(a) Express the voltage across the series combination as 
a phasor; (b) determine the average power dissipated in 
the resistor, using Equations 8.27 through 8.29.

Ans. (a) V = 16 + j12 = 20∠39.9° mV; (b) 32 W.

8.5 Impedance and Reactance

When considering opposition to the flow of current in a 
circuit under sinusoidal steady-state conditions, it is nec-
essary to include, in addition to resistance, the effects of 
energy storage elements. This is because both the build-
up of voltage across a capacitor and the induced voltage 
in an inductor oppose an increase in current through 
these elements by being voltage drops in the direction 
of current, as in the case of a resistor. Consider a part of 
a circuit or subcircuit that does not contain independent 
sources, for reasons that will be explained shortly. Let 
V = ÐVm vq  be a voltage phasor across terminals ‘ab’ of 
the subcircuit, and let I = ÐIm iq  be the current through 
the subcircuit in the direction of the voltage drop V 
(Figure 8.15). Then,

Definition: Impedance Z is the ratio of the voltage phasor 
Vm∠θv across a subcircuit to the current phasor Im∠θI flow-
ing through the subcircuit in the direction of a voltage drop. 
The subcircuit could be a single R, L, or C, or a combination of 
these elements. The subcircuit should not contain independent 
sources but could contain dependent sources, as long as the con-
trolling variables of these sources are all within the subcircuit.
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(8.40)

where θ = θv − θi (Figure 8.16a). When V is in volts and 
I is in amperes, Z is in ohms. Since Z is in general com-
plex, it can be expressed as

 Z R jX= +  (8.41)

(Figure 8.16b). It should be emphasized that although Z 
is in general complex, it is not a phasor, because it is not 
a complex sinusoidal function of time in which the time 
variation has been suppressed. In fact, the exponential 
time variation cancels out in Equation 8.40. Z is there-
fore drawn on a  separate diagram from that of  V and I. 
Moreover, the reason independent sources are excluded 
from the subcircuit in the definition of impedance is 
that in order to make the concept of impedance useful, 

V

+
I

–

a

b

FIGURE 8.15
Definition of impedance.
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impedance should depend only on the values of the 
passive circuit elements and their configuration, inde-
pendently of any applied excitation due to independent 
sources. Dependent sources can be included, as long as 
their controlling voltages or currents are within the sub-
circuit. The effect of the dependent sources in this case is 
to alter values of R, L, and C.

In the case of an ideal resistor, V and I are in phase 
(Equation 8.22), which means that Z is real and equal 
to R. It follows that R in Equation 8.41 is the usual resis-
tance that we have considered in previous chapters, and 
that for an ideal resistor, X = 0. X, the imaginary part of 
Z is the reactance and its unit is the ohm, just like resis-
tance and impedance.

For an ideal capacitor, Equation 8.31 gives Z = V/I = 
−j/ωC so that X = −1/ωC. For an ideal inductor, Equation 
8.35 gives Z = V/I = jωL, so that X j L= w . For both ideal 
energy storage elements, R = 0, since these elements are 
nondissipative. The reactance represents the opposition 
to current flow due to energy storage elements.

It should be emphasized that when X = 0, V and I are 
in phase. When X ≠ 0, Z is complex and V and I are out 
of phase. Hence,

Concept: In a purely resistive circuit, all sinusoidal voltages 
and currents are in phase and their amplitude do not depend 
on frequency. Energy-storage elements possess reactance, 
which causes frequency-dependent phase differences between 
sinusoidal voltages and currents in the circuit and, in addi-
tion, makes the amplitudes of these sinusoidal voltages and 
currents depend on frequency.

The following should be noted concerning reactance:

 1. In any expression that involves impedance, 
reactance is always multiplied by j. For an ideal 
capacitor, X = −1/ωC and Z = −j/ωC. For an ideal 
inductor, X = ωL and Z = jωL.

 2. Since j appears in the V–I relations as a result 
of differentiating or integrating expressions 
involving ejωt, j is always associated with ω in 
the expression for impedance. Hence, reactance 
is always a function of frequency.

The reciprocal of impedance is the admittance Y:

 
I
V
= = = +1
Z

Y G jB
 

(8.42)

where B is the susceptance. B and Y are in siemens, 
like G.

For an ideal resistor, I/V = G = 1/R (Equation 8.15), so 
that B = 0, and G is the usual conductance. For an ideal 
capacitor, Y = I/V = jωC (Equation 8.31), so that G = 0 and 
B = jωC. For an ideal inductor, Y = I/V = 1/jωL = −1/ωL 
(Equation 8.35), so that G = 0, and B = −1/ωL. Table 8.2 
lists the circuit properties of the three circuit elements. It 
is seen that under dc conditions ω = 0, which makes the 
reactance of a capacitor infinite and its susceptance zero. 
This means that when the voltage across the capacitor is 
a dc voltage, the current is zero. The capacitor behaves 
as an open circuit, as argued in Section 7.1. Similarly, 
when ω = 0, the reactance of an inductor is zero and its 
susceptance is infinite. This means that when the induc-
tor current is dc, the voltage across the inductor is zero. 
The inductor behaves as a short circuit, as argued in 
Section 7.2.

Note that whereas G = 1/R for an ideal resistor, 
B  =  −1/X for an ideal capacitor or inductor, and not 
+1/X. This is because conversion from reactance to sus-
ceptance must proceed through impedance and admittance, 
which introduces a minus sign in the reciprocal of the 
imaginary component. Thus, Z = jX, Y = 1/Z = 1/jX = 
−j/X. But Y = jB, so that B = −1/X.

Since V/I = Z = R + jX and R is the resistance, R + jX can 
be interpreted as R in series with jX, as in Figure 8.17a. 
For if the current through the series combination is I, 
then it follows from KVL that V = RI + jXI. Dividing by 
I gives V/I = Z = R + jX. Similarly, I/V = Y = G + jB can 
be interpreted as G in parallel with jB, as in Figure 8.17b. 
For if the voltage across the parallel combination is V, 
then it follows from KCL that I = GV + jBV. Dividing by 
V gives I/V = Y = G + jB.

V

R

X

Z

(a) (b)

Im

Vm

I
v

i

FIGURE 8.16
(a) Phasor diagram showing V and I and (b) impedance diagram.

TABLE 8.2

Circuit Properties of Circuit Elements

Circuit Property Resistor Inductor Capacitor

Reactance (X) 0 ωL -1
wC

Impedance (Z) R jωL 1
j C

j
Cw w

=
-

Susceptance (B) 0 -1
wL

ωC

Admittance (Y) G
R

=
1 1

j L
j
Lw w

=
- jωC
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Primal Exercise 8.11

(a) Determine the reactance and susceptance of (i) the 
inductor and (ii) the capacitor of Primal Exercise 8.9; (b) 
determine the impedance and admittance of the induc-
tor and capacitor (i) in series, (ii) in parallel.

Ans. (a) (i) 12.57 Ω, −0.0796 S, (ii) −15.92 Ω, 0.0628 S; (b) 
(i) − j3.349 Ω, j0.299 S, (ii) j59.72 Ω, −j0.168 S.

Exercise 8.12

Argue that (i) the negative sign of the reactance of a capac-
itor reflects the fact that the voltage across a capacitor 
lags the current through the capacitor by 90° in the time 
domain, and (ii) the magnitude of the reactance of a capac-
itor decreases with frequency because i = Cdv/dt = dq/dt. 
Apply a similar argument to the reactance of an inductor.

Example 8.2: Equivalent Parallel Impedance

Given an impedance ZS = RS + jωLS, represented as RS in 
series with LS. It is required to determine RP and LP of the 
equivalent parallel combination (Figure 8.18).

Solution:

Since the two circuits are equivalent between terminals 
‘ab’, they must have the same V and I at these terminals, so 

that 
I
V
= = =

+
Y

Z R j L
P

S S S

1 1
w . Rationalizing this fraction 

by multiplying the numerator and denominator by the 

complex conjugate of the denominator, so as to make the 
denominator real,
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(8.43)

Equating real and imaginary parts,
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From Table 8.2, GP = 1/RP and BP = −1/ωLP . It follows 
that
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(8.45)

and
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(8.46)

It should be noted that if RS and LS are constants, such 
as 50 Ω and 10 mH, RP and LP are frequency dependent. 
They can only be considered constant at a specified fre-
quency. Hence, the paralleled resistor and inductor of 
Figure 8.18b cannot be considered ideal circuit elements 
in this case.

It is instructive to verify some limiting cases:

 1. RS = 0, as for an ideal inductor. This makes RP → ∞, 
that is, an open circuit, and LP = LS. The same pure 
inductance appears between terminals ‘ab’ in both 
cases.

 2. LS = 0, as for an ideal resistor. This makes LP → ∞, 
that is, an open circuit, and RP = RS. The same pure 
resistance appears between terminals ‘ab’ in both 
cases.

 3. ω = 0, that is, dc conditions. Since LS is assumed 
constant, ωLS = 0, which makes RS = RP in Equation 
8.45 and LP → ∞ in Equation 8.46. The resistance 
between terminals 'ab' is the same.

 4. ω → ∞, which makes ωLS → ∞ and ZS → ∞. Under 
these conditions, RP → ∞, and LP = LS. However, 
although the inductance is finite, the reactance 
ωLP = ωLS tends to infinity. This makes ZP → ∞, so 
that terminals ‘ab’ are open-circuited in both cases.

Problem-Solving Tip

• Conversion of reactance, or reactance combined 
with resistance, to susceptance, or susceptance 
combined with conductance, must proceed 
through the intermediate, defining step of imped-
ance as the reciprocal of admittance.
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FIGURE 8.17
(a) Impedances in series and (b) admittances in parallel.
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FIGURE 8.18
Figure for Example 8.2.
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Primal Exercise 8.13

Given an inductor of 50 mH inductance in series with a 
10 Ω resistance, determine (a) the impedance of the induc-
tor and (b) the equivalent parallel resistance and induc-
tance (Figure 8.18b), assuming a frequency of 1 krad/s.

Ans. (a) 10 + j0.05ω Ω; (b) Rp = 260 Ω, Lp = 52 mH.

Primal Exercise 8.14

A 50 Ω resistor is connected in parallel with a 20 μF 
capacitor. Determine the resistance and reactance of the 
parallel combination at a frequency of 1 krad/s.

Ans. 25 Ω, −j25 Ω.

8.6 Governing Equations

The stated objective of sinusoidal steady-state analysis 
is to emulate dc analysis. In preceding chapters, circuit 
analysis under dc conditions was shown to be based on 
KCL, KVL, and Ohm’s law. In phasor notation for volt-
ages and currents in the sinusoidal steady state, time 
does not explicitly appear in the expressions for volt-
ages and currents, just as in the dc case. This is because 
a steady state is assumed, so that only relative ampli-
tudes and phases are relevant, and these are indepen-
dent of time. Voltages and currents of circuit elements 
are related to impedance and its reciprocal, admittance, 
in the same way as Ohm’s law relates dc voltages and 
currents of resistors to resistance and conductance. It 
remains to show, formally, that KCL and KVL apply in 
phasor notation.

If a current i1 enters a node and currents i2 and i3 leave 
this node, KCL gives at any instant of time:

 i i i1 2 3= +  (8.47)

where i1, i2, and i3 are instantaneous values. If these cur-
rents vary sinusoidally with time, then at any time t, 
Equation 8.47 can be expressed as.

 I t I t I tm m m1 1 2 2 3 3cos cos cosw q w q w q+( ) = +( ) + +( ) 
(8.48)

where the amplitudes and phases of the currents are 
such that Equation 8.48 is satisfied. Since Equation 8.48 
must be satisfied at any time t, it is satisfied a quarter of 
a period later, that is, when t is replaced by (t + π/2ω):

I t I t

I t

m m
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1 1 2 2

3 3

2 2

2
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w q p w q p

w q p

+ +( ) = + +( )

+ + +( )

/ /

/  (8.49)

or

 I t I t I tm m m1 1 2 2 3 3sin( sin( sin() ) )w q w q w q+ = + + +  (8.50)

Adding Equations 8.48 through 8.50 multiplied by j 
expresses the currents as complex sinusoidal functions:

 I e I e I em
j t

m
j t

m
j t

1 2 3
1 2 3w q w q w q+( ) +( ) +( )= +  (8.51)

Dropping the time variation leads to phasor notation:

 I I I1 2 3= +  (8.52)

It is seen that KCL applies to phasor currents. An 
exactly analogous argument shows that KVL too applies 
to phasor voltages.

Since all the concepts, theorems, and procedures 
discussed for the dc case are based on KCL, KVL, and 
Ohm’s law, and since the counterparts of these relations 
are satisfied in the sinusoidal steady state using phasors 
and impedances, the inevitable conclusion is

Concept: All circuit relations, concepts, theorems, and pro-
cedures that apply to resistive circuits under dc conditions 
apply to the sinusoidal steady state, with voltages and cur-
rents represented as phasors and impedances of circuit ele-
ments replacing resistance.

Specifically, this applies to all the circuit equivalence 
relations of Chapter 3, the circuit theorems of Chapter 
4, the circuit simplification procedures of Chapter 5, 
and the circuit equations of Chapter 6. In fact, the dc 
state can be considered as a special case of the sinusoi-
dal steady state with the frequency set to zero, so that 
inductors are replaced by short circuits and capacitors 
by open circuits.

Example 8.3 illustrates voltage and current division 
using impedances.

Example 8.3: Voltage Divider in Sinusoidal  
Steady State

Given the circuit of Figure 8.19, it is required to deter-
mine VL, IL, I1, and I2, assuming ω = 100 rad/s.

Solution:

The reactance of the capacitor is - = -
´

=-
1 1

100 10 3wC  
-10 W; Z2 = 10 – j10 Ω. The reactance of the inductor 
is wL = ´ =100 0 2 20. W; ZL = 20 + j20 Ω. Z2 in parallel 

with ZL is 
 20 20 10 10
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20 1 1
2 1 1

+( ) -( )
+( ) + -( )

=
+( ) -( )

+( ) + -( )
j j

j j

j j

j j
==

40
3

40 3
3 3

4 3
+

=
-( )

+( ) -( )
= -( )

j

j

j j
j W .



Sinusoidal Steady State 215

Hence,

 

I1 =
Ð

+ -( )
= Ð °

-
= Ð °

Ð- °

= Ð °
Ð-

10 0
8 4 3

10 0
20 4

10 0
20 4 11 3

10 0
20 4 11

�

j j . .

. ..
. . .

3
0 49 11 3

°
= Ð ° A

 

From voltage division,

 

V
Z Z

R Z Z

j

j

j
j

L
L

L
=

+
´ =

-( )
+ -( )

Ð °

=
-
-

Ð ° =




2

1 2

4 3
8 4 3

10 0

3
5

10 0
10

VSRC

ÐÐ- °
Ð- °

Ð ° = Ð- °18 4
26 11 3

10 0 6 2 7 1
.
.

. . .V
 

From current division,
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Simulation: The circuit is entered as in  Figure 8.20. 
For the sinusoidal steady state, source VAC is used 
at a single frequency. A magnitude is entered, and a 
phase, if required, can be set in the Property Editor 
spreadsheet. Note that the value entered for VAC is 

considered by PSpice as an rms value for determining 
power. But for determining voltages or currents, the 
value entered could be interpreted either as a peak 
value or an rms value.

Printers from the SPECIAL library can be used for 
measuring voltages and currents. A current printer 
is inserted in series with one or more circuit elements 
through which the current in question passes. The posi-
tive direction of current is that entering the unmarked 
terminal of the current printer and leaving the termi-
nal marked with a minus sign. A one-terminal voltage 
printer is used for measuring voltages with respect 
to ground, and a two-terminal voltage printer is used 
for measuring voltages between two nodes, neither of 
which is grounded. For AC measurements, a Y must be 
entered under AC in the Property Editor spreadsheet of 
each printer. The printer reading is in rectangular coor-
dinates if a Y is entered under REAL and IMAG, and the 
reading is in polar coordinates if a Y is entered under 
MAG and PHASE.

In the Simulation Settings, ‘AC Sweep/Noise’ is cho-
sen under ‘Analysis type’. For sinusoidal steady-state 
analysis, a single frequency is used. Under AC Sweep 
Type, either ‘Linear’ or ‘Logarithmic’ may be selected. 
The frequency is entered in Hz and is 100 2 15 915/ Hzp = .  
in this case. The same frequency is entered for ‘Start 
Frequency’ and ‘End Frequency’, and 1 is entered for 
‘Total Points’. After the simulation is run, the printer 
readings are available at the end of ‘Simulation Output 
File’. This file can be viewed by selecting View/Output 
File at the top of the SCHEMATIC1 page, or by double 
clicking on the third icon from the top in the left margin 
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FIGURE 8.19
Figure for Example 8.3.
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FIGURE 8.20
Figure for Example 8.3.
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of the SCHEMATIC1 page, labeled ‘View Simulation 
Output File’. The printer readings are as follows:

FREQ IM(V_PRINT1) IP(V_PRINT1)
1.592E+01 4.903E−01 1.131E + 01

FREQ IM(V_PRINT2) IP(V_PRINT2)
1.592E+01 4.385E−01 3.788E + 01

FREQ IM(V_PRINT3) IP(V_PRINT3)
1.592E+01 2.193E−01 −5.213E+01

FREQ VM(a) VP(a)
1.592E+01 6.202E+00 −7.125E+00

The current printers are identified by their number, 
and the voltage printer by the label of the node to which 
the printer is connected. If the node is not labeled, the 
reference is to the pin number of the node. This number 
can be read by pointing the cursor at the node in the cir-
cuit entered. IM and IP refer to current magnitude and 
current phase; similarly for VM and VP. A value such 
as 4.903E−01 denotes 4.903 × 10−1. It is seen that printer 
values agree with those calculated.

An alternative to using printers for reading val-
ues of currents and voltages is to use the ‘Evaluate 
Measurement’ feature of PSpice. In the SCHEMATIC1 
page, select ‘Trace/Evaluate Measurement’. Two win-
dows are displayed. Under ‘Functions or Macros’ in 
the right-hand window, choose ‘Analog Operators and 
Functions’. To read magnitudes, select the voltage or 
current required from the left-hand window labeled 
’Simulation Output Variables’. To read phase angles, 
select P(), then select the variable required. For exam-
ple, to read the voltage of the node labeled ‘a’, V(a) and 
P(V(a)) are selected. The values 6.20174 and −7.12502 are 
displayed in a window in the SCHEMATIC1 page. To 
read the values of I1, I2, and IL, the variables are −I(V1), 
I(C1), and I(L1), respectively.

Primal Exercise 8.15

Determine Zeq in Figure 8.21 as the sum of a resistance 
and a reactance.

Ans. 29.2 − j14.4 Ω.

Primal Exercise 8.16

Determine the impedance between terminals ‘ab’ in 
Figure 8.22, assuming all capacitances are 1 F, all induc-
tances are 1 H, and ω = 1 rad/s.

Ans. 0.

8.7 Representation in the Frequency Domain

Let us return to Figure 8.3 that we started with in order 
to illustrate the general procedure for analyzing the 
sinusoidal steady state in the same manner as a dc state. 
The source Imcosωt is converted to a phasor ISRC = Im∠0°, 
and R and L are expressed as impedances, R and jωL, 
respectively, in series with the source. The circuit in terms 
of phasors and impedances or admittances is now said 
to be in the frequency domain, as illustrated in Figure 8.23.

Direct application of KVL gives

 V I I I ISRC SRC SRC SRC= + = +( ) =R j L R j L Zw w  (8.53)

This is an algebraic equation involving the phasors 
and the complex impedance Z = R + jωL. The relation 
V = ZISRC is exactly analogous to Ohm’s law in the dc 
case, bearing in mind that whereas a dc voltage or a dc 
current has only a magnitude and sign, an ac voltage or 
current has an amplitude and phase.

30–j40Zeq
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FIGURE 8.21
Figure for Primal Exercise 8.15.
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FIGURE 8.22
Figure for Primal Exercise 8.16.
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FIGURE 8.23
Series RL circuit in the frequency domain.
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Expressing Z and ISRC in polar coordinates, Equation 
8.53 becomes

 
V = + Ð( ) Ð ° = + ÐR L I I R Lm m

2 2 2 2 2 20w q w q
 

(8.54)

V can now be converted back to the time domain as a 
cosine function, since iSRC is a cosine function. This gives

 v I R L tm= + +( )( )2 2 2w w qcos  (8.55)

which is identical to Equation 8.7.
The procedure for deriving the sinusoidal steady-

state response can be generalized and summarized as 
follows:

 1. The sinusoidal excitations are expressed as phasors. 
A single excitation Ymcos(ωt + θ), or Ymsin(ωt + θ), 
can be expressed as Ym∠θ. In the case of several 
excitations, some of which are cosine functions and 
some are sine functions, they should all be converted 
to either cosine or sine functions before expressing 
them as phasors, taking into account the relative 
phase angles of cosine and sine functions.

 2. Inductance and capacitance are expressed as imped-
ance or admittance, as appropriate.

 3. The circuit is now in the frequency domain and can 
be analyzed by any of the methods discussed in previ-
ous chapters for the dc case.

 4. After obtaining the desired response, this response 
can be converted back to the time domain as a cosine 
function, if the time functions that were originally 
expressed as phasors were cosine functions, or con-
verted as a sine function if the time functions that 
were originally expressed as phasors were sine 
functions.

Primal Exercise 8.17

Given vSRC(t) = 10cost V in Figure 8.24, determine both 
as phasors and as functions of time: (a) i(t); (b) vR(t); (c) 
vC(t); and (d) vL(t).

Ans. (a) I = +( ) = Ð ° ( ) = + °( ) =5 1 5 2 45 5 2 45j i t tA, cos
5 cos sint t-( )A; (b) VR = +( ) = Ð ° ( ) =5 1 5 2 45j v tRV,
5 2 45 5cos cos sint t t+ °( ) = -( ) V; (c) VC = ( ) =10 1 – j  
10 2 45 10 2 45 10Ð- ° ( )= - °( ) = +( )V V,, cos cos sinv t t t tC  

(d) VL= - +( )= Ð °5 1 5 2 135j V, v t tL ( ) = + °( )=5 2 135cos
- +( )5 sin cost t V.

Primal Exercise 8.18

Given iSRC(t) = 10sint A in Figure 8.25, determine both 
as phasors and as functions of time: (a) v(t); (b) iR(t); 
(c) iC(t); and (d) iL(t).

Ans. (a) V = +( ) = Ð °5 1 5 2 45j V,  v t t( )= + °( )=5 2 45sin  
5 sin cost t+( ) V; (b) IR = +( ) = Ð °5 1 5 2 45j A, i tR ( ) =
5 2 45 5sin sin cost t t+ °( ) = +( ) A; (c) IC = - +( ) =5 1 j

5 2 135Ð °A, i t t t tC( ) = + °( ) = - +( )5 2 135 5sin sin cos A; 

(d) IL = ( ) = Ð- °10 1 10 2 45– j A, i t tL ( )= - °( ) =10 2 45sin
10 sin cost t-( ) A.

Example 8.4: Norton’s Equivalent Circuit 
in Sinusoidal Steady State

It is required to determine Norton’s equivalent circuit 
(NEC) seen by the 20 Ω resistor between terminals ‘ab’ in 
Figure 8.26, assuming vSRC1 = 200sin(5 × 104t) V and vSRC2 = 
100cos(5 × 104t) V.

Solution:

The circuit is first represented in the frequency domain. 
Since one source voltage is a cosine function and the 
other source voltage is a sine function, they should both 
be expressed as sine functions or cosine functions. As a 
cosine function, vSRC1 = 200cos(5 × 104t − 90°) V. As pha-
sors, VSRC1 = 200∠−90° = −j200 V, and VSRC2 = 100∠0° = 
100 V; ω = 5 × 104 rad/s, jωL = j5 × 104 × 0.4 × 10−3 = j20 Ω, 
-

=
-

´ ´
= --

j
C

j
j

w 5 10 10
204 6 W. The circuit in the frequency 

domain is shown in Figure 8.27 with terminals ‘ab’ short 
circuited.

ISC can be determined by superposition. With VSRC1 
applied alone, and VSRC2 replaced by a short circuit 
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(Figure 8.28a), the capacitive reactance is short- circuited, 
and the current through it is zero. Hence, ISC1  = 
−j200/j20 = −10 A. With VSRC2 applied alone and VSRC1 
replaced by a short circuit (Figure 8.28b), the inductive 
reactance is short-circuited, and the current through it 
is zero. Hence, ISC2 = 100/(−j20) = j5 A. It follows that 
ISC = IN = −10 + j5 = 5(−2 + j) A.

If both sources are replaced by short circuits, the j20 Ω 
and the −j20 Ω appear in parallel across terminals ‘ab’ 
(Figure 8.29a). The 20 Ω resistor is short-circuited, does 
not carry any current, and can be removed. The imped-
ance between terminals ‘ab’ is then ZTh = (j20)(−j20)/
(j20  − j20) → ∞. Alternatively, the admittance of the 
inductor is −j/20 S, and the admittance of the capacitor is 
j/20 S. The admittance YTh between terminals ‘ab’ is zero. 
NEC is an ideal current source 5(−2 + j) A (Figure 8.29b). 
Since ZTh → ∞, TEC does not exist.

Simulation: Unlike the dc case, TEC or NEC cannot be 
obtained in a single simulation because ac quantities 
have both amplitude and phase. The circuit for deter-
mining Norton’s current is entered as in Figure 8.30a. 
Because the current printer has zero resistance, a volt-
age-source-inductor loop is formed that is not allowed 
in PSpice, because the total resistance in the loop under 
dc conditions is zero, and PSpice may be required, in 
general, to derive currents under both dc and ac condi-
tions. This loop can be broken by inserting a 1u resis-
tance as shown, which is too small to affect the result. 
In the Simulation Settings, f = 5 × 104/2π = 7957.75 Hz 
is entered for ‘Start Frequency’ and ‘End Frequency’, 
and a 1 for ‘Total Points’. After the simulation is run, the 
printer readings are as follows:

FREQ IR(V_PRINT1) II(V_PRINT1)
7.958E+03 −1.000E+01 5.000E+00
7.958E+03 2.500E−09 3.576E−08

where the first reading is that of IN in Figure 8.28a. The 
second reading is that of the current of the test voltage 
source in Figure 8.30b that is applied for determining 
YN. IR is the real part of the current and II is the imagi-
nary part. The first reading agrees with the calculated 
value, and the second reading is insignificantly small, 
which is interpreted as zero.
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Example 8.5: Node-Voltage Analysis 
in Sinusoidal Steady State

It is required to determine vO in Figure 8.31 assuming 
vSRC = 100cos(103 − 30°) V.

Solution: VSRC = 100∠−30° V; jωL = j103 × 20 × 10−3 = j20 Ω, 
1 1 10 40 10 253 6/j C jw = ´ ´ = --/( ) W.

The circuit will be analyzed by the node-voltage method. 
The voltage source in series with the 40 Ω resistance 
is transformed to a current source ISRC = 2.5∠−30°  A 
in parallel with 40 Ω. In rectangular coordinates, 
ISRC = °- °( ) = -2 5 30 30 1 25 3. cos sin . ( )j j . The circuit in 
the frequency domain becomes as shown in Figure 8.32. 
IO = V2/20. Bearing in mind that the coefficients of 
the node voltages are admittances when using phasor 

 analysis, the node-voltage equation for the essential node 
on the left is
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The node-voltage equation for the essential node on 
the right is
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Solving for V2 gives V2 = 5.021 + j27.65 V.
Hence,

 
V VO 2=

+
= +10

10 20
12 1 3 52

j
j. . .V

 

Simulation: The circuit is entered as in Figure 8.33, 
where the phase angle is entered in the spreadsheet for 
the source. Note that as an alternative to reversing the 
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direction of IO through the dependent source, the sign 
of the gain is made negative. In the Simulation Settings, 
f = 103/2π = 1591.55 Hz is entered for ‘Start Frequency’ 
and ‘End Frequency’, and 1 for ‘Total Points’. The out-
put node is labeled ‘a’. After the simulation is run, the 
printer readings are as follows:

FREQ VR(A) VI(A)
1.592E+03 12.06E+00 3.522E+00

Example 8.6: Mesh-Current Analysis 
in Sinusoidal Steady State

It is required to determine IO in Figure 8.34a.

Solution:

The circuit is given in the frequency domain. IO will be 
determined by the mesh-current method, the mesh-cur-
rent assignments being as in Figure 8.34b. Because of the 
nontransformable current source in meshes 2 and 3, a volt-
age VY is arbitrarily assigned across this source to allow 
writing the mesh-current equations for these meshes. The 
mesh-current equations are (2 + j2)I1 − 2I2 − j2I3 = j10; −2I1 + 
(2 − j4)I2 = −Vy; and −j2I1 + (4 + j2)I3 = Vy. Adding the last 
two equations to eliminate VY, the resulting equation is 
−(2 + j2)I1 + (2 − j4)I2+ (4 + j2)I3 = 0. The current source gives 
I3 − I2 = 5. From the solution of the equations, I1 = 1.25 + 
j3.75 and I2 = −3.75 − j1.25, so that IO = I1 − I2 = 5 + j5 A.

Simulation: The circuit is entered as in Figure 8.35. Since 
the reactances are specified in the circuit, but inductance 
and capacitance values have to be entered in PSpice, 
any convenient value of ω can be assumed and L and 
C calculated accordingly. Thus, if ω = 1 rad/s, then L = 
X/ω = 2 H, and C = −1/ωX = 0.25 F, as entered in the 
circuit. In the Simulation Settings, f = 1/2π = 0.159155 
Hz is entered for ‘Start Frequency’ and ‘End Frequency’, 
and 1 for ‘Total Points’. After the simulation is run, the 
printer readings are as follows:

FREQ IR(V_PRINT1) II(V_PRINT1)
1.592E−01 5.000E+00 5.000E+00

★8.8  Phasor Diagrams

Phasor diagrams showing various voltage and current 
phasors in a given circuit are useful for illustrating the 
interrelations between the various variables involved, 
particularly when some circuit parameter is varied, as 
illustrated by the following example.

Example 8.7: Phasor Diagram

Given the circuit of Figure 8.36. It is required to deter-
mine: (a) the value of R at which VO is 90° out of phase 
with respect to vI, and (b) how VO changes as R is varied 
from 0 to infinity, assuming that no current is drawn at 
the output.
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Solution:

 (a) − j/ωC = −j/(103 × 10−6) = −j kΩ. The lattice configura-
tion of Figure 8.36 can be redrawn as a bridge circuit 
for easier visualization as was done in Example 2.6. 
The resulting circuit is shown in Figure 8.37a in the 
frequency domain, with VI applied between nodes 
‘a’ and ‘c’, and VO taken between nodes ‘b’ and ‘d’. 
VI = Vm∠0°. By voltage division, Vbc = (Vm/2)∠0° 
and Vdc = Vm∠0° × R/(R – j). It follows that.
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  The magnitude of VO is given by
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(8.57)

  It is seen that |VO| is Vm/2, independently of R. To 
ascertain the correct value of the phase angle, the 
numerator and denominator in Equation 8.56 are 
drawn as position vectors in Figure 8.38. It is seen 
that ∠VO = β, where 

 

- + + = +

= - +

b p pq q

b p q

( ) 2

2or,  (8.58)

  where θ = tan−1(1/R) and has a positive value that 
is less than 90°. ∠VO is therefore negative, so that 
VO lags VI (Figure 8.40). To have VO 90° out of phase 
with VI, ∠VO = −90°. Substituting in Equation 8.58, 
2θ = −90° + 180° = 90°, so that θ = 45° = tan−1(1/R). 
This gives R = 1 kΩ.

 (b) When R = 0, it follows from Equation 8.56 that
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  In Figure 8.39a, node ‘d’ is connected to ‘c’ when 
R = 0 which makes VO = Vbc = Vm∠0°/2. To deter-
mine VO as R → ∞, the numerator and denomina-
tor of Equation 8.56 are first divided by R and then 
R made to approach infinity, so that
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  In Figure 8.39b, I = 0 when R → ∞, which makes 
nodes ‘a’ and ‘d’ at the same voltage, VO = Vba = 
−Vm∠0°/2, and ∠VO = 180°.

From KVL around the outer loop in Figure 8.37b, 
V I II = Ð ° =V R jm 0 – , where X = −1 kΩ, I is in mA, 
R is in kΩ, and voltages are in volts. The phasor 
Vm∠0° is drawn in Figure 8.40 as OP. The pha-
sor −jI lags the phasor RI by 90°, yet their phasor 
sum must always be Vm∠0°. It follows from the 
geometric properties of a circle that point Q join-
ing these two phasors lies on the perimeter of a 
semicircle of diameter Vm (Figure 8.40). From KVL 
around the path ‘cbdc’ in Figure 8.37, VO = (Vm/2) 
− RI. Hence, if a phasor −RI is drawn in Figure 8.40 
from point T at the tip of the phasor (Vm/2)∠0°, VO 
is the phasor from the origin O to S at the tip of −RI.

When R = 0, phasors RI and −RI are zero, and 
−jI = Vm∠0°. Q coincides with O, and S coin-
cides with T, so that VO = Vm/2, as deduced from 
Figure  8.39a. When R → ∞, I = 0, −jI = 0, and 
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RI = Vm∠0° (Figure 8.40) so that Q coincides with 
P and S coincides with U. VO = (−Vm/2)∠0°, again 
as deduced from Figure 8.39b. As R increases from 
zero, Q moves clockwise around the perimeter of its 
semicircle. Likewise, S moves clockwise around the 
perimeter of a semicircle, and β, the phase angle of 
VO, varies between 0° and −180°.

It is seen from the geometry that  

sin b/
/
/

2
2
2

( )=- RI
Vm

, where I
V

R X

V

R
=

+
=

+2 2 2 1
.  

Substituting for I,
 

sin b/ /2 12( )=- +R R . When 
R = 1, sin b/ /2 1 2( ) = - , and β/2 = −45°. It follows 
that VO lags VI by 90°, as argued previously.

The circuit may be used to shift the phase of the 
output with respect to the input, over the range 0° 
to −180° without altering the magnitude.

Learning Checklist: What Should 
Be Learned from This Chapter

• The sinusoidal function is the only periodic 
function that is composed of a single frequency.

• When a sinusoidal excitation is applied to an 
LTI circuit, all the steady-state currents and 

voltages in the circuit are sinusoidal functions of 
the same frequency as the excitation, but which 
generally differ in amplitude and phase angle.

• According to Euler's formula, Ymejωt = Ymcosωt + 
Ymsinωt, where Ymejωt is a position vector in the 
complex plane rotating CCW at an angular fre-
quency ω rad/s, and whose projection along 
the real axis is Ymcosωt and along the imaginary 
axis is Ymcosωt.

• When a complex sinusoidal excitation Ymejωt 
is applied to an LTI circuit, the response is a 
complex sinusoidal function whose real part is 
the response to the real part of the excitation, 
Ymcosωt, applied alone, and whose imaginary 
part is the response to the imaginary part of the 
excitation, Ymsinωt, applied alone.

• A phasor is a quantity such as V em
jq  representing 

a complex sinusoidal function of time, but with 
the time variation suppressed. Phasors have the 
same geometric properties as vectors but have 
real and imaginary components. They can be 
added and subtracted like vectors.

• The product of a phasor Y = ÐY q  and a complex 
quantity AÐa  is AYej q a+( ). The quotient of Y and 
A is Y A ej/( ) -( )q a .

• j in the complex plane has a magnitude of 
unity and a phase angle of π/2. Multiplying 
a phasor by j rotates the phasor through an 
angle π/2 counterclockwise without changing 
its magnitude; dividing a phasor by j, or mul-
tiplying it by −j, rotates the phasor through 
an angle π/2 clockwise without changing its 
magnitude.

• In phasor notation, V = RI, V = I/jωC, V = jωLI. 
The sinusoidal voltage and current for an ideal 
resistor are in phase because such a resistor is 
purely dissipative. They are in phase quadra-
ture for ideal energy storage elements because 
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these elements are nondissipative. I lags V in an 
inductor and leads V in a capacitor.

• Differentiation in time is replaced by mul-
tiplication by jω and integration in time is 
replaced by division by jω. Thus, differential 
and integral relations are transformed to alge-
braic relations in jω for steady-state sinusoidal 
analysis only.

• The instantaneous power p in resistors, induc-
tors, and capacitors under sinusoidal steady 
state conditions varies at twice the frequency of 
the voltage or current, because p = vi is positive 
when v and i are both positive and both nega-
tive. p is negative when either v or i is negative.

• The instantaneous power p is never negative 
for an ideal resistor because such a resistor 
is purely dissipative. In ideal energy storage 
elements, p is of zero average over a period 
because these elements are nondissipative. 
They absorb power from the rest of the circuit 
during the positive half-cycle of p and return 
the same power to the rest of the circuit during 
the negative half-cycle of p.

• A current of rms value Irms, or a voltage of rms 
value Vrms, dissipates the same power in a given 
resistor as a dc current, or a dc voltage, of the 
same value.

• The average power dissipated in the sinusoidal 
steady state is, like dc power, a real quantity 
that is independent of time.

• Impedance Z is the ratio of the voltage phasor 
Vm vÐq  at the terminals of a subcircuit, to the cur-
rent phasor Im iÐq  through the subcircuit in the  
direction of the voltage drop Vm vÐq . The real 
part of impedance is resistance and its imagi-
nary part is reactance.

• Reactance is due to energy storage elements. 
Whereas sinusoidal voltages and currents are 
all in phase in a purely resistive circuit, energy 
storage elements introduce phase differences 
between sinusoidal voltages and currents.

• All circuit relations, concepts, theorems, and 
procedures that apply to resistive circuits under 
dc conditions apply to the sinusoidal steady 
state, with voltages and currents represented 
as phasors and impedances of circuit elements 
replacing resistance.

• The procedure for deriving the sinusoidal 
steady-state response can be summarized as 
follows:

 1. The sinusoidal excitations are expressed as 
phasors. A single excitation Ymcos(ωt + θ), or 

Ymsin(ωt + θ), can be expressed as Ym∠θ. In 
the case of several excitations, some of which 
are cosine functions and some are sine func-
tions, they should all be converted to either 
cosine or sine functions before expressing 
them as phasors.

 2. Inductance and capacitance are expressed as 
impedance or admittance, as appropriate.

 3. The circuit is now in the frequency domain and 
can be analyzed by any of the methods dis-
cussed in previous chapters for the dc case.

 4. After obtaining the desired response, this 
response can be converted back to the time 
domain as a cosine function, if the time 
functions that were originally expressed as 
phasors were cosine functions or converted 
as a sine function if the time functions that 
were originally expressed as phasors were 
sine functions.

• Phasor diagrams showing various voltage and 
current phasors in a given circuit are useful for 
illustrating the interrelations between the vari-
ous variables involved, particularly when some 
circuit parameter is varied.

Problem-Solving Tips

 1. Complex quantities are conveniently added 
or subtracted in rectangular form and are 
 conveniently multiplied or divided in polar 
form.

 2. Conversion of reactance, or reactance combined 
with resistance, to susceptance, or susceptance 
combined with conductance, must proceed 
through the intermediate step of impedance as 
the reciprocal of  admittance.

Appendix 8A: ac Bridges

ac bridges can be used in the same manner as the dc 
Wheatstone bridge (Appendix 5A) to determine the 
value of a quantity from a condition of bridge balance, 
with the same advantages previously mentioned for a 
dc bridge.

An example of an ac bridge is the Maxwell L/C 
bridge, depicted in Figure 8.41 in the frequency domain. 
The bridge can be used for measuring the inductance 
and resistance of a coil in terms of known resistance and 
capacitance values. The condition for bridge balance 
can be derived in the same manner as for the dc bridge 
by determining the voltages Vbc and Vdc in terms of VI, 
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from voltage division, and then equating Vbc to Vdc. 
Before doing so, we note that the parallel impedance of 
the RC branch is
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It follows from voltage division that
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At bridge balance, VO = 0, so that Vbc = Vdc. Equating 
the two expressions from Equation 8.60 and simplifying,

 R R j LR R R j CR R R1 3 3 2 4 2 3 4+ = +w w  (8.63)

For Equation 8.63 to be satisfied, the real parts alone 
must be equal and the imaginary parts alone must be 
equal. Equating the real parts gives the coil resistance as
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Note that R1R3 = R2R4 is also the dc balance condition, 
when the inductor acts as a short circuit and the capaci-
tor as an open circuit. Equating the imaginary parts 
gives the coil inductance as

 L CR R= 2 4 (8.65)

Having two conditions for ac bridge balance is due to 
ac quantities having both amplitude and phase or real 
and imaginary parts.

Problems

Apply ISDEPIC and verify solutions by PSpice simulation 
whenever feasible.

Sinusoidal Functions and Phasors

P8.1 Given v(t) = 20cos(ωt − 45°) V and i(t) = 10sin(ωt − 80°) 
A, determine which variable leads the other and by 
what angle.

 Ans. v(t) leads i(t) by 125°.

P8.2 Given the sinusoidal time function v(t) of Figure P8.2, 
express v(t) as a function of time and as a phasor.

 Ans. v(t) = 10cos(200πt + 72.54°) V, V = 10∠72.54° V.

P8.3 Given i(t) = 2.5cos(ωt + 30°) A, determine the rms value 
of i and the power dissipated in an 8 Ω resistor.

 Ans. 1.77 A, 25 W.

P8.4 Given a phasor A = A∠α in Figure P8.4, express the 
phasor ‘Ob’ in terms of A and j, assuming that the pha-
sors ‘Oa’ and ‘ab’ have a magnitude A.

 Ans. j(1 + j)A.

P8.5 Given A = Ð °10 15 , B = Ð °20 120 , and C = Ð - °5 45 , deter-
mine the phasors resulting from the following opera-
tions: (a) A + B + C, (b) A – B + C, (c) A + B – C, and (d) 
A – B – C. Express the result in rectangular and polar 
forms.

 Ans. (a) 3 + j16.37, 16.68∠78.96°; (b) 23.19 − j18.27, 
29.52∠−38.22°; (c) −3.88 + j23.44, 23.76∠99.39°; (d) 
16.12 − j11.20, 19.63∠−34.78°.

P8.6 Given A = 3 + j5, B = 10 − j8, and C = j12, determine 
the phasors resulting from the following operations: 
(a) ABC; (b) (AB)/C; (c) (A/B)C; and (d) A/B/C. 
Express the result in rectangular and polar forms.

 Ans. (a) −312 + j840, 896.1∠110.4°; (b) 2.17 − j5.83, 
6.22∠−69.62°; (c) −5.4146 − j0.7317, 5.46∠187.7°; 
(d) 0.0376 + j0.0051, 0.0379∠7.696°.
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P8.7 Given A = 5 + j10, determine the phasor that is A raised 
to the fourth power.

 Ans. 15,625∠−106.3° or −4,375 − j15,000.

P8.8 Given A = 24 + j32, determine the phasor that is the 
cube root of A.

 Ans. 3.42∠17.71°, 3.42∠137.71°, 3.42∠257.71°.

P8.9 Using phasors, determine the steady-state y that satis-
fies the differential equation:

 
6 3 2 5 4 10 4

0

dy
dt

y ydt t t
t

+ + = +ò cos sin .

 Express y as a cosine time function (Hint: express the 
RHS as a phasor).

 Ans. 0.472 cos(4t − 146.2°).

P8.10 Given v t t t1 2( ) = -cos sinw w V; v t t2 2 135( ) = - °( )cos w V. 
(a) Derive v(t) = v1(t) + v2(t) as a single trigonometric 
function; (b) Express v1(t), v2(t), and v(t) as phasors and 
draw them on a phasor diagram. Verify that V = V1 + V2.

 Ans. (a) v t t( ) = cosw V; (b) V1 = Ð °5 26 6. V; 

V2 = Ð - °2 135 V; V = 1∠0° V.

P8.11 Verify conservation of power in Example 8.7.

Impedance and Admittance

P8.12 A coil has a resistance of 10 Ω and an inductance L. 
When connected to a 100 V rms, 60 Hz supply, the mag-
nitude of the coil current is 5 A rms. Determine L.

 Ans. 45.9 mH.

P8.13 Given an impedance 0.1(4 + j3) Ω, determine the 
susceptance.

 Ans. B = −1.2 S.

P8.14 v(t) in Figure P8.14 is the voltage between two termi-
nals of a given circuit, and i(t) is the current entering 
these terminals in the direction of a voltage drop v. 
Determine the impedance looking into these terminals.

 Ans. 2∠−45° Ω.

P8.15 A susceptance of −1 S is connected in series with an 
admittance (3 + j4) S. Determine the reactance of the 
series combination.

 Ans. 0.84 Ω.

P8.16 A capacitor of impedance ZC is connected in parallel 
with a load of (300 + j450) Ω. Determine ZC so that the 
equivalent load is purely resistive.

 Ans. −j650 Ω.

P8.17 Given a 40 mH inductor and a 100 nF capacitor: (a) At 
what frequency is the impedance of the series combina-
tion zero? (b) At what frequency is the admittance of 
the series combination zero? (c) At what frequency is 
the admittance of the parallel combination zero? (d) At 
what frequency is the impedance of the parallel combi-
nation zero?

 Ans. (a) and (c) 500 krad/s; (b) and (d) 0 and ¥.

P8.18 (a) Determine the impedance seen by the source in 
Figure P8.18; (b) derive i as a phasor and in the time 
domain, assuming vSRC(t) = 60cos(500t + 30°) V.

 Ans. (a) (30 − j30) Ω; (b) 2 75Ð °, 2 500 75cos t + °( ) V.

P8.19 Determine the frequency at which the impedance look-
ing into terminals ‘ab’ in Figure P8.19 is purely resistive 
and specify this impedance.

 Ans. 20 krad/s, 12 Ω.

P8.20 Determine the frequency at which the voltage across the 
10 Ω resistor in Figure P8.20 is a maximum and specify 
the impedance seen by the source at this frequency.

 Ans. ω = 2 krad/s, 15 Ω.
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P8.21 Determine the frequency at which the source voltage 
and current in Figure P8.21 are in phase.

 Ans. 100/3 krad/s.

P8.22 Determine Zin in Figure P8.22.

 Ans. −j Ω.

P8.23 Determine Zin in Figure P8.23, assuming all capaci-
tances are 1/3 F, all inductances are 1 H, and ω = 1 
rad/s. Apply (a) star-delta transformation; and (b) 
symmetry considerations.

 Ans. −j Ω.

P8.24 Determine the impedance and admittance between ter-
minals ‘ab’ in Figure P8.24 at ω = 1 krad/s.

 Ans. j25 Ω; −j40 mS.

P8.25 All the inductances in Figure P8.25 are j10 Ω, all the 
resistances are 20 Ω, and all the capacitances are −j12 Ω. 
Determine the impedance between terminals ‘ab’.

 Ans. 27 + j9 Ω.

P8.26 Determine Zin in Figure P8.26 if Z = (1 + j) Ω.

 Ans. j Ω.

P8.27 Determine Zin in Figure P8.27.

 Ans. j Ω.

P8.28 Determine Zin in Figure P8.28, assuming σ = 1/(2 − j2) S.

 Ans. j2 Ω.

P8.29 (a) Express the impedance looking into terminals ‘ab’ in 
Figure P8.29 in terms of ω; (b) determine ω so that Zin is 
purely resistive.

 Ans. (a)
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P8.30 Determine Yin looking into terminals ‘ab’ in Figure P8.30.

 Ans. 0.5(1 − j) S.

P8.31 Determine α in Figure P8.31 so that the impedance 
looking into terminals ‘ab’ is purely resistive.

 Ans. α = 1 Ω.

P8.32 Determine Z in Figure P8.32 so that the Thevenin’s 
impedance between terminals ‘ab’ is 1 Ω.

 Ans. 0.8 − j1.4 Ω.

P8.33 Determine Z in Figure P8.33 given that IS = 
27.9∠57.8° A.

 Ans. 5.00∠30.0°.

P8.34 Determine ZTh looking into terminals ‘ab’ in Figure P8.34.

 Ans. −j20 Ω.

P8.35 Determine ZTh between terminals ‘ab’ in Figure P8.35.

 Ans. 8(4 + j) Ω.

P8.36 Determine ZTh looking into terminals ‘ab’ in Figure P8.36.

 Ans. −j Ω.
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General Sinusoidal Steady-State Analysis

P8.37 Determine IL in Figure P8.37, assuming ω = 100 rad/s.

 Ans. 1∠−90° A.

P8.38 Determine IC in Figure P8.38, assuming ω = 2 krad/s.

 Ans. 5∠135° A.

P8.39 Determine iS(t) in Figure P8.39, assuming vSRC(t) = 
4cos100t V.

 Ans. 2cos100t A.

P8.40 Determine I1, I2, I3, V1, and V2 in Figure P8.40.

 Ans. I1 = 2.50∠29.04° A; I2 = 2.71∠−11.57° A; I3 = 
1.82∠105.0° A; V1 = 16.26∠78.43° V; V2 = 7.28∠15° V.

P8.41 Determine vL in Figure P8.41 as a phasor and in the time 
domain.

 Ans. VL = j
4
3

2 V, vL(t) = 1.89cos(t + 90°) V.

P8.42 Determine IL and VC in Figure P8.42, assuming the 
 supply frequency is 1 krad/s.

 Ans. 0.5 − j4 A, 200 − j20 V.

P8.43 Determine VX and IL in Figure P8.43 and the total 
power dissipated in the circuit, assuming the supply 
frequency is 1 krad/s and the source voltage is a peak 
value.

 Ans. 2 1 5+( )j V, 0.2∠0° A; 1.5 W.

P8.44 Given i t t( ) = - °( )8 2 2500 45cos p A  and i1(t) = 
2cos(2500πt) A in Figure P8.44. Determine: (a) v(t) and 
i2(t) in the time and frequency domains; (b) Z, if com-
posed of: (i) two series elements, or (ii) two parallel 
elements.

 Ans. (a) v(t) = 150.4cos(2500πt − 57.86) V, V = 
150.2∠−57.87° V, i2(t) = 3.04cos(2500πt−110.48°) A, 
I2 = 3.04∠−110.48° A; (b) (i) R = 15.97 Ω and C = 19.96 μF, 
(ii) G = 0.054 S and C = 2.75 μF.
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P8.45 Given that the voltage across the current source in 
Figure P8.45 is v t tS ( ) = - °( )2 1000 45cos V. Determine 
iSRC as a phasor in rectangular coordinates.

 Ans. ISRC = −j2 mA.

P8.46 Determine ω, assuming vSRC(t) = 2cosωt and vO(t) = 
2sinωt in Figure P8.46.

 Ans. 2 rad/s.

P8.47 Determine, in Figure P8.47, the maximum magnitude 
of vL and its phase angle at this magnitude, given 
vSRC(t) = 2cosωt V, and ω assuming any value between 
0 and ∞.

 Ans. |vL|max = 2 V, θL = 90°.

P8.48 Determine VX in Figure P8.48.

 Ans. 10 2 15Ð ° V.

P8.49 Determine C in Figure P8.49 so that vO has the same 
magnitude as vI but lags it by 90°, assuming ω = 
400 rad/s.

 Ans. 5 μF.

P8.50 Determine the power dissipated in R1 in Figure P8.50, 
assuming ω = 1 krad/s.

 Ans. 0.1 W.

P8.51 |I| in Figure P8.51 remains the same irrespective of 
whether the switch is open or closed. Show that under 
these conditions 2ω2LC = 1.

P8.52 Determine IS in Figure P8.52.

 Ans. 0.5 A.

P8.53 Determine iC as a phasor in Figure P8.53, given vSRC = 
sin2t V, and assuming cos2t to have zero phase angle.

 Ans. 
1
2

45Ð- ° A.

P8.54 Determine I1 and I2 in Figure P8.54.

 Ans. I1 = −0.052 − j0.62 A; I2 = −0.47 + j1.91 A

P8.55 Determine VO in Figure P8.55.
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P8.56 Determine (a) iX in Figure P8.56 given vSRC(t) = cost V 
and iSRC(t) = sin2t V and (b) the power dissipated in the 
resistor.

 Ans. (a) 0.71cos(t − 45°) + 0.89sin(2t + 26.57°) A; 0.65 W.

P8.57 Determine vO(t) in Figure P8.57, assuming ω = 104 rad/s.

 Ans. 10.54cos(ωt − 63.43°) V.
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P8.58 Determine IX in Figure P8.58.

 Ans. j3 A

P8.59 Determine R in Figure P8.59, given I = 0.

 Ans. 1 Ω.

P8.60 Determine the net average power delivered in Figure 
P8.60, assuming VSRC = 10∠0° V.

 Ans. 2 W.

P8.61 Determine I so that VO = 0 in Figure P8.61, assuming 
that X = 1 Ω.

 Ans. 4∠0° A.

P8.62 Determine iC(t) in Figure P8.62, assuming vSRC(t) = 
sin(1000t + 30°) V.

 Ans. sin(1000t + 120°) mA.

P8.63 Determine Z in Figure P8.63.

 Ans. 68 + j24 Ω.

P8.64 Determine IO in Figure P8.64.

 Ans. 11.57∠89.63° A.

P8.65 Determine VC and IL in Figure P8.65

 Ans. VC = −30 − j90 V, IL = 8 − j6 A.

P8.66 Determine VO in Figure P8.66.

 Ans. 90 + j10 V.
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P8.67 Given iSRC(t) = cos108t A in Figure P8.67, determine: 
(a) VY and IX; (b) vO(t).

 Ans. (a) VY = 60 − j20 V, IX = 0.2 + j0.6 A; (b) VO = 60 − 

j120 V; v t tO ( ) = - °( )60 5 63 4cos .w V .

P8.68 Determine Vab in Figure P8.68, assuming all imped-
ances are in ohms.

 Ans. −741 + j494 V.

P8.69 Determine iO(t) in Figure P8.69, given vSRC(t) = 10 
cos(3000t) V.

 Ans. −1 + 2cos(3000t) A.

P8.70 Determine the power dissipated in the 4 Ω resistor in 
Figure P8.70 by each independent source acting alone, 
given that vSRC(t) = 10cos(103t + 30°) V.

 Ans. 2.25 W by dc source and 8 W by ac source.

P8.71 Determine the average power dissipated in the 1 Ω 
resistor in Figure P8.71, given that vSRC1(t) = 2cost V and 
vSRC2(t) = 2sint V.

 Ans. 4 W.

P8.72 Determine i1(t) in Figure P8.72 and the average power 
dissipated in the 2 Ω resistor.

 Ans. i t t1 0 8 2 100 45( ) = + - °( ). cos A; 3.28 W.

P8.73 Determine IX in Figure P8.73.

 Ans. −j A.
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TEC and NEC

P8.74 Derive NEC looking into terminals ‘ab’ in Figure P8.74.

 Ans. IN = Iab = j3 A, ZN = j10/3 Ω.

P8.75 Derive TEC looking into terminals ‘ab’ in Figure P8.75.

 Ans. VTh = Vab = (−50 + j25) V, ZTh = (5 + j10) Ω.

P8.76 Derive TEC looking into terminals ‘ab’ in Figure P8.76.

 Ans. VTh = Vab = 57.35∠−55.0° V, ZTh = (0.470 − j6.711) Ω.

P8.77 Derive TEC looking into terminals ‘ab’ in Figure P8.77.

 Ans. vTh(t) = vab = 5cos(10t) V in series with 0.1 Ω and 0.18 H.

P8.78 Derive NEC looking into terminals ‘ab’ in Figure P8.78.

 Ans. IN = Iab = 50∠0° A, ZN = (2 + j) Ω.

P8.79 Derive NEC looking into terminals ‘ab’ in Figure P8.79.

 Ans. IN = Iab = 1∠0° A, YN = j2 S.

P8.80 Derive TEC looking into terminals ‘ab’ in Figure P8.80.

 Ans. VTh = Vab = 12 + j6 V, ZTh = 20 Ω.
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P8.81 Determine TEC looking into terminals ‘ab’ in Figure 
P8.81, assuming vSRC(t) = 10cos100t V.

 Ans. VTh = Vab = 2 + j32 V; ZTh = 40 + j10 Ω.

P8.82 Derive TEC looking into terminals ‘ab’ in Figure P8.82.

 Ans. VTh = Vab = −j15 V, ZTh = 0.

P8.83 Determine Z in Figure P8.83 so that VO is in phase with 
the source voltage.

 Ans. j2.5 Ω.

P8.84 Determine Z in Figure P8.84 so that VO = 1∠−90° V.

 Ans. −25(8 + j7)/113 Ω.

P8.85 Derive NEC looking into terminals ‘ab’ in Figure P8.85.

 Ans. IN = Iab = −0.1 A, YN = (4 − j3)/250 S.

P8.86 Derive NEC looking into terminals ‘ab’ in Figure P8.86.
 Ans. An ideal current source of 5 2/ A.

Node-Voltage and Mesh-Current Methods

P8.87 (a) Given iSRC(t) = 10cos1000t mA in Figure P8.87, rep-
resent the circuit in the frequency domain; (b) derive 
the voltages indicated as phasors, using the node-volt-
age method; and (c) draw these voltages on a phasor 
diagram.

 Ans. V1 = −500 V, V2 = 400 + j200 = 447.2∠26.57° V, 
VS = 900 + j200 = 922.0∠12.53° V, VC = −400 − j200 = 
447.2∠153.43° V, VL = 800 + j400 = 894.4∠26.57° V.

P8.88 Determine iO(t) in Figure P8.88 using the mesh- current 
method, given vSRC1(t) = 10cos(104t + 45°) V and 
vSRC2(t) = 10cos(104t − 45°) V.

 Ans. 0.133cos(ωt + 130.1°) A.
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P8.89 Determine ISRC and VO in Figure P8.89 using the node-
voltage method.

 Ans. VO = 13.4 + j11.7 V, ISRC = 0.469 + j0.164 A.

P8.90 Determine VO in Figure P8.90 using the mesh-current 
method.

 Ans. VO = 13.98 − j2.851 V.

P8.91 Determine VO in Figure P8.91 using the node-voltage 
method.

 Ans. VO = 4.88 − j20.0 V.

P8.92 Determine IO in Figure P8.92 using the mesh-current 
method.

 Ans. IO = 5 + j5 A.

P8.93 Determine vC(t) in Figure P8.93 using the node-voltage 
method.

 Ans. 12.1sin(2000t + 6.86°) V.

P8.94 Determine IO in Figure P8.94 using the mesh-current 
method.

 Ans. IO = 5 − j9 A.

P8.95 Determine VO in Figure P8.95 using the node-voltage 
method.

 Ans. VO = 1.82 V.
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Probing Further

P8.96 Consider the ac bridge of Appendix 8A. Show that 
if the bridge is balanced and C is varied around bal-
ance, the phase angle changes by 180° in going through 
balance. Illustrate this using a phasor diagram. Note 
that the phase reversal around balance is true of all ac 
bridges.
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Objective and Overview

This chapter introduces magnetic coupling between 
coils, whereby a time-varying magnetic field of a current-
carrying coil induces a voltage in a nearby coil. Magnetic 
coupling is the basis for transformer action and plays 
an essential role in many types of devices,  circuits, and 
systems.

The chapter begins with the basics of magnetic cou-
pling, including the dot convention and the definitions 
of mutual inductance and the coupling coefficient. The 
general method for analyzing circuits involving mutual 
inductance is discussed, with emphasis on determining 
the polarity of the induced voltage. The T-equivalent 
circuit is presented, which eliminates the magnetic cou-
pling and which can be used in analyzing most cases 
that are of practical interest.

9.1  Magnetic Coupling

When a current-carrying coil is in proximity to another 
coil, some of the flux due to the current-carrying 
coil links the other coil. If this flux is time varying, it 
induces a voltage in the other coil in accordance with 
Faraday’s law. The two coils are said to be magneti-
cally coupled. This is illustrated in Figure 9.1a for two 
coils in a medium of low permeability and in Figure 
9.1b for two coils wound on a toroidal core of high 
permeability.

Suppose that coil 2 in Figure 9.1a and b is open- 
circuited. The flux linkage of coil 2 due to current in 
coil 1 is denoted by λ21, where the first number in the 
subscript refers to the coil linked by the flux and the 
second number refers to the coil from which the flux 
originates. In the case of coils in a medium of low 
permeability (Figure 9.1a), an effective flux ϕ21eff is 
defined, as discussed in connection with Figure 7.14, 
as the flux in coil 2 due to current in coil 1, which, 
if multiplied by N2, the number of turns in coil 2, 
gives the true value of flux linkage in coil 2. That is, 
λ21 = N2ϕ21eff.

In the case of coils on a high-permeability core 
(Figure  9.1b), and as explained in connection with 
Figure 7.15, ϕ21eff is the same as the flux in the core ϕ21. This 
same flux links every turn of the coil, so that λ21 = N2ϕ21.

In both cases, Faraday’s law can be expressed as

 
v

d
dt

21
21=

l

 
(9.1)

where |v21| is the magnitude of the voltage induced in 
coil 2 due to current in coil 1. Thus, λ21 is well defined 
in terms of the time integral of v21.

The polarity of v21 is determined by Lenz’s law, just 
like the polarity of v1 (Section 7.2), and could be deduced 
from the direction of current that flows if a resistor is 
connected between the coil terminals. However, an 
added consideration in this case is the relative sense of 
winding of the two coils, as will be explained with the 
aid of Figure 9.2. Note that the assigned positive polar-
ity of v21 in Figure 9.2 is that of terminal 2 being positive 
with respect to terminal 2′.

In Figure 9.2a, the flux due to i1 is directed down-
ward in coil 1, in accordance with the right-hand rule 
(Figure 7.13), and is directed upward in coil 2. Assume 
that this flux is increasing with time; then according to 
Lenz’s law, the polarity of the voltage induced in coil 2 
is such that if current flows in coil 2 as a result of this 
induced voltage being applied across a resistor con-
nected between terminals 2 and 2′, the flux in coil 2 due 
to this current is downward, so as to oppose the increas-
ing flux in coil 2 due to i1. According to the right-hand 
rule, i2 flows out of terminal 2 of coil 2 so that the flux 
due to i2 is downward (Figure 9.2b). Terminal 2 of coil 2 is 
then positive with respect to terminal 2′ to cause the flow 
of i2 in the required direction. The induced voltage is of 

9
Linear Transformer

(a) (b)

Coil 1 Coil 2

i1

i1

i1

i1
i2 = 0

i2 = 0

Coil 2Coil 1

FIGURE 9.1
Magnetically coupled coils in air (a) or through a high-permeability 
toroidal core (b).
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the same polarity as the assigned positive direction of v21 
in Figure 9.2a, so the numerical value of v21 is positive.

Now consider Figure 9.2c, where the sense of winding 
of coil 2 has been reversed, while keeping the same sense 
of winding in coil 1. Thus, in proceeding from terminal 2 
to terminal 2′ in Figure 9.2a, coil 2 is wound in the coun-
terclockwise sense, when looking downward at the coil. 
On the other hand, coil 2 in Figure 9.2c is wound in the 
opposite sense, that is, clockwise, when looking down-
ward at the coil, while proceeding from terminal 2 to 
terminal 2′. In order to have a downward flux in coil 2, i2 
must enter terminal 2. The induced voltage in coil 2 is 
now such that terminal 2′ is positive with respect to ter-
minal 2, as shown in Figure 9.2d, so that the induced 
voltage applied across a resistor connected between ter-
minals 2 and 2′ causes a flow of current in the required 
direction. This is opposite that of the assigned positive 
polarity of v21 in Figure 9.2c, so v21 will now have a nega-
tive numerical value.

9.1.1  Dot Convention

Having to show the sense of winding in a circuit dia-
gram is rather awkward. It is avoided by using the dot 
convention. The basis for this convention can be read-
ily understood with reference to Figure 9.2. Assuming 
that i1 is increasing with time, the polarity of v1 is such 
that terminal 1 is positive with respect to terminal 1′ 
so as to oppose the increase in current, as explained in 
Section 7.2. It was argued in connection with Figure 9.2a 
and b that when the flux linking coil 2 is increasing with 
time, terminal 2 is positive with respect to terminal 2′. 
According to the dot convention, terminals that go positive 

together, or go negative together, on different coils are marked 
with a dot. Thus, in Figure 9.2a and b, terminals 1 and 2 
are marked with a dot as shown, or alternatively, termi-
nals 1′ and 2′ could be so marked.

In Figure 9.2c and d, it was argued that when the flux 
linking coil 2 increases with time, terminal 2′ is positive 
with respect to terminal 2. According to the dot conven-
tion, therefore, terminals 1 and 2′ are marked with a dot 
as shown, or alternatively, terminals 1′ and 2 could be 
so marked.

The dot markings are further illustrated in Figure 9.3a 
and b for two coils coupled through a core of high per-
meability. Assuming i1 increases with time, the polarity 
of v1 is a voltage drop in the direction of i1, as shown. 
In Figure 9.3a, the flux ϕ21 in the core due to i1 is clock-
wise and increases with time. With the sense of wind-
ing of coil 2 as indicated, the induced voltage in coil 2 
makes terminal 2 positive with respect to terminal 2′. 
This is because the current i2 due to this induced voltage 
applied across a resistor connected between terminals 
2 and 2′ leaves at terminal 2, thereby causing a coun-
terclockwise flux ϕ12 that opposes ϕ21. Hence, terminals 
1 and 2 go positive together and are therefore marked 
with dots, as shown.

In Figure 9.3b, the sense of winding of coil 2 is reversed 
compared to coil 1. To have a flux ϕ12 that opposes ϕ21, i2 
flows into terminal 2, which means that the induced volt-
age is such that terminal 2′ is positive with respect to ter-
minal 2, so that if this voltage is applied across a resistor 
connected between terminals 2 and 2′, the resulting cur-
rent is in the required  direction. Terminals 1 and 2′ now 
go positive together and are therefore marked with dots.

It is seen that once terminals are marked with dots, 
there is no need to show the relative sense of winding 
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Dot marking to account for relative sense of winding. (a) Voltage 
polarities and directions of currents and fluxes when these are increas-
ing with time, (b) same as (a) but with a reversed relative sense of 
winding of coil 2, and (c) and (d) show the circuit representation of the 
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of the coils. Magnetically coupled coils are drawn as in 
Figure 9.3c and d, with one terminal of each coil marked 
with a dot, according to the relative sense of winding. 
The fact that the two coils are magnetically coupled is 
indicated by an arc with two arrowheads at each end 
pointing to the two coils. It should be emphasized that 
there are only two relative senses of winding of the two 
coils, illustrated by the black dots in Figure 9.3c and d. 
The gray dots in each figure indicate the same relative 
sense of winding as the black dots in the same figure. 
Changing the relative sense of winding will henceforth 
be referred to as “reversal of the dot markings” from one 
configuration to the other, as between Figure 9.3c and d.

Although the argument used in Figures 9.2 and 9.3 
concerning dot markings was based on the assumption 
that i1 and its flux increase with time, the same conclu-
sion is reached if these quantities were decreasing with 
time, rather than increasing. Figure 9.4a, for example, has 
the same sense of winding of both coils as in Figure 9.3a. 
If i1 decreases with time, the induced voltage in coil 1 is 
now a voltage rise in the direction of i1, as explained in 
Section 7.2. ϕ21, and the flux linking coil 2 due to current 
in coil 1 is still clockwise around the core but decreases 
with time. According to Lenz’s law, ϕ12, the flux linking 
coil 1 due to current in coil 2 opposes the decrease of ϕ21 
by adding to ϕ21 in the clockwise direction. i2 now enters 
at terminal 2, so that the induced voltage reverses polar-
ity, compared with Figure 9.3a in order to reverse the 
direction of i2. But the coil terminals marked with dots 
now go negative together, so that the dot markings are 
still the same. A similar argument applies to Figure 9.4b 
in which the relative sense of winding is the same as in 
Figure 9.3b.

The current directions in Figure 9.4 provide an alter-
native interpretation of the dot markings, based on 
the directions of currents in the coils, relative to the 
dot markings, as opposed to the polarities of induced 
voltages, relative to the dot markings. This alternative 
interpretation is useful when writing the mesh-current 
equations or KVL involving magnetically coupled coils. 
The argument is as follows: In Figures 9.2 and 9.3, when 

i1 enters at the dot-marked terminal and increases with 
time, which means that ϕ21 also increases with time, i2 
leaves the dot-marked terminal, so that its flux, ϕ12, is in 
a direction that opposes ϕ21. It follows that if i2 enters the 
dot-marked terminal, instead of leaving this terminal, 
then ϕ12 is in the same direction as ϕ21. This is illustrated 
in Figure 9.4 for i1 decreasing with time. However, the 
direction of flux produced by a  current  in a coil is inde-
pendent of whether the current is increasing or decreas-
ing with time. Hence, the dots can also be interpreted 
on the basis that if the currents of the two coils both enter, 
or both leave, the dotted terminals, the fluxes due to these 
 currents are in the same direction in both coils. In summary, 
the dot convention applies as follows:

Dot convention: When the flux linking magnetically 
 coupled coils changes with time, the polarities of the induced 
voltages are the same at the dot-marked terminals of each coil; 
that is, the dot-marked terminals will all become positive, or 
negative, together with respect to the unmarked terminal. 
As a corollary, fluxes due to currents both entering, or both 
leaving, the dot-marked terminals in each coil are in the same 
direction in both coils.

Primal Exercise 9.1

Two magnetically coupled coils are connected as in 
Figure 9.5, where a voltage-indicating device is con-
nected between terminals 22′ of coil 2. It is found that 
when the switch is closed, terminal 2′ goes positive with 
respect to terminal 2. (a) Specify the dot markings of the 
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coils. (b) Which of the two terminals 2 or 2′ will go posi-
tive with respect to the other when the switch is opened?

Ans. (a) Terminals 1 and 2′ are marked with dots; (b) 
terminal 2 goes positive with respect to 2′.

Primal Exercise 9.2

The steady-state current in coil 2 is indicated in 
Figure  9.6. (a) Specify the dot markings of the coils 
based on the assigned positive directions of voltages 
across the coils; (b) verify the dot markings based on the 
directions of currents according to Lenz’s law; (c) con-
sider the source current in the time domain and verify 
the dot markings when the source current is increasing 
with time or is decreasing with time.

Ans. (a) Terminals 1 and 2′ are marked with dots; (b) 
current in coil 2 flows in the direction that opposes the 
flux due to the source current.

Primal Exercise 9.3

Two coils are wound on a high-permeability toroidal core 
of 2 cm2 cross-sectional area, with coil 2 open- circuited 
(Figure 9.7). If the magnetic flux density B in the core, in 
the clockwise sense, due to current in coil 1, is decreas-
ing at a constant rate of 0.1  Wb/cm2/s, determine the 
magnitude and sign of v2, assuming coil 2 has 10 turns.

Ans. −2 V.

9.2  Mutual Inductance

Faraday’s law, in the form of Equation 9.1, expresses 
the magnitude of the voltage v21 induced in coil 2 by the 
time-varying flux linkage λ21 in coil 2 due to current in 
coil 1. If the coils are in a medium of low permeability, 
λ21 = N2ϕ21eff. In the case of coils on a core of high perme-
ability, λ21 = N2ϕ21, where ϕ21 is in this case the core flux 
that links both coils. Since λ21 is due to i1, it is desirable 
to express λ21 in terms of i1. This is done by defining a 
quantity M21 as λ21 per unit current in coil 1. Thus,
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21
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(9.2)

It follows that λ21  =  M21i1. In a linear system, λ21 is 
directly proportional to i1, so M21 is a constant. Faraday’s 
law (Equation 9.1) becomes
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(9.3)

If coil 2 carries current, with coil 1 open-circuited, the 
same argument applies. Flux linkage λ12 is established in 
coil 1 due to i2, where λ12 = N1ϕ12eff in the case of coils in a 
medium of low permeability and λ12 = N1ϕ12 in the case 
of coils on a core of high permeability, where ϕ12 in this 
case is the core flux that links both coils. To express λ12 as 
a function of i2, a quantity M12 is defined as λ12 per unit 
current in coil 2:
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(9.4)

where M12 is constant in a linear system. The magnitude 
of the voltage v12 induced in coil 1 is
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(9.5)

Equations 9.4 and 9.5 are the same as Equations 9.2 
and 9.3, respectively, but with the subscripts ‘1’ and ‘2’ 
interchanged.

It is shown in Appendix 9A, based on conservation of 
energy, that

 M M M12 21= =  (9.6)

M is the mutual inductance between the two coils and 
is a constant in a linear system. It follows from Equations 
9.2 and 9.4 that mutual inductance is defined as follows:

Definition: The mutual inductance of two magnetically cou-
pled coils is the flux linkage in one coil per unit current in the 
other coil. It is independent of which coil carries the current.
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That the flux linkage per unit current does not depend 
on which of two magnetically coupled coils carries the 
current is a consequence of M12 and M21 being equal. The 
definition of mutual inductance is seen to be a general-
ization of the definition of the inductance of a single coil, 
this being the flux linkage in the coil per unit current in 
the coil itself. In the case of two magnetically coupled 
coils, the mutual inductance is the flux linkage in one 
coil per unit current in the other coil. To distinguish 
the two types of inductance when both are present, the 
inductance L of a coil associated with current in the coil 
itself is referred to as the self-inductance. Just as L is an 
inherently positive quantity, so is M.

9.2.1  Coupling Coefficient

When two coils are magnetically coupled, not all the 
flux that links one coil links the other coil. This is par-
ticularly true for two coils in a nonmagnetic medium 
(Figure  9.8a). The flux due to i1 in coil 1 extends in 
three dimensions around this coil but only a relatively 
small fraction of this three-dimensional flux links coil 2. 
Only this flux is shown in Figure 9.8a and in its two- 
dimensional representation in Figure 9.8b. In contrast, 
when the coils are coupled through a core of high 

 permeability (Figure 9.9a), practically all the flux origi-
nating from one coil links the other coil.

The flux that links a current-carrying coil, but not 
another coil coupled to it, is the leakage flux of the 
 current-carrying coil. It is seen that the leakage flux 
is relatively large in the case of coupling through a 
medium of low permeability (Figure 9.8a) and is rela-
tively small for coupling through a core of high perme-
ability (Figure 9.9a), where the leakage flux of coil 1 is 
denoted as ϕ11leak. Even if the permeability of the core is 
high, the extent of the leakage flux depends on the geom-
etry of the core and the coils. In the case of a rectangular 
core, for example, a leakage flux can occur between two 
opposite limbs of the core, as illustrated diagrammati-
cally in Figure 9.9b; the lower the relative permeabil-
ity of the core, the more significant is this leakage flux. 
A toroidal core, on the other hand, naturally conforms 
in shape to the flux path, so that this type of leakage 
flux is eliminated. However, flux leakage can still occur 
in the space between the winding and the core, as illus-
trated diagrammatically in Figure 9.9a. It is not possible 
to eliminate this space entirely by tightly winding the 
coil around the core, because of the finite thickness of 
the required insulation around the conducting wire of 
the coil and because of the finite diameter of the wire 
itself. Both of these factors imply that some leakage flux 
inevitably exists outside the core, including flux within 
the conducting wire itself.
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FIGURE 9.8
Flux due to one coil linking another coil in air. (a) The flux due to 
 current in coil 1 extends in three dimensions in air around the coil, but 
only a small fraction of this flux links coil 2 (b).
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(a) Leakage flux of a current-carrying coil wound on a high- permeability 
core of toroidal shape (a) and rectangular shape (b).
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For simplicity, and without loss of generality, the fol-
lowing discussion specifically refers to coils wound on a 
core of high permeability, as in Figure 9.9a. The degree of 
magnetic coupling between the two coils in Figure 9.9a 
is indicated by the coupling coefficient. From superposi-
tion, since the system is assumed to be linear, the total 
flux ϕ11 in coil 1 carrying a current i1 is

 f f f11 21 11= + ( )eff leak  (9.7)

where ϕ21 is the flux in coil 2 due to current in coil 1, 
which also links coil 1. When coil 2 does not carry cur-
rent, ϕ21 is the flux in the core (Figure 9.9a). ϕ11eff(leak) is the 
effective leakage flux of coil 1, which when multiplied by 
N1 gives the true value of the flux linkage λ11leak due to the 
leakage flux of coil 1. ϕ11eff(leak) is used because all the leak-
age flux of coil 1 does not, in general, link all the turns 
of coil 1, as diagrammatically illustrated in Figures 9.1a 
and 9.2a.

The self-inductance of coil 1 is
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By definition, the mutual inductance M is the flux 
linkage in coil 2 per unit current in coil 1. From Equation 
9.2, with M21 = M and λ21 = N2ϕ21,
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Dividing Equation 9.9 by Equation 9.8 eliminates i1:
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Similarly, if only coil 2 carries current,

 f f f22 12 22= + ( )eff leak  (9.11)

where ϕ12 is the flux in coil 1 due to current in coil 2, 
which also links coil 2. When coil 1 does not carry cur-
rent, ϕ12 is the flux in the core. ϕ22eff(leak) is the effective 
leakage flux of coil 2, which when multiplied by N2 
gives the true value of the flux linkage λ22leak of the leak-
age flux of coil 2.

The self-inductance of coil 2 is
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From Equation 9.2, with M12 = M and λ12 = N1ϕ12,
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Dividing Equation 9.13 by Equation 9.12 eliminates i2:
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Multiplying Equations 9.10 and 9.14 eliminates N1 
and N2:
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where k M L L= 1 2  is the coupling coefficient and is a 
measure of how well the two coils are coupled together 
through the core. The first fraction, ϕ21/(ϕ21 + ϕ11eff(leak)), 
is a measure of how well coil 1 is coupled to the core. 
This fraction is zero if there is no coupling (ϕ21 = 0) and 
is unity if the coupling is perfect (ϕ11eff(leak) = 0). Similarly, 
the second fraction is a measure of how well coil 2 is 
coupled to the core. The product of the two fractions, 
k2, is therefore a measure of how well the two coils 
are coupled together through the core. k assumes val-
ues between 0 and 1, where k = 0 denotes no coupling 
between the two coils. This occurs when M = 0, so that 
the core flux ϕ21 or ϕ12 is zero. k = 1 denotes perfect cou-
pling, when neither coil has any leakage flux. The larger 
the value of k, the more “tightly” the coils are said to be 
coupled together.

For given L1 and L2, the largest value of M occurs when 
k = 1, and is L L1 2 , the geometric mean of L1 and L2. The 
value of M is in this case intermediate between the values 
of L1 and L2. Clearly, k is inherently a positive quantity. 
However, PSpice allows a negative value of k in order to 
reverse the dot markings of the two coils, without chang-
ing their connections, as illustrated in Example 9.1.

Primal Exercise 9.4

Coil 1 of 100 turns and Coil 2 of 200 turns are wound 
on a high-permeability core. When coil 1 current is 2 A, 
with coil 2 open-circuited, the flux in the core is 3 mWb. 
Determine (a) the self-inductance of coil 1, assuming 
perfect coupling, and (b) the mutual inductance between 
the two coils.

Ans. (a) 150 mH; (b) 300 mH.
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Primal Exercise 9.5

Two magnetically coupled coils have self-inductances 
of 2 and 8 mH, respectively, and a mutual inductance 
of 3 mH. Determine the coefficient of coupling between 
the two coils.

Ans. k = 0.75.

Primal Exercise 9.6

Given two identical coils wound on a core of high per-
meability, each of inductance 1 H, the coefficient of cou-
pling being 0.5, determine the flux linkage in one coil 
when this coil is open-circuited and the current in the 
other coil is 1 A.

Ans. 0.5 Wb-T.

Primal Exercise 9.7

If i1(t) = Imcosωt A and the mutual inductance between 
coils 1 and 2 is M, (a) determine the magnitude of the 
voltage induced in coil 2. (b) Does this voltage depend 
on the current in coil 2?

Ans. (a) ωMImsinωt; (b) no.

Primal Exercise 9.8

Can the mutual inductance between two magnetically 
coupled coils be equal to the self-inductance of either 
coil?

Ans. If L1 = L2 = L, and k = 1, then M = L. If L1 ≠ L2, M can 
be equal to the smaller of L1 and L2; it cannot be equal to 
the larger of L1 and L2, as this makes k > 1.

9.3  Linear Transformer

Definition: A transformer consists of two or more coils that 
are magnetically coupled relatively tightly. In a linear trans-
former, permeability is constant, so that B and H, or λ and i, 
are linearly related.

The magnetically coupled coils considered in Sections 
9.1 and 9.2 are examples of a linear transformer for 
values of k that are not too small, say, larger than 0.1. 
Linearity implies superposition of all magnetic variables, 
including fluxes.

The general method of analyzing a circuit that includes 
a linear transformer is to apply KVL in the meshes that 
include the magnetically coupled coils. In writing the 
KVL equations, the assignment of positive directions 

of currents in the coils is either arbitrary or is dictated 
by convenience in analyzing the circuit. However, the 
assignment of positive directions of currents affects the 
sign of the Mdi/dt terms that account for the magnetic 
coupling. The question that we will address next is how 
to determine the sign of the Mdi/dt term.

Recall that in Section 7.2, the polarity of the induced 
voltage across a coil was argued from Lenz’s law. 
Figure 7.26b is reproduced in Figure 9.10a, with the vari-
ables and parameters relabeled to conform to the pres-
ent discussion on the two-coil, linear transformer. Note 
that vSRC1 and Rsrc1 can represent, in general, TEC of the 
 circuit connected to coil 1. From KVL,

 v R i vSRC src1 1 1 11 0- - =  (9.16)
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The magnitude of v11 is, from Faraday’s law,
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As for the polarity of v11, it was argued from Lenz’s 
law that if, for the sake of argument, vSRC1 and i1 increase 
with time, v11 opposes the increase in i1 by having a 
positive value that subtracts from vSRC1 in Equation 9.17. 
The coil in Figure 9.10a is shown in Figure 9.10b as coil 
1 of a linear transformer, with coil 2 open-circuited to 
begin with. The flux in the core due to i1 is indicated 
as ϕ21 in the clockwise sense, in accordance with the 
right-hand rule.

Consider next that coil 1 is open-circuited and that coil 
2 is connected to a circuit represented by its TEC consist-
ing of vSRC2 and Rsrc2. If the current i2 in coil 2 enters at 
terminal 2 as shown in Figure 9.10c, it produces a flux 
ϕ12 in the core in the clockwise sense, the same as ϕ21 in 
Figure 9.10b. As ϕ12 changes with time, the magnitude 
of the voltage v12 induced in coil 1 is given by Faraday’s 
law as |v12| = |dλ12/dt|. Using Equation 9.13,
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(9.19)

What about the polarity of v12? It is to be expected that 
since ϕ12 in Figure 9.10c is in the same direction as ϕ21 in 
Figure 9.10b, v12 is of the same polarity as v11. According 
to Lenz’s law, an increase in the flux in the core in the 
clockwise direction, whether due to an increase in ϕ21 
or an increase in ϕ12, results in an induced voltage of 
the same polarity. In other words, the polarity of the 
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voltage induced in coil 1 depends on whether the flux in 
the core is increasing or decreasing in the same direction 
in the core, irrespective of whether this flux is due to i1 
or i2. This can be ascertained by imagining a resistor con-
nected across coil 1, as in Figure 9.10d. If ϕ12 is increas-
ing, a current i1 will flow out of terminal 1, producing a 
flux in the core in the counterclockwise sense, as shown 
in Figure 9.10d, in opposition to ϕ12. For i1 to flow out of 
terminal 1, v12 should have the same  polarity as v11.

If both i1 and i2 are present at the same time, superpo-
sition applies. The total flux in the core is (ϕ21 + ϕ12). The 
total induced voltage in coil 1 is (L1di1/dt  +  Mdi2/dt), 
where the sign of the Mdi2/dt term is the same as that 
of the L1di1/dt, since v12 is of the same polarity as v11, 
as argued in the preceding paragraph. KVL for the 
mesh that includes the source and coil 1 (Equation 9.16) 
becomes:
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If the assigned positive direction of i2 is reversed 
(Figure 9.11a), the direction of ϕ12 reverses, becom-
ing counterclockwise. If, for the sake of argument, 
ϕ12 increases with time, then according to Lenz’s law, 
v12 reverses polarity (Figure  9.11b), so that if i1 flows 
due to v12, it will produce a flux in the core in the clock-
wise sense so as to oppose the increase in ϕ12. If both 
i1 and i2 are present at the same time, superposition 

applies. The total flux in the core is now (ϕ21 − ϕ12). The 
total induced voltage in coil 1 is (L1di1/dt − Mdi2/dt), 
where the sign of the Mdi2/dt term is now opposite that 
of the L1di1/dt, since the polarity of v12 is opposite that of 
v11. KVL for the mesh that includes the source and coil 1 
(Equation 9.16) becomes
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Suppose, next, that the sense of winding of coil 2 is 
reversed, so that the dot marking on this coil is reversed 
(Figure 9.11c), while keeping the same assigned  positive 
direction of i2 as in Figure 9.11a. ϕ12 is in the clockwise 
sense, as in Figure 9.10c, and the same argument applies. 
If both i1 and i2 are present, ϕ12 adds to ϕ21, so that 
Equation 9.20 applies. If the assigned positive direction 
of i2 is reversed, while keeping the same dot markings as 
in Figure 9.11c, ϕ12 is now counterclockwise, opposing 
ϕ21 so that Equation 9.21 applies.

The foregoing is summarized by noting that if the 
assigned positive directions of i1 and i2 and the dot 
markings are such that the fluxes in the core due to i1 and i2 
are additive, the sign of the Mdi2/dt term is the same as that 
of the L1di1/dt term (Equation 9.20). On the other hand, if 
the assigned positive directions of i1 and i2 and the dot 
markings are such that the fluxes in the core due to i1 and i2 
are in opposition, the sign of the Mdi2/dt term is opposite 
that of the L1di1/dt term (Equation 9.21). Moreover, if coils 
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FIGURE 9.10
Polarities of induced voltages. (a) Excitation applied to a coil in series with a resistance, (b) the coil being magnetically coupled to another coil, 
(c) excitation applied to coil 2, with coil 1 open circuited, and (d) flux in the core if i1 is allowed to flow under the influence of the induced voltage v12.
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1  and 2 are interchanged, the same argument applies 
to the polarities of the voltages induced in coil 2 due to 
i1 and i2. The subscripts 1 and 2 are simply interchanged 
in the preceding relations.

According to the dot convention, the fluxes due to i1 
and i2 are in the same direction in the core if i1 and i2 both 
enter, or both leave, the dot-marked terminals of their 
respective coils. Otherwise, the fluxes in the core will be 
in opposition. The sign of the Mdi/dt term can therefore 
be determined in a given circuit as follows:

Sign of Mdi/dt term: If the assigned positive directions of 
currents in the two coils are such that these currents both flow 
in, or both flow out, at the dot-marked terminals, the sign of 
the mutual inductance term (Mdi1/dt, or Mdi2/dt) for either 
coil is the same as that of the self-inductance term for that coil 
(L1di1/dt, or L2di2/dt, respectively). Otherwise, the sign of the 
mutual inductance term for either coil is opposite that of the 
self-inductance term for that coil.

Example 9.1: Equivalent Inductances 
of Series-Connected Coupled Coils

Suppose that the two coils of Figure 9.10 are con-
nected in series, as in Figure 9.12, where terminal 1′ of 
coil 1 is connected to terminal 2 of coil 2 in (a) and to 
terminal 2′ of coil 2 in (b). These connections reverse 
the dot markings, assuming the two coils are wound 

in the same sense in both cases. It is required to deter-
mine the induced voltages and the total inductance in 
each case.

Solution:

 (a) When a current i flows in the coils, there is an induced 
voltage in each coil due to the self-inductance of the 
coil, irrespective of whether or not the two coils are 
magnetically coupled. Assuming that di/dt > 0, the 
induced  voltages L1di/dt and L2di/dt will have the 
polarities shown in Figure 9.13a, as voltage drops in 
the direction of current. Because of the magnetic cou-
pling, i flowing in coil 1 induces a voltage Mdi/dt in 
coil 2, and i flowing in coil 2 induces a voltage Mdi/dt 
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FIGURE 9.11
(a) Excitation applied to coil 2 with the reversed direction of i2, (b) flux in the core if i1 is allowed to flow under the influence of the induced 
 voltage v12, and (c) reversed sense of winding of coil 2.
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in coil 1. i enters the two coils at the dot-marked 
terminals in Figure 9.10, so that the flux due to i in 
either coil adds to the flux due to i in the other coil. 
Thus, ϕ12 and ϕ21 in Figure 9.10 add to one another. 
As argued previously, the sign of the Mdi/dt term is 
the same as the Ldi/dt term in each coil, as illustrated 
in Figure 9.13b. The total induced voltages v1 and v2 
in coils 1 and 2 are therefore
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  as shown in Figure 9.13c. The effective inductance 
of coil 1 is therefore (L1 + M) and that of coil 2 is 
(L2 + M). The total voltage across the two coils is
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  The equivalent inductance is therefore

 L L L Meq = + +1 2 2  (9.25)

 (b) In the case of Figure 9.12b, i induces voltages 
L1di/dt and L2di/dt as voltage drops in the direc-
tion of i as before (Figure 9.14a). But i now enters 
coil 1 at the dot-marked terminal and coil  2 at 
the unmarked terminal, which means that the 
flux due to i in either coil opposes the flux due 
to i in the other coil. Thus, ϕ12 and ϕ21 are in 
opposition, as in Figure 9.11, and the sign of the 
Mdi/dt term is now opposite that of the Ldi/dt 

term in each coil, as illustrated in Figure 9.14b. 
The total induced voltages v1 and v2 in coils 1 
and 2 are
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  as shown in Figure 9.14c. The total voltage across 
the two coils is
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(9.28)

  The equivalent inductance is therefore

 L L L Meq = + -1 2 2  (9.29)

The effective inductances of coils 1 and 2 are (L1 − M) 
and (L2 − M), respectively. The following should be 
noted for the case of Figure 9.14:

 1. If the value of M lies between L1 and L2, then 
one of the inductances, (L1 − M) or (L2 − M), will 
be negative. A negative inductance will have 
a negative reactance, just like capacitance, but 
with a magnitude that is directly proportional to 
frequency.

 2. If k = 1 and L1 = L2 = L, then M = L, and Leq = 0. The 
two inductances in series behave as a short circuit, 
because the induced voltage in each coil due to the 
magnetic coupling cancels out the induced voltage 
due to the self-inductance.
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Simulation: It is required to verify Equations 9.25 and 
9.29 for two magnetically coupled coils having induc-
tances of 8 and 18 mH, with k = 0.5. The magnetically cou-
pled coils are entered as the part XFRM_LINEAR from 
the ANALOG library. As entered (Figure 9.15), the coil on 
the LHS is L1, that on the RHS is L2, and the default dot 
markings are at the upper terminals of the two coils. The 
coil designations and the dot markings have been added 
in Figure 9.15 for clarity. The values of the inductances 
and the coupling coefficient are entered in the Property 
Editor spreadsheet. The coils are connected in series by 
joining the two lower terminals together. The left part 
of Figure 9.15 corresponds to Figure 9.14. To reverse the 
connections to one of the coils, PSpice allows changing 
the sign of the coupling coefficient instead of changing 
the wiring between the coils. With the coupling coeffi-
cient set to −0.5 in the right part of Figure 9.15, the con-
nection corresponds to that of Figure 9.13.

To determine Leq, a IAC source is used at a frequency 
of 1 rad/s. The voltage across the source is then numeri-
cally equal to the impedance Leq, read by the voltage 
printer. In the Simulation Settings, ‘Analysis type’ is ‘AC 
Sweep/Noise’, ‘Start Frequency’ and ‘End Frequency’ 
are 0.159155, and ‘Points/Decade’ is 1. After the simula-
tion is run, PRINT1 reads 0.014 V at a phase angle of 90°, 
corresponding to Leq = 14 mH, and PRINT2 reads 0.038 V 
at a phase angle of 90°, corresponding to Leq = 38 mH. 
Alternatively, the voltage magnitude and phase can 
be read using ‘Evaluate Measurements’ and select-
ing ‘Analog Operators and Functions’, as explained in 
Example 8.3.

An alternative method of implementing  magnetic 
 coupling between coils in PSpice, using the part K_Linear, 
is presented in Example 9.2.

Primal Exercise 9.9

Two magnetically coupled coils have self-inductances 
of L1 = 8 mH and L2 = 18 mH, with k = 5/6. Determine 
Leq, and the effective inductance of each coil (a) when 
the coils are connected in series so as to give the larger 
Leq and (b) when the connections to one of the coils are 
reversed.
Ans. M = 10 mH; (a) 46 mH, 18 mH, 28 mH; (b) 6 mH, 
−2 mH, 8 mH.

Primal Exercise 9.10

Given two magnetically coupled coils and an induc-
tance measuring instrument, how would you determine 
the mutual inductance and mark the terminals of the 
coils with dots?

Ans. By measuring the total inductance, before and after 
reversal of connections between the coils.

Example 9.2: Analysis of Circuit Having 
Coupled Coils

Given the circuit of Figure 9.16 in which vSRC(t)  = 
100cos800t V and k = 0.25, it is required to determine vO 
in the steady state.

Solution:

wL1
2800 10 8= ´ =- W; wL2

2800 4 10 32= ´ ´ =- W; 

w w wM k L L= ( ) ( ) = ´ =1 2 0 25 8 32 4. W W; and 
1
wC

=
1

800 0 25 10
53´ ´

=-.
W. The circuit in the frequency 

domain is shown in Figure 9.17.
In writing the mesh-current equation for mesh 1, 

the total voltage drop in this mesh due to I1 equals, as 
usual, I1 multiplied by the total self-impedance of this 
mesh, that is, (10 +  j8 − j5)I1. I2 introduces as usual a 
voltage rise of ZcI2 in mesh 1, where Zc = −j5 Ω is the 
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common impedance between meshes 1 and 2. As a volt-
age rise in mesh 1, the sign of this term is negative, so 
that this term becomes −(−j5)I2. In addition, there is a 
jωMI2 term due to the magnetic coupling between the 
coils in the two meshes. Since both I1 and I2 enter at 
the dotted terminals, the sign of the jωMI2 term is posi-
tive, the same as that of jωL1I1 term in the equation of 
mesh 1, which is +j8I1. The mesh-current equation for 
mesh 1 is therefore

 10 8 5 4 5 100+ -( ) - - -( ) =j j j jI I1 2  (9.30)

Considering mesh 2, the self-impedance of the mesh is 
(5 + j32 – j5). The current I1 introduces a mutual imped-
ance term −(−j5)I1 in the mesh and a jωMI1 term whose 
sign is positive, the same as that of the jωL2I2 term in the 
equation of mesh 2, which is +j32I2. The mesh-current 
equation for mesh 2 is

 - - -( ) + + -( ) =j j j j4 5 5 32 5 0I I1 2  (9.31)

Solving for I2 gives I2 = −3.0636 − j0.5375 A, so that 
VO  =  5I2  =  −15.3 − j2.69  =  15.55∠−170.0° V, or vO(t)  = 
15.55cos(800t − 170.0°) V.

If the assigned positive direction of I2 in Figure 9.17 is 
reversed and this current is denoted by I2¢ (Figure 9.18), 
then I2¢ flows into the unmarked terminal of coil 2. The 
sign of the mutual inductance term is now opposite 
that of the self-inductance term for each coil. The ZcI2¢ 
term in the mutual impedance between the two meshes 
becomes positive since the voltage drop due to I2¢ flow-
ing in Zc is also a voltage drop in mesh 1. Equations 9.30 
and 9.31 become

 10 8 5 4 5 100+ -( ) + - -( ) ¢ =j j j jI I1 2  (9.32)

and

 + - -( ) + + -( ) ¢ =j j j j4 5 5 32 5 0I I1 2  (9.33)

Now I I2 2¢ = -  and VO 2 2I I= - ¢ =R R2 2  as before.
If the dot marking on coil 2 is reversed (Figure 9.19), 

with I2¢ still counterclockwise, then both currents now 
enter at the dot-marked terminals, and the sign of the 
mutual inductance term is again the same as that of the 
self-inductance terms. Equations 9.32 and 9.33 become

 10 8 5 4 5 100+ -( ) + -( ) ¢ =j j j jI I1 2  (9.34)

and

 j j j j4 5 5 32 5 0-( ) + + -( ) ¢ =I I1 2  (9.35)

Simulation: The circuit of Figure 9.16 is entered as in 
Figure 9.20. In the Simulation Settings, ‘Analysis type’ is 
‘AC Sweep/Noise’, ‘Start Frequency’ and ‘End Frequency’ 
are 127.324 (800/2π), and ‘Points/Decade’ is 1. After the 
simulation is run, VO magnitude is read as 15.55 V and 
its phase angle as −170.0°, using Evaluate Measurements 
and selecting Analog Operators and Functions.

PSpice provides another method of implementing 
magnetic coupling between coils that can be generalized 
to coupling between more than two coils. The circuit is 
entered as in Figure 9.21, which is the given circuit of 
Figure 9.16, assuming no magnetic coupling between 
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the coils. The two coils are arbitrarily labeled as L3 and 
L4, with the mark on the coils corresponding to the dots in 
Figure 9.16. The part K_Linear from the ANALOG library 
is entered on the schematic. When K  is double-clicked, 
the Property Editor spreadsheet is displayed. Change the 
coupling coefficient to 0.25 and enter L3 as the value for 
L1 and L4 as the value for L2, as displayed in Figure 9.21. 
The simulation is run as before, and vo3 is read as having 
a magnitude of 15.55 V and a phase angle of −170.0°.

If, say, three magnetically coupled coils are to be 
coupled, the coils are entered as if there is no coupling 
between them, and with the coils oriented so that the 
marked coil terminals correspond to the dotted termi-
nals in the circuit. The part K_Linear is entered three 
times, labeled as K1, K2, and K3. The coil part numbers, 
two at a time, are entered as L1 and L2 values in the 
spreadsheets, together with the corresponding coupling 
coefficients, and the simulation run as usual.

Problem-Solving Tip

• In deriving KVL or mesh-current equations, particu-
larly in more complicated cases involving magnetic 
coupling between more than two coils, it is often 
helpful to derive these equations first in the absence 
of magnetic coupling and then systematically add 
the terms due to this coupling one at a time.

Primal Exercise 9.11

Determine vO in Figure 9.19 and verify with PSpice 
simulation.

Ans. 1.745∠174.0° V.

Primal Exercise 9.12

Determine VO in Figure 9.22.

Ans. 0.5(1 + j) V.

Primal Exercise 9.13

Determine VO in Figure 9.23 assuming iSRC1(t) = 2cos2t A 
and iSRC2(t) = sin2t A and considering the cosine function 
to have a zero phase angle.

Ans. 2 + j4 V.

Primal Exercise 9.14

Determine vO(t) in Figure 9.24 as a cosine function, given 
that iSRC1(t) = cos10t A and iSRC2(t) = sin10t A.

Ans. 50cos(10t − 36.9°) V.

Example 9.3: Input Impedance of Coupled Coils

It is required to determine the smallest input impedance 
seen by the current source I1 in Figure 9.25a as R is var-
ied between zero and infinity.

Solution:

The problem will be solved step-by-step in order to 
clearly illustrate some of the concepts involved:

Step 1: If R → ∞, coil 2 on the RHS is open-circuited. No 
current flows in this coil, so there is no induced voltage 
in coil 1 due to current in coil 2, but a voltage is induced 
in coil 2 by I1. With I1 entering the dot-marked terminal 
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on coil 1 and V1 assigned a positive polarity as a voltage 
drop in the direction of I1, then V1 = jωL1I1. The source 
sees an input impedance Zin = V1/I1 = jωL1 = j10 Ω.

Step 2: With V1 and V2 assigned the same positive polar-
ities with respect to the dot markings (Figure 9.25b), 
the voltage induced in coil 2 due to I1 is V2  =  jωMI1, 
 independently of any I2.

Step 3: If R is connected, a current I2 flows in coil 2 under 
the influence of V2. According to Lenz’s law, the direction 
of this current is such that it opposes the flux due to I1. 
Since I1 enters coil 1 at the dot-marked terminal, I2 is con-
veniently assigned a positive direction as leaving coil 2 at 
the dot-marked terminal (Figure 9.25b).

Step 4: KVL on the side of coil 1 is

 V I I1 1 2= -j L j Mw w1  (9.36)

whereas KVL on the side of coil 2 is

 V I I2 1 2= = +( )j M R j Lw w 2  (9.37)

where V2 = jωMI1 is the induced voltage that drives cur-
rent in coil 2. In Equation 9.37, the flow of I2 is opposed 
by the voltage drop RI2 and by the induced voltage jωL2I2 
due to  I2  flowing in the inductor L2, in accordance with 
Lenz’s Law. Note that the sign of the jωM term is oppo-
site that of the jωL term for both coils when these terms 
are on the same side of the equation. This is because the 
source current enters the dot-marked terminal and the 
current in coil 2 leaves at the dot-marked terminal.

Step 5: V1, and hence Zin, has its smallest value when I2 
has its largest value, since I2 opposes the flux due to I1. 
The largest I2 results in the smallest flux in the core and 
hence the smallest V1 and Zin. This also follows from 
Equation 9.36 since the jωMI2 term subtracts from the 
jωL1I1 term to give V1.

Step 6: From Equation 9.37, I2 =  jωMI1/(R +  jωL2). The 
only variable in this expression for I2 is R, and I2 is larg-
est when R is smallest, that is, when R = 0.

Step 7: When R = 0, I2 = (M/L2)I1. Substituting in Equation 
9.36, V1 = (jωL1 − jωM2/L2)I1, This gives Zin = V1/I1 = jωL1 − 
jω2M2/ωL2 where wM = ´ =0 5 10 40 10. W. Substituting 
numerical values, Zin = j10 − j100/40 = j7.5 Ω.

9.4  T-Equivalent Circuit

A very useful circuit is the T-equivalent circuit for two 
magnetically coupled coils. Because this circuit has 
three terminals, one being common to input and out-
put, it applies when the two coils also have a common 
terminal, or can be connected in this manner, without 
changing the branch currents and voltages in the circuit, 
which is almost always the case in practice.

There are two forms of the T-equivalent circuit depend-
ing on the relative dot markings. To derive these circuits, 
we note, first, that two magnetically coupled coils of zero 
resistance are completely specified, in circuit terms, by three 
parameters: L1, L2, and M. This implies that three indepen-
dent measurements are needed to fully describe the two 
coils and establish equivalence with another circuit.

Consider two magnetically coupled coils as in 
Figure  9.26a, with a time-varying current i1 in coil 1, 
and coil 2 open-circuited. Let i1, v1, and v2 be measured 
under these conditions. Since coil 2 does not carry cur-
rent, the relation between v1 and i1 is that for a single coil 
that is not affected by current in the other coil, so that v1 
and i1 are related by the v–i relation of an ideal inductor:

 
v L

di
dt

1 1
1=
 

(9.38)

where a positive sign is used because the assigned posi-
tive directions are those of i1 in the direction of a voltage 
drop v1 (Section 7.2). The voltage induced in the open-
circuited coil 2 is, from Equation 9.3, with M substituted 
for M21,

 
v M

di
dt

2
1=
 

(9.39)

If di1/dt > 0, terminal 1 is positive with respect to ter-
minal 1′. According to the dot markings, terminal 2 is 
positive with respect to terminal 2′. Hence, Equation 
9.39 is written with a positive sign, with the positive 
direction of v2 assigned as in Figure 9.26a. Both v1 and 
v2 have positive values when di1/dt  >  0 and negative 
 values when di1/dt < 0.

Now consider the T-circuit of Figure 9.26b, with i1 
entering terminal 1 and terminal 2 open-circuited. i1 flows 
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through two inductors in series, (L1 − M) and M, whose 
total inductance is L1 − M + M = L1, so that v1 is related to 
i1 by Equation 9.38. Because no current flows in (L2 − M), 
v2 appears across M and is given by Equation 9.39.

Suppose that coil 2 has a time-varying current i2, with 
coil 1 open-circuited (Figure 9.26c). Let i2, v2, and v1 be 
measured under these conditions. The same aforemen-
tioned argument can be applied to deduce that

 
v L

di
dt

2 2
2=

 
(9.40)

and

 
v M

di
dt

1
2=
 

(9.41)

in both Figure 9.26c and d. Thus, it was shown that the 
circuit of Figure 9.26b or d reproduced four v–i relations 
at both the input and output terminals of the circuit of 
Figure 9.26a or c under open-circuit conditions. Note 
that equivalence between two circuits applies under 
the same conditions for both circuits. That is, in order 
to establish equivalence, the same terminals in the two 
circuits could be open circuited, or short circuited, or 
have the same resistance connected between them. In 
this case, an open circuit is the simplest case to consider 
for establishing  equivalence. Hence, it can be concluded 
that the T-equivalent circuit of Figure  9.26b or d is 
equivalent to the two coupled coils with the dot mark-
ings indicated in Figure 9.26a.

Consider, next, the coupled coils of Figure 9.27a, having 
reversed dot markings. It is to be expected that reversing 
the dot markings changes the sign of the M term, so that 
the shunt branch is −M and the series branches are (L1 + M) 
and (L2 + M). We will show that this is indeed the case.

In Figure 9.27a, v1 is given by Equation 9.38, as before, 
and v Mdi dt2 1¢ = / , in accordance with the dot markings. 
However, v v2 2= - ¢ , so that

 
v M

di
dt

2
1= -
 

(9.42)

If di1/dt > 0, and since M is a positive number, then 
to have v2 negative in the T-equivalent circuit of Figure 
9.27b, it is necessary that the inductance of the shunt 
branch be −M, instead of +M. The series inductances are 
now (L1 + M) and (L2 + M), so that the total series induc-
tance through which i1 flows is L1  +  M − M  =  L1 and 
Equation 9.38 again applies.

If coil 2 carries a time-varying current i2, with coil 1 
open-circuited (Figure 9.27c), v2 is given by Equation 9.40, 
as before. The induced voltage in coil 1 is ¢ =v Mdi dt1 1/  and 
its polarity will follow the dot markings, so that v v1 1= - ¢ 
(Figure 9.27c). The circuit of Figure 9.27d again satisfies 
the v–i relations under these conditions. The T-equivalent 
circuit of Figure 9.27b or d is thus equivalent to the two 
coupled coils with the dot markings as in Figure 9.27a 
or c, respectively. That the shunt inductance is now −M 
is quite acceptable, as the circuit is only meant to repro-
duce the v–i relations for the two coupled coils and not to 
provide a physical correspondence with the two magneti-
cally coupled coils. A more physically based equivalent 

+

–

1 2 2
+

–

(a)

v1

v1 = L1di1/dt v1 = L1di1/dtv2 = Mdi1/dt

v1 = Mdi2/dt v2 = L2di2/dt

v2 = Mdi1/dt

v1 = Mdi2/dt v2 = L2di2/dt

+

–

v1v2

+

–

v2

+

–

v2

i1 i1i2 = 0 i2 = 0

L1 L2

M

M

1
L1 – M

L1 – M L2 – M

L2 – M

i1

(b)

+

–

1 1

2

2 2

(c)

v1

+

–

v1

+

–

v1

+

–

v2

+

–

v2L1 L2

M

M

(d)

i1 = 0 i1 = 0i2 i2

i2

11

1 12 2

2

FIGURE 9.26
Equivalence between two coupled coils having the dot markings shown and a T-circuit. (a) Excitation is applied to coil 1, with coil 2 open 
 circuited, (b) same conditions applied to T-circuit as in (a), (c) excitation applied to coil 2, with coil 1 open circuited, and (d) same conditions 
applied to T-circuit as in (c).



252 Circuit Analysis with PSpice: A Simplified Approach

circuit of the two coupled coils is presented in Section 10.5. 
The T-equivalent circuit is useful in that it eliminates the 
magnetic coupling between the two coils, which allows 
application of any of the conventional methods of circuit 
analysis. If magnetic coupling is retained, analysis is gener-
ally limited to applying KVL or the mesh- current method.

It should be emphasized that the choice between the 
T-equivalent circuits of Figures 9.26 and 9.27 is dictated 
solely by the relative dot markings of the two coils and is 
independent of the assigned positive directions of currents in 
the two coils or the polarities of the voltages across these coils. 
Changing the assigned positive direction of the current 
in one of the coils, or changing the assigned positive 
polarity of the voltage across the coil, does not change 
the values of the inductances.

Example 9.4: Equivalent Inductance Using 
T-Equivalent Circuit

It is required to obtain Leq of the series-connected, 
magnetically coupled coils of Example 9.1 using the 
T-equivalent circuit.

Solution:

The two coils in Figure 9.12a are rotated so as to bring them 
in parallel, for easier visualization, as shown in Figure 
9.28a. Terminals 1′ and 2 are connected together and could 
be redrawn as in Figure 9.28b to make the connection 
between the two coils “internal” to the circuit. The coupled 
coils can now be replaced terminal for terminal by the 

T-equivalent circuit, as in Figure 9.28c, the three terminals 
being 1, 2′, and 1′–2 joined together. It is seen from the dot 
markings of the two coils that the appropriate T-equivalent 
circuit is that of Figure 9.27 having inductances (L1 + M), 
(L2 + M), and −M. The −M branch is open-circuited, so that 
the inductance that appears between the outer terminals 1 
and 2′ is Leq = L1 + L2 + 2M, as in Equation 9.31. Note that 
terminal ‘x’ in Figure 9.28c is internal to the T-equivalent 
circuit and does not exist in the original series connection 
of the two coils. Since no current flows in the −M branch, 
this branch could be replaced by a short circuit. The 
induced voltage between terminals 1 and 1′−2, or between 
terminal 1 and node ‘x’ is (L1 + M)di/dt, so that the effective 
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inductance of coil 1 is (L1 + M) as in Figure 9.13. Similarly, 
the effective inductance of coil 2 is (L2 + M).

The same procedure applied to the two coils in 
Figure 9.12b gives the T-equivalent circuit in Figure 9.29c, 
which is now that of Figure 9.26. The inductance that 
appears between the outer  terminals 1 and 2′ is Leq = L1 + 
L2 − 2M, as in Equation 9.35. The  effective inductance of 
coil 1 is (L1 − M), whereas the effective inductance of coil 
2 is (L2 − M).

Example 9.5: Circuit Analysis Using 
T-Equivalent Circuit

It is required to analyze the circuit in Figure 9.16, 
Example 9.2, using the T-equivalent circuit.

Solution:

The two coils in Figure 9.16 are rotated so as to bring 
them in parallel, for easier visualization, as shown in 
Figure 9.30a. They are then replaced, terminal for ter-
minal, by the appropriate T-equivalent circuit, which 
is that of Figure 9.27. The resulting circuit is that of 
Figure 9.30b. The mesh-current equations are

 10 8 5 4 5 100+ -( ) - - -( ) =j j j jI I1 2  

 - - -( ) + + -( ) =j j j j4 5 5 32 5 0I I1 2  

which are identical to Equations 9.30 and 9.31, respectively.

Problem-Solving Tip

• It is generally advantageous to replace magneti-
cally coupled coils having a common connection 
by the appropriate T-equivalent circuit.

Learning Checklist: What Should 
Be Learned from This Chapter

• In magnetically coupled coils, the polarity of 
the induced voltage is determined by Lenz’s 
law, as in the case of a single coil, but taking 
into consideration the relative sense of winding 
of the coils.

• The relative sense of winding of coils on the same 
core is accounted for by the dot convention.

• According to the dot convention, the polari-
ties of the induced voltages are the same at 
the dot-marked terminals of each coil; that is, 
the dot-marked terminals will all become posi-
tive, or negative, together with respect to the 
unmarked terminal. As a corollary, fluxes due 
to currents entering, or leaving, the dot-marked 
terminals in each coil are in the same direction 
in both coils.

• The mutual inductance of two magnetically 
coupled coils is the flux linkage in one coil per 
unit current in the other coil. It is independent 
of which coil carries the current.

• When two coils are magnetically coupled 
together, there is some leakage flux of each 
coil that links one coil but not the other coil. 
The leakage flux is relatively large when the 
magnetic medium between the two coils is of 
low permeability and is relatively small when 
the coils are wound on a toroidal core of low 
permeability.

• The coupling coefficient k M L L= / 1 2  is a mea-
sure of how well the two coils are coupled 
together through the core. It assumes positive 
values between 0 and 1, where k  =  0 denotes 
no coupling between the two coils and k  =  1 
denotes perfect coupling.

• A transformer consists of two or more coils that 
are magnetically coupled relatively tightly. In 
a linear transformer, permeability is constant, 
so that B and H, or λ and i, are linearly related, 
and superposition applies to magnetic variables 
including fluxes.

• In writing KVL or mesh-current equations in 
circuits involving magnetically coupled coils, 
the sign of the term involving M depends on 
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both the dot markings of coil terminals and the 
assigned positive directions of currents in the 
coils. If the assigned positive directions of cur-
rents are such that these currents both flow in, 
or both flow out, at the dot-marked terminals, 
the sign of the mutual inductance term (Mdi1/dt, 
or Mdi2/dt) for either coil is the same as that of 
the self-inductance term for that coil (L1di1/dt or 
L2di2/dt, respectively). Otherwise, the sign of the 
mutual inductance term for either coil is oppo-
site that of the self-inductance term for that coil.

• The T-equivalent circuit is a useful three- 
terminal circuit that can be used to replace, ter-
minal for terminal, two magnetically coupled 
coils having a common terminal. It eliminates 
magnetic coupling between the coils, which 
allows application of any of the conventional 
methods of circuit analysis.

• There are two forms of the T-equivalent cir-
cuit, depending on the relative dot markings of 
the coil terminals, irrespective of the assigned 
positive directions of currents in the coils or the 
polarities of the voltages across these coils.

Problem-Solving Tips

 1. In deriving KVL or mesh-current equations, 
particularly in more complicated cases involv-
ing magnetic coupling between more than two 
coils, it is often helpful to derive these equations 
first in the absence of magnetic coupling and 
then systematically add the terms due to this 
coupling one at a time.

 2. It is generally advantageous to replace magneti-
cally coupled coils having a common connection 
by the appropriate T-equivalent circuit.

Appendix 9A: Energy Stored 
in Magnetically Coupled Coils

Consider two magnetically coupled coils carrying 
steady currents I1 and I2. It is required to determine the 
energy expended in establishing these currents, start-
ing from zero. It is convenient to assume that I1 and I2 
are established by variable current sources in two steps: 
(1) i1 is first increased from zero to I1 with I2 0=  and (2) i2 
is then increased from zero to I2 with i I1 1= .

The first step is illustrated in Figure 9.31a. While i1 

is increasing, the induced voltage v L
di
dt

1 1
1=  in coil 1 

opposes the increase in i1, in accordance with Lenz’s law, 
by being a voltage drop across L1 in the direction of i1. 

This voltage is concurrently a voltage rise across the cur-
rent source iSRC1, so that the total energy w11 delivered by 
the source is

 
w L

di
dt

i dt L i di L I
t I

11 1
1

1 1
0

1 1 1 1
2

0

1
2

1

= = =ò ò  
(9.43)

The second step is illustrated in Figure 9.31b. With a 
constant current i1 = I1, the only voltage induced in coil 2 
is that due to increasing i2, and the total energy supplied 

by the current source iSRC2 in establishing I2 is 
1
2

2 2
2L I , by 

analogy with Equation 9.43. However, as i2 increases, it 
induces a voltage v M di dt12 12 2= /  in coil 1. The sense of 
winding of coil 2 and the direction of i2 are such that the 
flux associated with i2 is also downward in coil 1, the 
same as the flux in coil 1 due to i1. The effect of increas-
ing i2 is therefore the same as that of increasing i1, so 
that v12 is of the same polarity as v1 in Figure 9.31a and 
opposes the current in coil 1. The current source iSRC1 
has therefore to deliver additional energy to maintain I1. 
This energy is

 w v I dt M
di
dt

I dt M I di M I I
t t I

12 12 1
0

12
2

1 12 1
0

2 12 1 2
0

2

= = = =ò ò ò  
(9.44)

The total energy expended in establishing I1 and I2 is

 
w L I L I M I I1 1 1

2
2 2

2
12 1 2

1
2

1
2

= + +
 

(9.45)

Suppose that I1 and I2 are established in the reverse 
order, that is, first, I2 is established with i1 = 0, and then 
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i1 is increased to I1 with i2 = I2. Following this same argu-
ment, the total energy expended in establishing I1 and I2 is

 
w L I L I M I I2 1 1

2
2 2

2
21 1 2

1
2

1
2

= + +
 

(9.46)

w1 and w2 must be equal, because in a lossless, linear 
system, the total energy expended must depend only on 
the final values of I1 and I2 and not on the time course of 
i1 and i2 that led to these values. Otherwise, it would be 
possible, at least in principle, to extract energy from the 
system at no energy cost, in violation of conservation of 
energy. Suppose, for example, that w1 < w2. Then I1 and I2 
may be established from zero with expenditure of energy 
w1. In principle, I1 and I2 may be reduced to zero by 
reversing the steps that led to w2, with recovery of more 
energy than was expended, which is clearly impossible. 
Equating w1 and w2, it follows that

 M M M12 21= =  (9.47)

If either the polarity of iSRC2, or the sense of winding 
of coil 2, is reversed in Figure 9.31, the flux due to i2 
becomes upward in coil 1. The polarity of v12 is reversed 
and becomes a voltage drop across the current source 
iSRC1. Energy is therefore returned to the source and the 
sign of the energy term involving M becomes negative 
in Equations 9.45 and 9.46. M, however, is always a posi-
tive quantity.

Since I1 and I2 are arbitrary values, they might just as 
well be replaced by instantaneous values i1 and i2. The 
energy stored in the magnetic field in building up the cur-
rents in two magnetically coupled coils to i1 and i2, start-
ing from zero, may therefore be expressed in general as

 
w L i L i Mi i= + ±1

2
1
2

1 1
2

2 2
2

1 2
 

(9.48)

If the system is nonlinear and involves hysteresis 
(Section 10.5), the time course according to which i1 
and i2 reach their final values does affect the energy 
expended, but the energy difference is dissipated as heat 
in the magnetic material.

Problems

Apply ISDEPIC and verify solutions by PSpice simulation 
whenever feasible.

Magnetically Coupled Coils

P9.1 Two coils are wound on a high-permeability core 
(Figure P9.1). Coil 1 has 1000 turns and carries a current 
i1 = 1 A. Coil 2 has 500 turns. Determine the magnitude 
and direction of the current in coil 2 so that the net flux 
in the core is zero.

 Ans. 2 A, entering terminal 2′.

P9.2 The terminal of one coil in Figure P9.2 is marked with 
a dot. (a) Mark one terminal of the other coils with a 
dot; (b) connect the coils in series for maximum total 
inductance; (c) determine the inductances of coils 
2 and 3, assuming L1 = 40 mH; M12 = M23 = 20 mH, and 
k k12 23 1 2= = / ; (d) determine M13, assuming k13 = 0.5.

 Ans. (a) Marked terminals, 2′ and 3; (b) terminals 2′ 
and 3′ connected together, as are terminals 3 and 1′; 
(c) L2 = 20 mH, L3 = 40 mH; (d) M13 = 20 mH.

P9.3 Two coils are magnetically coupled through a core of 
high permeability. A current of 0.5  A in coil 1, with 
coil 2 open-circuited, results in a flux of 0.1 Wb in the 
core, whereas a current of 0.25 A in coil 2, with coil 1 
open-circuited, results in a flux of 0.2 Wb in the core. 
If coil 1 has 100 turns, determine the number of turns 
of coil 2.

 Ans. 400 turns.

P9.4 Two coils L1 and L2, having 1000 turns and 500 turns, 
respectively, are wound on a core of high permeability. 
When current is applied to one coil, with the other coil 
open-circuited, the effective leakage flux of either coil 
is 5% of the core flux. Determine the coefficient of cou-
pling between the two coils.

 Ans. 0.95.

P9.5 Two coils are wound on a core of high permeability. 
Coil 1 has 100 turns and coil 2 has 400 turns. A current 
of 1 A in coil 1, with coil 2 open-circuited, results in a 
core flux of 0.5 mWb. Determine the magnitude of the 
core flux resulting from a current of 0.8 A in coil 2, with 
coil 1 open-circuited.

 Ans. 1.6 mWb.
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P9.6 Two coils are tightly coupled to a high-permeability 
core, so that the leakage flux is negligibly small. If coil 
1 has 100 turns and an inductance of 10 mH and the 
mutual inductance is 12.5 mH, determine (a) the num-
ber of turns of coil 2 and (b) the inductance of coil 2.

 Ans. (a) 125; (b) 15.625 mH.

P9.7 Two coils having N1 = 1000 turns and N2 = 510 turns are 
coupled through a high-permeability core. The  induc-
tance of coil 1 is 1  mH and the mutual inductance is 
0.5 mH. Determine the ratio of ϕ11eff(leak) to ϕ21.

 Ans. 0.02.

P9.8 Two identical, magnetically coupled coils are connected 
in series. When the same current is passed though both 
coils, but with the connections of one coil reversed, the 
magnetic stored energy is multiplied by a factor of 2. 
Determine the coefficient of coupling of the coils.

 Ans. 1/3.

P9.9 Two magnetically coupled coils have k = 0.5. When con-
nected in series, the total inductance is 80 mH. When 
the connection to one of the coils is reversed, the total 
inductance is 40 mH. Determine the inductances of the 
two coils.

 Ans. 52.36 and 7.64 mH.

P9.10 Given two coils, one having a self-inductance of 1 mH, 
the other a self-inductance of 4  mH. They are mag-
netically coupled and connected in series so that the 
fluxes due to the current in the two coils add to one 
another. In the T-equivalent circuit representing the 
two coupled coils, the magnetic energy that depends 
on the self-inductance of 4 mH is 2.2 times the magnetic 
energy that depends on the self-inductance of 1  mH. 
Determine the coefficient of coupling.

 Ans. 0.75.

P9.11 Two coils are coupled through a high-permeability 
core. When i1 = 4 A, ϕ11eff(leak) = 0.1 mWb and ϕ21 = 0.4 
mWb. When i2 = 3 A, ϕ12 = 0.6 mWb. If N2 = 1000 turns 
and L2 = 400 mH, determine N1, L1, M, ϕ22eff(leak), and the 
total energy stored in the magnetic circuit when both 
coils carry the aforementioned currents, and the fluxes 
due to these currents are additive.

 Ans. N1  =  500 turns, L1  =  62.5  mH, M  =  100  mH, 
ϕ22eff(leak) = 0.6 mWb, energy is 3.5 J.

P9.12 Two coils having N1 = 800 turns and N2 = 500 turns are 
coupled through a high-permeability core. A current i1 
in coil 1 results in ϕ11eff(leak) = 500 μWb and ϕ21 = 400 μWb, 
whereas a current 2i1 in coil 2 results in ϕ22eff(leak) = 1400 
μWb. Determine (a) ϕ12 resulting from 2i1 in coil 2; (b) 
the coefficient of coupling; (c) the mutual inductance, 
assuming that the permeance of the core is 50 nWb/ 
A-turn; and (d) the inductance of each coil.

 Ans. (a) 500 μWb; (b) 0.342; (c) 20 mH; (d) L1 = 72 mH 
and L2 = 47.50 mH.

P9.13 Given two magnetically coupled coils. If the current 
in one coil is 10 1000sin t mA, the voltage induced in 
the other coil is 32 1000cos .t V  When the two coils are 
connected in series, the largest measured inductance is 
16.4 H. If the inductance of one coil is 3.6 H, determine 

the inductance of the other coil and the coefficient of 
coupling.

 Ans. 6.4 H, 2/3.

P9.14 Determine the ratio v1/v in Figure P9.14.

 Ans. 0.7.

P9.15  Determine Leq in Figure P9.15.

 Ans. 4 H.

P9.16 Determine Leq in Figure P9.16.

 Ans. 0.

P9.17 Given i1 = 3 A in Figure P9.17, with di1/dt = −0.2 A/s 
at a given instant of time, determine vcd at this instant, 
assuming k = 0.7.

 Ans. 0.28 V.
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P9.18 Given the coupled coils of Figure P9.18, with iSRC being 
the triangular waveform shown, sketch the waveforms 
of v1(t) and v2(t).

 Ans. v1(t) and v2(t) are square waveforms of amplitudes 
90 V and 48 V, respectively.

P9.19 Determine VO in Figure P9.19.

 Ans. 5∠0° V.

P9.20 Determine v1(t) and v2(t) in Figure P9.20, assuming 
i1(t) = (64t + 50) A and i2(t) = 15t A.

 Ans. v1(t) = 335 V; v2(t) = 109 V.

P9.21 If I1 = 2 A in Figure P9.21, determine the value of I2 that 
minimizes the stored energy.

 Ans. 2/3 A.

P9.22 The open-circuit (I2 = 0) voltage ratio of the linear trans-
former in Figure P9.22 is V2/V1 = 0.25, and the short-
circuit (V2 = 0) current ratio is I2/I1 = 1. If the same coils 
are perfectly coupled, the mutual inductance is 8 H. 
Determine L1, L2, and k for the given coils.

 Ans. L1 = 16 H, L2 = 4 H. k = 0.5.

Linear Transformer Circuits

P9.23 Determine Leq in Figure P9.23.

 Ans. 6 μH.

P9.24 Determine Zin in Figure P9.24.

 Ans. Infinite.

P9.25 Determine Zin in Figure P9.25.

 Ans. 0.
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P9.26 Determine Zin, assuming ω = 10 rad/s and C = 20 mF in 
Figure P9.26.

 Ans. 0.

P9.27 Determine Zin in Figure P9.27.

 Ans. 5 Ω.

P9.28 Determine Zin in Figure P9.28, assuming ω = 106 rad/s.

 Ans. −j162 Ω.

P9.29 By substituting the T-equivalent circuit of either Figure 
9.26b or Figure 9.26d for the linear transformer in 
Figure P9.29, show that the input impedance V1/I1 can 

be expressed as Z j L
M

j L Z
in

L
= = +

+
V
I
1

1

w w
w1

2 2

2
. Note that 

because M is squared in this expression, Zin is indepen-
dent of the dot markings.

P9.30 Using the result of Problem P9.29, determine Zin in 
Figure P9.30, assuming ω = 1 krad/s.

 Ans. (a) 25.6 + j40 Ω.

P9.31 Using the result of Problem P9.29, determine Zin in 
Figure P9.31.

 Ans. (a) 4.96 + j7 Ω.

P9.32 Using the result of Problem P9.29, determine k in Figure 
P9.32 so that Zin is purely resistive.

 Ans. 0.71.

P9.33 Using the result of Problem P9.29, determine k in Figure 
P9.33 so that (a) the input impedance Zin is purely resis-
tive and (b) I1 is maximum.

 Ans. (a) k = 1; (b) k = 0.

P9.34 Determine Zin in Figure P9.34, assuming Z = 3 + j4 Ω.

 Ans. j2.75 Ω.

P9.35 Determine M in Figure P9.35 so that i = 0.

 Ans. 1 H.
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P9.36 Determine M in Figure P9.36 so that no current flows in 
the 10 Ω resistor, assuming ω = 1 rad/s.

 Ans. 1.25 H.

P9.37 Given vSRC(t)  =  6cosωt V and k  =  0.9 in Figure P9.37, 
determine X so that no power is dissipated in the 
circuit.

 Ans. −18 Ω.

P9.38 Determine the frequency at which the current i in 
Figure P9.38 has the same magnitude when the connec-
tions of one coil are reversed.

 Ans. 10 3/  rad/s.

P9.39 C1 in Figure P9.39 is initially charged to 6 V, and C2 is 
uncharged. The switch is closed at t = 0. Calculate the 
total energy dissipated in the resistor.

 Ans. 18 μJ.

P9.40 Determine the total energy stored in the circuit of 
Figure P9.40 in the dc steady state.

 Ans. 120 J.

P9.41 Determine the stored energy in the circuit of Figure 
P9.41 in the dc steady state, assuming M = 1 H.

 Ans. 14 J.
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P9.42 Determine the energy stored in the circuit of Figure 
P9.42 in the dc steady state.

 Ans. 1.75 J.

P9.43 Given iSRC(t) = 20cos(104t + 60°) A in Figure P9.43, deter-
mine the magnetic stored energy at t = 0.1π ms.

 Ans. 65.3 mJ.

P9.44 Using Equation 9.48, show that if two coils are 
perfectly coupled, the stored magnetic energy is 

w L i L ii= ±( )1
2

1 2 2

2
.

P9.45 Determine IS in Figure P9.45.

 Ans. 5 2 45Ð- ° A.

P9.46 Determine VO in Figure P9.46.

 Ans. 5 37 3 43. .Ð ° V.

P9.47 Determine TEC looking into terminals ‘ab’ in Figure 
P9.47, assuming vSRC(t) = 2cos(103t − 60°) V and k = 0.75.

 Ans. VTh = Vab = 6∠120° V, ZTh = −j0.5 Ω.

P9.48 Derive TEC between terminals ‘ab’ in Figure P9.48.

 
Ans. V VTh ab= = +( )= +

28
37

6 4 54 0 76j j. . V,
 
Z

j
Th=

+
=

751 304
185

4 06 1 64. .+ j W.

P9.49 Derive TEC looking into terminal ‘ab’ in Figure P9.49.

 Ans. VTh = Vab = 80/3 V, ZTh = j200/9 Ω.

P9.50 Derive TEC between terminals ‘ab’ in Figure P9.50.

 Ans. VTh = Vab = 60(1 + j) V, ZTh = 3(3 + j17) Ω.

P9.51 Determine kX in Figure P9.51 so that no power is deliv-
ered or absorbed by vSRC2, given that vSRC1(t) = 10cos10t V, 
vSRC2(t) = 10sin10t V, and k = 0.05.

 Ans. kX = 1.
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P9.52 Determine I1 and I2 in Figure P9.52, assuming 
ω = 1 rad/s.

 Ans. I1 = 0.873 − j1.61 A, I2 = 0.0895 − j0.604 A.

P9.53 Determine vO in Figure P9.53 given that vSRC(t)  = 
2cos103t V.

 Ans. - + °( )0 6 2 10 453. cos t V .

P9.54 Determine iO(t) in Figure P9.54 given that vSRC(t)  = 
200sin(103t) V.

 Ans. −0.0105cos(103t) A.

P9.55 Determine IX in Figure P9.55.

 Ans. −0.0158 − j0.0123 A.

P9.56 Determine VO in Figure P9.56.

 Ans. 17.94 − j15.53 V.

P9.57 Derive TEC looking into terminals ‘ab’ in Figure P9.57, 
given that v t tSRC ( ) = + °( )4 2 45cos V. Represent 
Thevenin’s voltage in the time domain and express ZTh 
in rectangular coordinates.

 Ans. VTh = Vab = −2sint V, −0.25 + j0.25 Ω.

P9.58 Determine iO(t) in Figure P9.58, given that 
v t tSRC ( ) = 50 500cos V .

 Ans. 3.33cos(500t − 7.87°) A.
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P9.59 Determine vO(t) in Figure P9.59 given that 
v t tSRC ( ) = 50 500cos V.

 Ans. 12.1cos(500t + 46.7°) V.

P9.60 Determine VO and VS in Figure P9.60

 
Ans.

 
VO = Ð - °

8 2
3

90 ,
 
VS = Ð °

8
3

45 V.

P9.61 Determine the mesh currents in Figure P9.61.

 Ans. I1 = 0.47∠13.5° A, I2 = 0.64∠104.1° A, I3 = 0.59∠67.7° A.

P9.62 Determine IO in Figure P9.62.

 Ans. 0.367 + j9.92 A.

P9.63 Determine VX and VY in Figure P9.63, assuming 
f = 50 Hz.

 Ans. VX = 45.3cos(100πt + 25.3°) V, VY = 16.89cos(100πt 
− 143.6°) V.

P9.64 For the circuit of Figure P9.64, (a) derive the mesh- 
current equations and (b) determine Vab.

 Ans. Vab = j10 V.

P9.65 Determine R, ω, and k in Figure P9.65 so that VTh 
 looking into terminals ‘ab’ is 10 2 0Ð �  and ZTh is purely 
resistive.

 Ans. R = 20 Ω, ω = 18 rad/s, k = 0.5, ZTh = 10 Ω.

P9.66 Derive Thevenin’s equivalent circuit between terminals 
‘ab’ in Figure P9.66, assuming that vSRC(t) = 5cosωt V.

 Ans. VTh = 5cosωt V, ZTh = 0.

P9.67 Show that at bridge balance (vO  =  0) in Figure P9.67, 
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Objective and Overview

This chapter considers a special case of the linear 
transformer, namely, the ideal transformer, which is of 
 considerable practical and theoretical importance.

The chapter begins by highlighting some basic 
properties of magnetic circuits in order to better 
appreciate the properties of the ideal transformer. 
These properties are then specified, and their impli-
cations carefully considered, leading to the circuit 
attributes of the ideal transformer. Reflection of cir-
cuits from one side of the transformer to the other 
is discussed as an aid to analyzing circuits involving 
ideal transformers.

A special case of the ideal transformer, namely, the 
ideal autotransformer is presented. The chapter ends 
with transformer imperfections, their implications, and 
how they are dealt with in practical transformers.

This chapter builds on some of the basic concepts 
 discussed in Section 7.2 and in Chapter 9.

10.1  Magnetic Circuit

A useful analogy exists between magnetic circuits and 
electric circuits. This analogy may be illustrated by con-
sidering a toroid of conducting material surrounded by 
an insulating medium, as in Figure 10.1a. A magnetic 
field exists inside the toroid, perpendicular to the plane 

of the toroid and directed into the plane of the paper. 
If this magnetic field changes with time, it induces a 
voltage in the toroid, in accordance with Faraday’s law, 
which causes an electric current to flow in the toroid, 
as diagrammatically illustrated in Figure 10.1a. The 
direction of current is clockwise, in accordance with the 
right-hand rule.

Consider next a toroid of magnetic material around 
which a coil is wound, as in Figure 10.1b. When a 
current I flows in the coil, a magnetic field is estab-
lished in the toroid, as diagrammatically illustrated 
in the figure. If the current flows out of the plane of 
the paper around the outer circle of the toroid and 
into the plane of the paper around the inner circle, the 
magnetic field lines, or lines of magnetic flux, in 
the toroid are directed clockwise, in accordance with 
the right-hand rule.

The electrically conducting toroid in Figure 10.1a, in 
which a current flows under the influence of the induced 
voltage, is a simple electric circuit. The toroid of mag-
netic material in Figure 10.1b, in which a magnetic flux 
is established by the coil current, is a simple magnetic 
circuit. These two circuits are analogous in the follow-
ing respects:

 1. Both the lines of current flow in Figure 10.1a 
and the lines of magnetic flux in Figure 10.1b 
form closed loops, as is always the case. 
Current lines form closed loops because 
of conservation of charge, as explained in 
Section 1.2. Electric charge cannot be cre-
ated or destroyed, which means that there 
are no sources or sinks of electric charge, so 
this charge can only circulate in closed loops. 
Magnetic flux lines form closed loops because 
magnetic monopoles, that is, isolated north or 
south poles, do not exist. The reason is that all 
magnetic fields are generated by circulating 
currents, as in Figure 10.1b, even at the atomic 
level. Magnetic flux is thus analogous to elec-
tric current:

 Electric current Magnetic flux«  (10.1)

 2. Current flows in the toroid of Figure 10.1a under 
the influence of the induced voltage, which in 
this case is more aptly described as an induced 
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FIGURE 10.1
(a) Electric circuit; (b) magnetic circuit.
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emf (Section 2.4), since it drives the current 
in the toroid. This induced emf is related to 
the electric field ξ in the toroid by the integral 
relation:

 
xdl =ò Induced voltage or emf�  

(10.2)

  where ξ is tangential to the circular lines of cur-
rent flow and the line integral is around the 
closed path of current in the toroid.

Magnetic flux in Figure 10.1b is established by the 
current in the coil wound around the toroid. Ampere’s 
circuital law (Equation 7.12) gives the relation between 
magnetic field strength H in the toroid and the current 
producing the magnetic field as

 
Hdl NI=ò�  

(10.3)

where
H is tangential to the circular flux lines and the line 

integral is around the closed path of magnetic flux 
lines in the toroid

N is the number of turns of the coil

Equations 10.2 and 10.3 are of the same form. The line 
integral on the LHS of Equation 10.2 is that of the elec-
tric field associated with the induced voltage, and the 
RHS of the equation is the driving voltage or emf. The 
LHS of Equation 10.3 is the line integral of the magnetic 
field strength associated with current in the coil, and the 
RHS of this equation is NI. By analogy with the RHS 
of Equation 10.2, NI can be considered as the “driving 
force” for the magnetic flux. NI is therefore referred to as 
the magnetomotive force (mmf), analogous to the emf. 
Thus,

 emf mmf«  (10.4)

Once the analogs of current and voltage are identi-
fied, the analogs of resistance and conductance readily 
follow, as indicated in Table 10.1. Resistance is voltage/

current, so its magnetic circuit analog is mmf/(mag-
netic flux) and is termed reluctance (R). The magnetic 
circuit analog of conductance is flux/mmf and is the 
 permeance (P). It follows that the analog of Ohm’s law 
in the form of v = i/G is

 
mmf = Flux

Permeance  
(10.5)

The analogy between magnetic and electric circuits can 
be illustrated by considering a coil wound on a toroidal 
core, taking into account the leakage flux (Section 9.2), 
as in Figure 10.2a. It is assumed, for simplicity, as in 
the calculation of inductance of the coil in Figure 7.15, 
that the diameter of the core is small compared with the 
mean diameter, a, of the toroid. Hc in the core can then 
be considered constant across a transverse cross section 
of the core and is given by Ampere’s circuital law as 
(Equation 7.19)

 
H

N i
a

c = 1 1

p  
(10.6)

where
πa is the length of path over which Hc is integrated
N1 is the number of turns of coil 1

The magnetic flux density in the core, Bc, is
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(10.7)

TABLE 10.1

Electric Circuit Analogy

Electric Circuit Magnetic Circuit

Current Flux (ϕ)
emf (V) mmf (Ni)
Resistance Reluctance (mmf/flux)
Conductance Permeance (flux/mmf)
Conductivity Permeability
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FIGURE 10.2
Coil wound on a toroidal core, (a) magnetic flux, (b) effective leakage 
flux, (c) equivalent electric circuit, (d) core of infinite permeability.
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where μc = μrcμ0 is the permeability of the core. ϕc, the 
flux in the core, is

 
f m

pc c c
c cB A
A
a
N i= = 1 1

 
(10.8)

where Ac is the cross-sectional area of the core.
The permeance of the core is the ratio of ϕc to the mmf, 

N1i1. Thus,
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c
c c c= =
f m

p1 1  
(10.9)

The following should be noted concerning Equation 10.9:

 1. The permeance depends only on the geometry 
and magnetic properties of the magnetic circuit 
and is independent of the coil current or the 
number of turns of the coil. In contrast, induc-
tance is proportional to the square of the num-
ber of turns (Equation 7.14).

 2. Equation 10.9 is analogous to Equation 3.25, in 
the form

 
G

A
L

=
s

 
(10.10)

  with L identified with the length of path πa.
 3. Comparing Equations 10.9 and 10.10, it is seen 

that permeability is analogous to conductivity. 
The higher the permeability of a magnetic mate-
rial, the larger the flux per unit mmf is, just as 
the higher the conductivity of an electrical con-
ductor, the larger the current per unit applied 
voltage is.

What about the leakage path? From superposition, the 
total flux ϕ11 in the coil is (Equation 9.7)

 f f f11 11= + ( )c eff leak  (10.11)

where ϕ11eff(leak) is the effective leakage flux that, when 
multiplied by N1, gives the true value of leakage flux 
linkage of coil 1. Since ϕ11eff(leak), by definition, links all 
the turns of the coil, then if a closed path is followed 
along the path of ϕ11eff(leak) in the space between the coil 
and the core and back, as illustrated in Figure 10.2b, 
the enclosed current is N1i1, just as for a path involving 
the core flux ϕc. In other words, the same mmf N1i1 acts 
on the two paths of the fluxes, ϕc and ϕ11eff(leak).

Dividing both sides of Equation 10.11 by N1i1 converts 
the equation to one involving permeances. Thus,

 P P Pc eff leak1 11= + ( ) (10.12)

where
Pc is given by Equation 10.9
P11eff(leak) is the effective permeance of the leakage path

By analogy to Equation 10.9, P11eff(leak) is zero when the 
area of the leakage path is zero, that is, when the coil 
conductor is very thin and is tightly wound around 
the core.

The electric circuit analog, illustrated in Figure 10.2c, 
is a driving voltage N1i1 applied to two conductances in 
parallel. Equation 10.11 is KCL at either essential node. 
Ohm’s law applied to two conductances G1 and G2 in 
parallel gives
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where
i1 and i2 are the currents in G1 and G2, respectively
i = i1 + i2

v is the voltage across the parallel combination

By analogy, it follows from Figure 10.2c that
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The following deductions from Equation 10.14 are of 
interest for the discussion in the next section on the ideal 
transformer:

 1. For a given flux in the core (ϕc), the larger the 
permeability of the core (μc), the larger Pc is and 
the smaller the required mmf, N1i1, is. In the 
limit, if μc →∞, then Pc →∞, and with ϕc finite, 
N1i1 → 0 (Figure 10.2d). In terms of the electric 
circuit analogy, a finite current ϕc flowing in a 
short circuit (Pc  →∞) requires a zero driving 
voltage (N1i1 = 0).

 2. It follows from Equation 10.14 that
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(10.15)

As in the case of current division between two conduc-
tances in parallel, the ratio of the fluxes in the two par-
allel paths is the same as the ratio of the permeances. 



268 Circuit Analysis with PSpice: A Simplified Approach

If Pc →∞, then for a given ϕc, ϕ11eff(leak) → 0. This is a conse-
quence of the voltage across the short circuit being zero, 
so that the current through any conductance in parallel 
with the short circuit is zero (Figure 10.2d).

If both sides of Equation 10.11 are multiplied by N1,

 l f f f11 1 11 1 1 11= = + ( )N N Nc eff leak  (10.16)

If both sides of the flux linkage Equation 10.16 are 
divided by i1, the inductances replace the flux linkages, 
which gives

 L L Lc leak1 11= +  (10.17)

where Lc is given by Equation 7.24. It should be noted 
that the permeances of the core and the leakage path are 
in parallel, since the same mmf acts on both. However, 
the inductances of the two paths are in series, because 
the same time-varying current i1 induces voltages 
due to  the  changing core flux and leakage flux. These 
induced voltages add together in the coil to give the 
total voltage induced in the coil. Thus, if both sides of 
Equation 10.17 are multiplied by di/dt,
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where the term on the LHS is the total voltage induced 
by the two fluxes.

Primal Exercise 10.1

If i1  =  2  A in Figure 10.2a results in ϕc  =  0.1  Wb and 
ϕ11eff(leak) = 5 mWb, determine Pc and P11eff(leak), assuming 
N1 = 100 turns.
Ans. Pc = 0.5 mWb/A-turn; P11eff(leak) = 25 μWb/A-turn.

Example 10.1: Equivalent Electric Circuit 
of a Shell-Type Core

Given a coil wound on the central limb of a shell-type 
magnetic core, illustrated in Figure 10.3a, it is required to 
derive the analog electric circuit, neglecting leakage flux.

Solution:

The electric circuit analog is shown in Figure 10.3b. 
An mmf Ni is applied by the coil to a circuit consisting 
of the permeance of the central limb Pc in series with 
two conductances Ps in parallel, where Ps is the per-
meance of each of the two side limbs. If the flux in the 
central limb is ϕc, the flux in each side limb is ϕs = ϕc/2. 
The equivalent permeance Peq in series with the source 
Ni is Peq = (Pc × 2Ps)/(Pc + 2Ps) = (PcPs)/(Pc/2 + Ps), and 
ϕc = Ni/Peq.

10.2  Ideal Transformer

10.2.1  Definition

Recall that ideal resistors, capacitors, and inductors 
were defined as possessing certain properties. We will 
similarly define an ideal transformer as an element hav-
ing the following properties:

 1. No power losses in the windings or in the core. 
No power loss in the windings implies zero 
resistance of the coils, and no power loss in the 
core implies certain properties of the core mate-
rial, discussed in Section 10.5.

 2. No energy stored in the electric field, as was 
assumed in the case of ideal resistors and 
inductors.

 3. Perfect magnetic coupling to the core, which 
means no leakage path and no leakage flux.

 4. Infinite core permeability μc. Since inductance 
and permeance are both directly proportional to 
permeability, the inductances of the coils, and 
the permeance of the core are also infinite.

Consider an ideal transformer consisting of two coils, 
as in Figure 10.4a. A time-varying voltage v1 is applied 
to coil 1, coil 2 being open-circuited. With zero leak-
age flux, in accordance with item 3 of the definition, 
ϕ11 = ϕc, the flux in the core (Equation 10.11). The volt-
age induced in coil 1 is therefore entirely due to ϕc, the 
flux in the core. Moreover, with zero coil resistance and 
zero leakage flux, the terminal voltage v1 is the same as 
the voltage induced in the coil by ϕc. It follows From 
 Faraday’s law that.

 
v N

d
dt N

v dtc
c1 1

1
1

1= = ò
f

for
 

(10.19)

According to Equation 10.19, |ϕc| for the ideal trans-
former in Figure 10.4 depends entirely on the number 
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FIGURE 10.3
Figure for Example 10.1.



Ideal Transformers 269

of turns N1 and on the magnitude and time varia-
tion of the applied voltage v1. It does not depend on the 
permeability of the core nor on any current that may be 
flowing in the coil. For example, if v1  =  10cos100t V, 
with t in s and N1  =  1000 turns, then ϕc is uniquely 
 determined by v1 and N1 as 0.1sin100t mWb, irrespec-
tive of μc and i1.

What is then the effect of infinite μc? The effect is on 
the current i1. From the definition of inductance in terms 
of flux linkage,
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If ϕc is finite, as determined by v1 and N1, then i1 → 0 
as μc  →∞, and hence L1  →∞. This has two important 
implications:

 1. The mmf N1i1 on the core is zero. This is in accor-
dance with Equation 10.5, for if the permeance 
is infinite, with the flux finite, the mmf is zero. It 
was argued in connection with the analog elec-
tric circuit of Figure 10.2d that having finite flux 
and infinite permeance is analogous to a finite 
current (the flux) flowing through a short circuit 
(infinite permeance), the resulting voltage (the 
mmf) being zero.

 2. The power input into the transformer v1i1 = 0. 
Hence, no energy is expended in establishing a 
finite ϕc in a core of infinite permeance, which 
means that no magnetic energy is stored in the 
core. With no leakage flux, and no electric energy 
stored in the transformer (assumption 2), this 
means that no energy of any kind is stored in the 
ideal transformer.

The time-varying ϕc induces a voltage v2 in coil 2, whose 
magnitude is given by Faraday’s law: |v2| = N2|dϕc/dt|. 

From Equation 10.19, |v1| = N1|dϕc/dt|. Dividing this 
by the former relation for |v2| gives
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Equation 10.21 can be interpreted on the basis that ϕc is 
common to both coils of the ideal transformer of Figure 
10.4a, which means that |dϕc/dt| is the same for the two 
coils. In general, |dϕc/dt| = |v|/N, where |v|/N is the 
magnitude of the induced voltage per turn in any coil wound 
on the core. Applying this equality to the two coils,
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which is the same as Equation 10.21. Moreover, as in the 
case of coil 1, the terminal voltage v2 is the same as the 
voltage induced in coil 2 by ϕc, even in the presence of 
coil current, because of the assumptions of zero leakage 
flux and zero resistance.

It should be emphasized that Equation 10.22 in terms 
of the volts induced per turn applies to any number of 
coils of the ideal transformer. In summary, the following 
concept applies:

Concept: In an ideal transformer, the magnitude of the volts 
per turn induced by the flux in the core is the same for all coils 
of the ideal transformer. Because there is no leakage flux and 
no resistance, the induced voltage in any coil is the same as the 
terminal voltage of the coil. The sign of the terminal voltage in 
any given coil is determined by the assigned positive polarity 
of the voltage and the dot markings of the coils.

In Figure 10.4a, the dot markings on the coils are indi-
cated. According to the dot convention, the dot-marked 
terminals of both coils go positive together, or negative 
together. With the terminal voltages v1 and v2 assigned 
as shown, v1 and v2 in Figure 10.4a will always have the 
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FIGURE 10.4
Voltages and currents of an ideal transformer. A two-coil ideal transformer with coil 2 open circuited (a) and carrying current (b).
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same sign. The magnitude designations in Equation 
10.21 can be dropped, so that this equation can be writ-
ten in this case as
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(10.23)

If the assigned positive polarities of v1 and v2 do not 
conform to the dot markings, Equation 10.23 is written 
with a negative sign, as will be elaborated later.

Next, consider that coil 2 is connected to a resistor 
RL (Figure 10.4b), so that i2 flows as indicated. What is 
i1 in this case? As explained earlier, ϕc depends only 
on v1 and N1 and not on any other variables such as 
i1 or i2. Moreover, when μc is infinite, the net mmf act-
ing on the core is zero. Otherwise, a finite mmf multi-
plied by infinite permeance results in infinite flux, and 
hence infinite induced voltage, which is contrary to the 
assumption of a finite applied voltage. It follows that in 
the presence of i2, i1 must be such that the net mmf acting 
on the core is zero. Since permeance is a positive quantity, 
it is seen from Equation 10.5 that mmf and flux have 
the same sign or are in the same sense. That is, if the 
flux is clockwise, for example, then the mmf also acts 
clockwise. In Figure 10.4b, i1 enters at the dot-marked 
terminal of coil 1, whereas i2 leaves at the dot-marked 
terminal of coil 2. According to the dot convention, i1 
and i2 produce fluxes in opposite directions in the core 
and therefore their mmfs are in opposition. To have a 
net mmf of zero acting on the core, N1i1 − N2i2 = 0, which 
gives
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This underlies an important concept:

Concept: In an ideal transformer, the net mmf acting on the 
core due to currents in all the coils of the ideal transformer 

must be zero. The sign, or sense, of the mmf due to current 
in a given coil depends on the assigned positive direction of 
 current and on the dot markings.

If Equations 10.23 and 10.24 are multiplied together,

 v i v i1 1 2 2=  (10.25)

In other words, the instantaneous power input and 
output are equal in an ideal transformer. This is to be 
expected, since an ideal transformer neither dissipates nor 
stores energy.

Figure 10.5 indicates the voltage and current ratios 
of an ideal transformer for different combinations of 
dot markings and assigned positive directions of cur-
rents and polarities of voltages. Note that the symbol 
for an ideal transformer has two parallel lines between 
the two coils. To justify the signs for the voltage and 
 current ratios, consider Figure 10.5d, for example. The 
assigned positive direction of v1 is as shown. v1/N1, the 
induced volts per turn in coil 1, is considered positive, 
with the positively assigned terminal being the termi-
nal marked with a dot. The voltage induced in coil 2 is 
N2 × (induced volts per turn), or v v N N2 1 1 2¢ = ( )/ , and is 
positive because of the same dot markings with respect 
to v1. According to the assigned positive polarity of 
v v v2 2 2, = - ¢. This makes v1/v2  =  −N1/N2, as indicated. 
This is to be expected from the dot convention and the 
assigned positive polarities of v1 and v2.

The assigned positive directions of currents in 
Figure  10.5d are such that both i1 and i2 enter at the 
dot-marked terminals. The mmf’s therefore add, so 
that for zero mmf in the core, N1i1 + N2i2 = 0. This gives 
i1/i2  =  −N2/N1, as indicated. Note that when the dot 
markings are reversed, for the same assigned positive 
directions of voltage and current, the sign of the turns 
ratio also reverses in the expressions of v1/v2 and i1/i2. 
This is the case in Figure 10.5b compared to Figure 10.5d, 
and in Figure 10.5a compared to Figure 10.5c.

FIGURE 10.5
Voltage and current ratios of an ideal transformer for different combinations of dot markings and assigned positive directions of currents and 
polarities of voltages, as shown in (a) to (d).
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Finally, it should be noted from the expression for 
inductance of the coils (Equation 7.24) that the ratio of 
the inductances of coils 1 and 2 in Figure 10.4 is
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Although L1 and L2 are both infinite for an ideal trans-
former, their ratio is finite, because it is independent of 
μc and is equal to the square of the turns ratio.

In summary, the circuit implications of the properties 
of an ideal two-coil transformer are as follows:

 1.
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(10.27)

  where the sign is positive if the assigned posi-
tive polarities of the voltages conform to the 
dot markings of the two coils and is negative 
otherwise. Equation 10.27 expresses the fun-
damental concept that the magnitude of the 
induced volts per turn is the same for the coils. 
It is the voltage equation of an ideal two-coil 
transformer.
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  where the sign is negative if the assigned posi-
tive directions of currents are such that both 
currents flow into, or out of, the dotted termi-
nals and is positive otherwise. Equation 10.28 
expresses the fundamental concept that the net 
mmf on the core is zero. It is the current equa-
tion of an ideal two-coil transformer.

 3. The magnitude of the current ratio is the recip-
rocal of that of the voltage ratio.

 4. At any instant of time, the input power and 
 output power are equal.

 5. The inductances of the coils are infinite, but 
their ratio is finite and equals the square of the 
turns ratio.

Primal Exercise 10.2

Given vSRC(t) = 10cos(100πt) V in Figure 10.6, determine 
v2, i2, and i1, assuming (a) the dot markings shown and 
(b) reversed dot markings.
Ans. (a) v2(t) = 100cos(100πt) V, i2(t) = 100cos(100πt) mA, 
i1(t) = cos(100πt) A. 
(b) v2(t) = −100cos(100πt) V, i2(t) = −100cos(100πt) mA, 
i1 = cos(100πt) A.

10.2.2  Phasor Relations

The behavior of an ideal transformer can be further 
illustrated using phasor relations. Figure 10.7a shows 
an ideal transformer connected to a load impedance 
ZL, with the corresponding phasor diagram depicted 
in Figure 10.7b. Figure 10.7c is a flow diagram of the 
causal relationships. A voltage V1 applied to coil 1 

establishes a flux ϕc in the core such that ffc 1V= 1

1j Nw
, 

where integration with respect to time is equivalent to 
division by jω in phasor notation. Note that ϕc depends 
on V1, N1, and  ω. Because of division by j, ϕc lags V1 
by 90°. The phase angle of V1 is arbitrarily taken as 90°, 
which makes the phase angle of ϕc zero. ϕc induces a 
voltage V2 in coil 2 such that V2 c= + j Nw 2ff , assuming the 
assigned positive polarities and dot markings shown. 
Since V2 leads ϕc by 90°, because of multiplication by j, 
it is in phase with V1, in accordance with the dot mark-
ings. V2 results in a current I2 that lags V2 by an angle θ, 
assuming ZL is inductive. In order to have zero mmf in 
the core, a current I1 flows such that N1I1 − N2I2 = 0.

In a transformer having only one coil connected to 
a source of excitation, it is usual to refer to this coil as 
the primary winding and to all other coils as second-
ary windings. In Figure 10.7a, V1 is across the primary 
winding and ZL is connected to the secondary wind-
ing. If N2 > N1, so that |v2| > |v1|, the transformer is a 
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 step-up transformer, since the magnitude of the voltage 
of the secondary winding is larger than that of the pri-
mary winding. Conversely, if N2 < N1, the transformer is 
a step-down transformer.

Primal Exercise 10.3

Determine the phase angles of the phasor currents I1 
and I2 in Figure 10.8 using the voltages as reference.
Ans. The phase angle of I1 is +90°, that of I2 is −90°.

Exercise 10.4

Consider the phasor relation V1 = jωN1ϕc (Figure 10.7). 
Show that this can be expressed as V1rms = 4.44fN1ϕcpeak, 
where V1rms is the rms value of V1 and ϕcpeak is the peak 
value of ϕc.

10.2.3  Reflection of Impedance

The impedance ZLp that appears across the terminals of 
the primary winding in Figure 10.7a due to ZL connected 
across the secondary winding is described as ZL reflected 
to the primary side. This impedance is V1/I1 and its rela-
tion to ZL can be readily determined from the voltage 
and current ratios. For the dot markings and assigned 
positive polarities of voltages and directions of cur-
rents in Figure 10.7a, V1/V2 = N1/N2 and I2/I1 = N1/N2. 
Multiplying these together,
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Substituting V I2 2/ = ZL and multiplying both sides of 
the equation by ZL,
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Equation 10.30 is valid for any combination of dot mark-
ings and assignment of positive directions of currents and 
polarities of voltages. Thus, reversing the dot markings 

alone changes the sign of the turns ratio in both the volt-
age and current ratios, as was pointed out in connec-
tion with Figure 10.5, but the product remains positive 
when the negative sign is squared. Reversal of either the 
assigned positive polarity of V2, or the assigned positive 
direction of I2, makes the turns ratio negative for the 
voltages or currents, respectively, but makes V2 = −ZLI2, 
so that Equation 10.30 still applies. Similar consider-
ations apply if either the assigned positive polarity of 
V1 or the assigned positive direction of I1 is reversed. 
Impedance never changes sign as it is reflected from 
one side of an ideal transformer to the other, because 
this violates conservation of energy (Problem P10.54).

It follows from Equation 10.30 that a short circuit 
(ZL  =  0) is reflected as a short circuit and an open circuit 
(ZL → ∞) is reflected as an open circuit.

Primal Exercise 10.5

Determine the turns ratio of the ideal transformer in 
Figure 10.9 so that the resistance reflected to the primary 
side is 200 Ω, irrespective of the dot markings.
Ans. 5:1.

Example 10.2: Reflection of Impedance

It is required to determine VO in the circuit of Figure 10.10a.

Solution:

The first step in the general, basic analysis of circuits 
involving an ideal transformer is to assign voltages and 
currents to the ideal transformer. However, only two 
variables need be assigned, which can be conveniently 
chosen as the voltage on the side of smaller number 
of turns, and the current on the side of larger number 
of turns, in order to avoid working with fractions. In 
Figure 10.10b, the chosen voltage variable is the pri-
mary voltage V1, which makes the secondary voltage 
3V1. The assigned positive directions of the voltages 
are in accordance with the dot markings, in order to 
avoid dealing with negative voltages. The chosen cur-
rent variable is the secondary current I2, which makes 
the primary current 3I2. To avoid working with nega-
tive currents, the directions of the currents are chosen so 
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that the current ratio is positive. This means that if one 
current is assigned as entering the dot-marked terminal 
on one side, the other current is assigned as leaving the 
dot-marked terminal on the other side.

Since there are two unknowns, V1 and I2, two equa-
tions involving these variables need to be written and 
solved. Once V1 is determined, VO follows as 3V1. One 
equation involving V1 and I2 is provided by Ohm’s law 
for the load resistance: 3V1 = 9I2, or

 V I1 2== 3  (10.31)

The circuit on the primary side is a two-essential-node 
circuit, so that KCL at the upper node gives

 
9

1 5 3
3 2

- = +V V1 1

.
I

 
(10.32)

Simplifying and collecting terms,

 V I1 2+ =3 6 (10.33)

Solving Equations 10.31 and 10.33 gives V1 = 3 V, so that 
VO = 9∠0° V, the same as the source voltage in this case.

An alternative method is to reflect the 9 Ω resistance 
to the primary side, in accordance with Equation 10.30, 
which gives RLp = 9(1/3)2 = 1 Ω (Figure 10.11a). This 1 Ω 
resistance appears in parallel with the 3 Ω resistance, 

giving a resistance of 0.75 Ω. It follows from voltage 
division that V1 = 9(0.75/2.25) = 3 V (Figure 10.11b) and 
VO = 9∠0° V, as before.

Simulation: The educational version of PSpice does not 
have a part for the ideal transformer. But the ideal trans-
former can be entered as a linear transformer, using 
the part XFRM_LINEAR from the ANALOG library. 
In  accordance with the properties of the ideal trans-
former, the inductances of the two coils are made very 
large but in the ratio of the square of the number of turns. 
The coupling coefficient is unity and its sign is positive 
in accordance with the dot markings in Figure 10.10. 
The circuit is entered as in Figure 10.12, where the value 
of L1 is set at 1 MH and that of L2 as 9 MH. Note that 106 
henries is entered in PSpice as 1 megH, and not 1MH, 
because PSpice is case insensitive and would interpret 
1MH as 1 mH. In the Simulation Settings, ‘Analysis type’ 
is ‘AC Sweep/Noise’; 0.159155 is entered for the ‘Start 
Frequency’ and for the ‘End Frequency’, correspond-
ing to ω = 1 rad/s; and 1 is entered for ‘Points/Decade’. 
After the simulation is run, VO magnitude is read as 
9  V and its phase as essentially zero, using Evaluate 
Measurements and selecting Analog Operators and 
Functions. Note that an ideal transformer could also be 
entered in the same manner but using the part K_Linear, 
as in Example 10.5.

Problem-Solving Tips

• In analyzing a circuit using an ideal transformer, 
assign one voltage variable on one side of the 
transformer, usually the side of smaller number of 
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turns, and one current variable on the other side, 
and express the other voltage and current of the 
transformer in terms of the assigned variables and 
the turns ratio.

• The polarities and directions of the transformer 
voltages and currents are assigned in accordance 
with the dot markings so as to avoid negative 
transformer voltages and currents on either side of 
the transformer.

Primal Exercise 10.6

Determine VO and IS in Figure 10.13.
Ans. VO = 16∠0° V, IS = 6.4 – j4 A.

10.2.4  Applications of Transformers

After having discussed the basics of ideal transformers, 
it should be pointed out that the behavior of most types 

of practical transformers closely approximates that of 
ideal transformers, just as the behavior of most types of 
practical capacitors closely approximates that of ideal 
capacitors.

Transformers are widely used for a variety of pur-
poses. They are used for stepping supply voltages up 
or down, for measurement of ac currents and voltages, 
for impedance matching, for generating polyphase 
supplies, and in rectifier circuits, inverters, coupled 
tuned amplifiers, oscillators, and a host of electronic 
circuits. A combination transformer/ inductor, or bal-
last, is commonly used with fluorescent lamps.

10.3  Reflection of Circuits

Reflection applies not only to impedances but to whole 
circuits as well, which effectively removes the ideal 
transformer from the circuit. This is analogous to the 
removal of magnetic coupling between two coils by the 
T-equivalent circuit of a linear transformer. Consider, 
for example, Figure 10.14a having an ideal transformer 
of turns ratio 1:a, that is, N1 turns on winding 1 and 
aN1 turns on winding 2, where N1 need not be speci-
fied. Since excitation is applied to both windings, we 
will not refer to the two sides as primary and second-
ary, but as side 1 (on the left) and side 2 (on the right). 
It follows that I1 = aI2, V2 = aV1, and VL = VS2 + V2. KCL 
at node ‘n’ is

  
I I I

V V
2 S2 L

2 S2+ = =
+
ZL  

(10.34)
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Multiplying Equation 10.34 by a,

 
a a a

a
ZL

I I I
V V

2 S2 L
2 S2+ = =
+( )

 
(10.35)

Dividing the numerator and denominator on the RHS 
by a2 and replacing aI2 by I1 and V2/a by V1, Equation 
10.35 becomes

 
I I I

V V
1 S2 L

S2+ = =
+

a a
a

Z aL

1
2

/
/  

(10.36)

Equation 10.36 is KCL at node n′ to the right of the 
dashed line in Figure 10.14b. The circuit to the right of 
this line is the circuit connected to side 2 in Figure 10.14a 
but reflected to side 1. In reflecting voltages from one 
side to another, it is easy to remember that, according to 
the induced volts per turn concept, voltages are divided 
by the number of turns on the side of origin and mul-
tiplied by the number of turns on the destination side. 
Impedances are multiplied by the square of the fac-
tor by which voltages are multiplied, and currents are 
divided by the voltage factor. Thus, the voltage source is 
reflected as VS2/a, the impedance as ZL/a2, and the cur-
rent source as aIS2. Winding 1 of the ideal transformer is 
now across the reflected ZL/a2 element, with winding 2 
open-circuited. The current of winding 1 is zero, so that 
the ideal transformer is redundant and can be removed 
from the circuit.

Alternatively, the circuit on side 1 can be reflected to 
side 2. To show this, we note that KCL at node ‘m’ in 
Figure 10.15a is

 
I I

V V
1 S1

SRC 1- =
-

Zsrc  
(10.37)

Dividing both sides by a,

 

I
a

I
a

V V1 S1 SRC 1- = -
aZsrc  

(10.38)

Multiplying the numerator and denominator on 
the RHS by a and replacing I1/a by I2 and aV1 by V2, 
Equation 10.38 becomes

 
I

I aV V
2

S1 SRC 2- = -
a a ZL

2
 

(10.39)

Equation 10.39 is KCL at node m′ to the left of the 
dashed line in Figure 10.15b. The circuit to the left of 
this line is the circuit connected to side1 in Figure 10.15a 
but reflected to side 2. In accordance with the induced 
volts per turn concept, as explained previously, voltages 
are divided by the number of turns on the side of origin 
and multiplied by the number of turns on the destina-
tion side, currents are divided by this factor, and imped-
ances are multiplied by the square of this factor. Thus, 
the voltage source is reflected as aVSRC, the impedance 
as a2Zsrc, and the current source as IS1/a. The ideal trans-
former now appears across the reflected source, with 
winding 1 open-circuited. The current of winding 2 is 
zero, so that the ideal transformer is redundant and can 
be removed from the circuit.

Suppose that the dot markings are reversed, keep-
ing the same assigned positive directions of currents 
and voltages (Figure 10.16a). Equation 10.35 remains 
unchanged. But now I1 = −aI2 and V2 = −aV1. Substituting 
in Equation 10.35,
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- +
I I I
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(10.40)
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(a) Source and impedance on both sides of an ideal transformer, as in Figure 10.14 and (b) reflection of circuit from side 1 to side 2.
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Dividing the RHS of Equation 10.40 by a2, rearranging, 
and changing signs,

 
I I I

V V
1 S2 L

1 s2- = - =
-

a a
a

Z aL

/
/ 2

 
(10.41)

Compared to Equation 10.36, it is seen that the sign 
of a is reversed in Equation 10.41. This equation is KCL 
at node n′ in Figure 10.16b. Comparing this figure with 
Figure 10.14b, it is seen that reversing the dot markings 
reverses the directions of all the currents and voltages 
when reflected from side 2 to side 1.

The procedure for reflecting a circuit from one side of 
an ideal transformer to the other side can be summa-
rized as follows:

 1. In reflecting from the side of smaller number 
of turns to the side of larger number of turns, 
voltages are multiplied by the larger-than-unity 
turns ratio, impedances are multiplied by the 
square of this turns ratio, currents are divided 
by this turns ratio, and admittances are divided 
by the square of this turns ratio. Thus, volt-
ages and impedances become larger, whereas 
currents and admittances become smaller. The 
converse applies when reflecting from a side 
of larger number of turns to the side of smaller 
number of turns: voltages and impedances 
become smaller, whereas currents and admit-
tances become larger.

 2. When the dot markings on the transformer 
windings are aligned horizontally, polarities 
or directions of source voltages and currents, 
required voltages or currents, and control-
ling voltages and currents are unchanged. 
When the dot markings are aligned diagonally, 

the polarities or directions of these voltages or 
currents are reversed.

 3. In reflecting a circuit from one side of the trans-
former to the other, the order of the circuit ele-
ments must be retained.

The procedure for reflecting a circuit from one side of 
an ideal transformer to the other is illustrated by the 
 following examples.

Example 10.3: Reflection of Circuit

It is required to determine vO in Figure 10.17 by reflect-
ing the circuit on either side of the transformer to the 
other side, assuming ω = 500 krad/s.

Solution:

1/jωC  =  1/j(0.5  ×  106  ×  0.5  ×  10−6)  =  −j4 Ω. The volt-
age phasor representing the sinωt function is arbi-
trarily considered to have a reference phase angle of 
zero, which means that the phase angle of the current 
phasor representing the cosωt function is 90°, since 
cosωt  =  sin(ωt  +  90°). The current phasor is therefore 
represented as j2 A. The circuit in the frequency domain 
is shown in Figure 10.18.

If the circuit on side 2 is reflected to side 1, the circuit 
becomes as in Figure 10.19a. Since the number of turns 
on side 1 is twice that of side 2, the current source is 
divided by 2, to become j A; the resistance is multiplied 
by 4, to become 8 Ω; and VO across the 2 Ω resistance is 
multiplied by 2, to become 2VO. The 6 V source in series 
with 4 Ω is transformed to a current source of 3/2 A in 
parallel with 4 Ω. The two current sources are replaced 
by a single current source of (3/2  +  j) A, and the 4 Ω 
resistance is combined with the 8 Ω resistance in parallel 
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(a) Source and impedance on both sides of an ideal transformer, as 
in Figure 10.14 but with reversed dot markings and (b) reflection of 
circuit from side 2 to side 1.
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to give 8/3 Ω. The circuit becomes as in Figure 10.19b. It
 

follows that 2
3
2

8
3

4VO = +æ
è
ç

ö
ø
÷ -( )æ
è
ç

ö
ø
÷j j� . Simplifying this 

expression gives VO = 2 V.
If the circuit on side 1 is reflected to side 2, the cir-

cuit becomes as in Figure 10.20a. Since the number of 
turns on side 2 is half that on side 1, the voltage source 
is divided by 2, to become 3 V, and the resistance and 
reactance are divided by 4, to become 1 Ω and –j Ω. The 
3  V source in series with 1 Ω is transformed to a cur-
rent source of 3 A in parallel with 1 Ω. The two current 
sources are replaced by a single current source of (3 + j2) 
A, and the 1 Ω resistance is combined with the 2 Ω resis-
tance in parallel to give 2/3 Ω. The circuit becomes as 

in Figure 10.20b. It follows that VO = +( ) -( )æ
è
ç

ö
ø
÷3 2

2
3

j j� . 

Simplifying this expression gives VO = 2 V.
If the dot markings on the transformer are reversed, 

and the circuit on side 2 is reflected to side 1, the circuit 
becomes as in Figure 10.21. Proceeding as for Figure 10.19 

gives - = -æ
è
ç

ö
ø
÷ -( )æ
è
ç

ö
ø
÷2

3
2
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3

4VO j j�  or VO = Ð °2 112 6. V. If the 

circuit on side 1 is reflected to side 2, the circuit becomes 

as in Figure 10.22. Proceeding as for Figure 10.20 gives 

VO = - +( ) -( )æ
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2 112 6j j� . V.

The following example illustrates reflection involving a 
dependent source.

Example 10.4: Reflection of Circuit  
with Dependent Source

It is required to determine VO in Figure 10.23 by reflect-
ing the circuit on the primary side of the transformer to 
the secondary side.

Solution:

Following the procedure outlined previously, the volt-
age source, the dependent current source, and its con-
trolling current are reflected to the secondary side, with 
reversed polarity, because of the placement of the dots. 
The magnitude of the source voltage is divided by 2 and 
the resistances are divided by 4. The magnitudes of the 
current source and its controlling current are multiplied 
by 2. Setting 2IX  =  IY, the dependent source current is 
related to its controlling current as on the primary side 
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but with reversed polarities (Figure 10.24). It follows 
from KCL that 2IY + IY = (2.5 – 0.5IY)/0.25, which gives 
IY = 2 mA. Hence, VO = −5 × 2IY = −20 V.

It should be emphasized that the previously discussed 
simple reflection of circuits applies only in the case of 
two windings and in the absence of other coupling 
between the circuits connected to each winding. These 
circuits could be coupled by a subcircuit bridging the 
two sides, as in Figure 10.25a, or by a series-connected 
subcircuit as in Figure 10.25b. The subcircuit could be 
just a simple impedance.

Primal Exercise 10.7

Determine IL in Figure 10.26 (a) by applying the volts/
turn concept, and (b) noting, from the net zero mmf 
equation, that the effective number of turns of the pri-
mary winding is 200 turns and reflecting the source to 
the secondary side.
Ans. 1∠90° A.

10.4  Ideal Autotransformer

The ideal autotransformer is a special type of ideal 
transformer in which the primary and  secondary wind-
ings are connected together in a particular way. To 
appreciate the idea behind an autotransformer, consider 

for the sake of argument an ideal, step-up (N2  >  N1), 
two-winding transformer having the assigned positive 
polarities of voltages and directions of currents, as in 
Figure  10.27a. The  output voltage v2 is that appearing 
solely across the secondary winding. As an alterna-
tive, it is possible to have a smaller induced voltage ¢v2 
added to the primary voltage v1, so that v v v2 1 2= + ¢ , as 
illustrated in Figure 10.27b. Such an ideal transformer is 
referred to as an ideal autotransformer.
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The principal advantage of an autotransformer is that 
the added voltage ¢v2, which is smaller than v2, requires 
a winding having a number of turns ¢N2 that is less than 
N2. This makes the autotransformer smaller, lighter, and 
less expensive than a two-winding transformer having 
the same input and output voltages and currents. In 
addition, the two windings having the number of turns 
N1 and ¢N2 could be a single winding with a bare part, 
devoid of insulation. Terminal ‘a’ in Figure 10.27b is then 
connected to a slider over this bare part of the winding, 
resulting in an autotransformer of variable turns ratio.

If terminals ‘c’ and ‘d’ in Figure 10.27b are connected 
to the source and terminals ‘a’ and ‘b’ are connected to 
the load, a step-down autotransformer is obtained, in 
which the output voltage is smaller in magnitude than 
the input voltage.

The principal disadvantage of the autotransformer 
is that the input and output sides are directly connected 
together. That is, there is a conductive pathway between 
input and output, unlike a two-winding transformer. 
Thus, if a battery is connected between terminals ‘a’ and 
‘d’ of the ideal, two-winding transformer of Figure 10.27a, 
no current flows (Figure 10.28). This is because the insula-
tion between the two windings is assumed to be perfect 
in an ideal transformer, just like the insulation between 
the two plates of an ideal capacitor. Perfect insulation has 
infinite resistance, so that the dc current IB is VB divided 
by an infinite resistance between the two windings, which 
gives IB = 0. In other words, there is no conductive path-
way between the two windings. The two windings are 
said to be electrically isolated from one another. On the 
other hand, if a battery is connected between terminals ‘a’ 
and ‘d’ of the autotransformer of Figure 10.27b, the battery 
is short-circuited by the zero dc resistance of the primary 
winding between terminals ‘a’ and ‘bd’. Electrical isola-
tion is sometimes required in practice to safeguard against 
electric shock, or for other reasons, such as having different 
grounded nodes on the two sides of a two-winding trans-
former. An autotransformer cannot be used in these cases.

The voltage and current relations for the autotrans-
former follow directly from those of the two- winding 
transformer. The magnitude of the induced volts 

per turn in the primary winding is v1/N1. Hence, 
¢ = ( ) ¢v v N N2 1 1 2/ . For the dot markings in Figure 10.27b, 

v v v2 1 2= + ¢ . Dividing this relation by v1 and substituting 
¢ = ¢v v N N2 1 2 1/ /  from the preceding relation give
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Setting the net mmf to zero in Figure 10.27b, 
N i i N i1 1 2 2 2–( ) = ¢ . Dividing by i2 and simplifying,
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(10.43)

Equations 10.42 and 10.43 are equivalent, respectively, 
to the voltage and current ratios of a two-winding trans-
former of turns ratio N N N1 2 1+ ¢( ): , since ¢N2 effectively 
adds to N1 to give the total number of turns on one side 
of the autotransformer.

If the dot markings are reversed, keeping the same 
assigned positive polarities of voltages and directions 
of currents, then v v v2 1 2= - ¢ , and the turns ratio ¢N N2 1/  
changes sign in Equations 10.42 and 10.43 (Exercise 10.8).

Note that, in principle, any two-winding transformer 
can be connected as an autotransformer to give an effec-
tively larger, or smaller, turns ratio.

Exercise 10.8

Show that if the dot marking on either winding of an 
autotransformer is reversed, the turns ratio ¢N N2 1/  
changes sign.

Primal Exercise 10.9

(a) Determine v2/v1 and i1/i2 when (i) N1  =  200 turns 
and ¢ =N2 100 turns, with the dot markings as in Figure 
10.27b, (ii) ¢ =N2 100 turns with the relative dot markings 
of Figure 10.27b reversed, and (iii) ¢ =N2 300 turns with 
the relative dot markings of Figure 10.27b reversed, as 
in (2). (b) Does it make any difference in (ii) and (iii) in 
which winding the dots in Figure 10.27b are reversed?
Ans. (a) Both ratios are 1.5 in (i), 0.5 in (ii), and −0.5 in 
(iii); (b) no.

Example 10.5: Three-Winding Ideal Transformer

Given a three-winding ideal transformer with loads Z2 
and Z3 connected as shown in Figure 10.29, it is required 
to determine the input impedance V1/I1.

Solution:

The transformer can be analyzed using the two funda-
mental concepts of the ideal transformer: (1) equality 
of the magnitude of the induced volts per turn in all 

Load

c

N1 N2

d

a

b

+ –

VB

IB = 0

FIGURE 10.28
Electrical isolation in a two-winding transformer.
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the windings and (2) net zero mmf on the core. V1 is 
the applied voltage across (N1 + N2) turns and is also the 
induced voltage in these turns, because of the absence of 
flux leakage and resistance in an ideal transformer. The 
magnitude of the induced volts per turn is V1/(N1 + N2). 
The magnitudes of the induced voltages and terminal 
voltages of the other windings are V2 = [V1/(N1 + N2)]N2 
and V3 = [V1/(N1 + N2)]N3. The assigned positive polarities 
of V1, V2, and V3 are in accordance with the dot markings 
on the three windings. It follows that the voltage ratios 

have positive signs:
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1
=
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N N
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1 2
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Consider next the mmf acting on the core. The cur-
rents I1 and (I1 – I2) enter at the dotted terminals of their 
respective windings. Their mmfs are in the same sense 
and may be assigned a positive sign. On the other hand, 
I3 leaves its winding at the dotted terminals, so its mmf 
is assigned a negative sign. Since the net mmf in the core 
must be zero, N1I1 + N2(I1 − I2) – N3I3 = 0.

Moreover, I2 = (1/Z2)V2 and I3 = (1/Z3)V3. Eliminating 
I2 , I3, V2, and V3 from the preceding equations gives
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If Z2 ®∞, the impedance reflected to the primary side 
is Z N N N3 1 2

2
3
2+( ) / , as for a two-winding transformer of 

turns ratio N N N1 2 3+( )/ . If Z3 ®∞, the reflected imped-
ance at the input is Z N N N2 1 2

2
2
2+( )/ , as for an autotrans-

former of turns N1 and N2, equivalent to a two-winding 
transformer of number of turns (N1 + N2) and N2. These 
reflected impedances in parallel give the input imped-
ance of Equation 10.44. This is equivalent to applying 
each of Z2 and Z3, one at a time, and then paralleling the 
resulting impedances in a manner reminiscent of super-
position. It should be emphasized that superposition 
does not apply, in general, to impedances. However, in 
some cases such as this, the substitution theorem allows 
replacing Z2 and Z3 by current sources to which super-
position can be applied (Problem 10.55).

Simulation: The circuit is simulated using the follow-
ing numerical values: N1 = 3000 turns, N2 = 2000 turns, 
N3 = 5000 turns, Z3 = 10 kΩ, and Z2 is represented by a 
6.25 μF capacitor, with ω = 100 rad/s, so that Z2 = −j1600 Ω. 
The circuit is entered as in Figure 10.30. The three- 

winding ideal transformer is simulated using the part 
K_Linear from the Analog Library. The entries made in 
the Property Editor spreadsheet for this part are L1 for 
L1, L2 for L2, and L3 for L3. The values entered for L1, L2, 
and L3 in the Display Properties window are as indicated 
in the figure. These inductance values are in the ratio of 
the square of the number of turns and are large enough 
to simulate the infinite inductances of the windings of an 
ideal transformer. A 1 A current source is applied so that 
voltage read by the voltage printer is numerically equal to 
the input impedance required. In the Simulation Settings, 
‘Analysis type’ is ‘AC Sweep/Noise’; 15.9155 is entered 
for the Start Frequency and for the End Frequency, cor-
responding to ω = 100 rad/s; and 1 is entered for Points/
Decade. After the simulation is run, the printer readings 
are 5.000E+03 for the real part and −5.000E+03 for the 
imaginary part, in accordance with Equation 10.44.

Problem-Solving Tip

• Voltage and current ratios in an ideal transformer, 
including an autotransformer, having any number 
of windings can always be determined from (1) the 
equality of the magnitude of the induced volts per 
turn in all windings and (2) a net zero mmf acting 
on the core, taking into account in both cases the 
dot markings at the terminals of the windings.

10.5  Transformer Imperfections

Practical transformers depart from the ideal in the 
 following respects:

 1. Finite resistance of the windings. This may be 
accounted for, at least at low frequencies, by 
adding appropriate resistances at the terminals 
of the windings.
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 2. Core losses, as described later in this section. 
These can be accounted for, in an approximate 
manner, by a resistance connected across the 
primary winding.

 3. Energy stored in the electric field associated 
with voltage differences between windings and 
between the turns of each winding. This energy 
can be theoretically represented by distributed 
capacitance but can be accounted for, in an 
approximate manner, by lumped capacitances 
connected across the terminals of each winding 
and between windings (Problem P10.58).

 4. Finite inductance of the windings and finite 
leakage flux. These will be considered in what 
follows because of their decisive effect on the 
frequency range over which a transformer can 
operate satisfactorily.

A transformer that is ideal except for finite inductance 
of the windings and finite leakage flux is in effect a linear 
transformer consisting of two coupled, lossless coils, of 
self-inductances L1 and L2 and a coupling coefficient that 
is less than unity. The transformer is shown represented 
in the frequency domain in Figure 10.31, connected to a 
source VSRC on the primary side and to a load ZL on the 
secondary side. The governing KVL equations are

 j L j Mw w1I I V1 2 SRC– =  (10.45)

and

 - + +( ) =j M Z j LLw wI I1 22 0 (10.46)

where the sign of the M term is opposite that of the L1 
and L2 terms because I1 enters the dot-marked terminal 
of coil 1, whereas I2 leaves the dot-marked terminal of 
coil 2, so that their fluxes are in opposition. Substituting 
for I2 from Equation 10.46 in Equation 10.45 and divid-
ing by I1,
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VSRC/I1 is the impedance seen by the source and is 
the same as that derived in Problem P9.29, using the 
T-equivalent circuit (Exercise 10.11). If k2L1L2 is substi-
tuted for M2, this impedance becomes at the two extreme 
values of ZL = 0 and ZL → ∞
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(10.48)
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Equation 10.49 is to be expected, for if the secondary 
winding is open-circuited, the impedance seen by the 
source is simply that of the primary winding.

Any circuit that represents the effect of finite induc-
tances of windings and finite leakage fluxes must satisfy 
Equations 10.45 through 10.49 under the same condi-
tions, such as open-circuited secondary, short-circuited 
secondary, and perfect or imperfect coupling.

10.5.1  Finite Inductance of Windings

We will consider the coils to be perfectly coupled to 
begin with, that is, M L L2

1 2= . Substituting M L L2
1 2=  in 

Equation 10.47, multiplying the numerator and denomi-
nator by L2, and rearranging L1 and L2 in the numerator, 
the RHS of this equation becomes
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The interpretation of Equation 10.50 is that VSRC/I1, 
the impedance seen by the source, is the parallel imped-
ance of L2 and ZL on the secondary side, reflected to the 
primary side of an ideal transformer of inductance ratio 
L1:L2, as shown in Figure 10.32a. This is in accordance with 
 impedance reflection (Equation 10.30), bearing in mind 
that the ratio L1:L2 is the square of the turns ratio (Equation 
10.26). The impedance jωL2, when reflected to the primary 
side, becomes jωL2(L1/L2) = jωL1, as in Figure 10.32b. As 
a check, if ZL →∞, VSRC/I1 =  jωL1, as in Equation 10.49. 
Note that the finite inductance of the two windings is 
accounted for either by L2 across the secondary winding 
or by L1 across the primary winding, but not both.

10.5.2  Finite Leakage Flux

The next step is to modify the circuit of Figure 10.32b 
so as to include the effect of leakage flux. Since equiv-
alence must apply for any value of ZL, we can conve-
niently assume the special case of ZL = 0, in which case 
VSRC/I1 is given by Equation 10.48. When terminals 22' 
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FIGURE 10.31
Ideal transformer having finite coil inductances and nonzero leakage 
flux.
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in Figure 10.32b are short-circuited by having ZL  =  0, 
the short circuit is reflected to the primary side, which 
short-circuits jωL1. To satisfy Equation 10.48, a series 
impedance j L kw 1

21-( ) should be inserted as shown in 
Figure 10.33a. However, when terminals 22′ are open-
circuited, Equation 10.49 must be satisfied. This will 
be the case if the shunt impedance is j L kw 1

2 instead 
of j Lw 1, so that the impedance seen by the source is 
j L k j L k j Lw w w1

2
1

2
11-( ) + = .

The condition for finite inductance of windings must 
still be satisfied. This condition now requires that j Lw 2 
be reflected as j k Lw 2

1. To satisfy this requirement the 

inductance ratio is modified to k2L1:L2, as in Figure 
10.33b. The circuit in this figure is then the equivalent 
circuit of a transformer that is ideal except for finite 
inductances of the windings and finite leakage flux.

That the circuit of Figure 10.33b satisfies Equations 
10.45 and 10.46 is verified in Example 10.6.

★Example 10.6: Verification of Transformer 
Equivalent Circuit

It is required to verify that the equivalent circuit of 
Figure 10.33b satisfies Equations 10.45 through 10.47.

Solution:
On the primary side in Figure 10.34, ¢ = - ¢( )V I I1 1 1j k Lw 2

1 , 
and on the secondary side, V2 = ZLI2. From the voltage 
relations for the ideal transformer, V V2 1/ / ,¢ = ( )L k L2 1  
or k L L1 2V V2 1= ¢ . Substituting for ¢V1 and V2 in terms 
of the currents gives k L Z j k L LL1

2
1 2I I I2 1 1= - ¢( )w , or

 Z j k L L j M j MLI2 = - ¢( ) = - ¢w w w1 2 I I I I1 1 1 1 (10.51)

From the current relations for the ideal transformer,

 k L L1 2¢ =I I1 2 (10.52)

Multiplying both sides of Equation 10.52 by j Lw 2  
gives j M j Lw w¢ =I I1 2 2. Substituting for j Mw ¢I1 in Equation 
10.51 and rearranging this equation gives Equation 10.46.

On the primary side in Figure 10.34, V ISRC 1= +j k Lw( )1 2
1-  

j k L j L j k Lw w w2
1 1

2
1I I I I1 1 1 1– – .¢( ) = ¢  Multiplying both sides 

of Equation 10.52 by jwk L1  gives j k L j Mw w2
1 ¢ =I I1 2. 

Substituting for j k Lw 2
1 ¢I1 in the equation for VSRC and rear-

ranging this equation give Equation 10.45.
We can also show that the circuit of Figure 10.33b 

 satisfies Equation 10.47 by first expressing this equation as
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Finite inductance of windings is accounted for by connecting an 
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across the primary winding (b), with the ideal transformer having an 
inductance ratio L1:L2.
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The numerator can be expressed in the following form:
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(10.54)

Dividing the numerator by the denominator,
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According to Equation 10.55, the input impedance is 
jωL1(1 – k2) in series with an impedance represented by 
the second term. The numerator and denominator of 
this term are multiplied by k2L1/L2 to give
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The RHS of Equation 10.56 represents an impedance 
jωk2L1 in parallel with ZL reflected to the primary side 
using an inductance ratio k2L1/L2, in accordance with 
Figure 10.33b.

Primal Exercise 10.10

Determine the input impedance VSRC/IS in Figure 10.35, 
assuming L1 = 0.1 H, L2 = 0.2 H, and ω = 10 kHz and per-
fect coupling by (a) considering L2 across the secondary 
winding, (b) considering L1 across the primary wind-
ing, and (c) applying Equation 10.47. Compare with the 
input impedance of an ideal transformer of inductance  
ratio L1:L2.
Ans. (a), (b), and (c) 447.2∠26.6°; 500 Ω.

Exercise 10.11

Show that the input impedance (Equation 10.47) can be 
expressed as
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as derived in Problem P9.29, from the T-equivalent circuit.

10.5.3  Frequency Range

For simplicity and to illustrate clearly the basic 
ideas involved, we will assume resistive load and 
source impedances. Consider a load RL connected to 
a source of voltage VSRC and impedance Rsrc through 
a transformer represented by the equivalent circuit 
of Figure 10.33b. Let ¢RL and ¢VL be, respectively, the 
load impedance and voltage referred to the primary 
side. The circuit becomes that of Figure 10.36a. At a 
low enough frequency, the reactance ωk2L1 in paral-
lel with ¢RL becomes small compared to ¢RL so that 
¢( ) @R j k L j k LLúú w w2

1
2

1. The circuit reduces to that of 
Figure 10.36b, where,
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According to Equation 10.58, ¢VL progressively 
decreases with frequency. At dc (ω = 0) the transformer 
is inoperative, since the core flux is not time varying and 
no voltage is induced in the secondary winding. Note 
that the preceding argument still applies if at low fre-
quencies jω(1 – )k2L1 is much smaller than Rsrc.

At a high enough frequency, the shunting effect of 
the impedance jωk2L1 on ¢RL becomes negligible, and 
the circuit reduces to that of Figure 10.36c. It follows 
that
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The load voltage ¢VL progressively decreases as the 
 frequency increases. Note that the preceding argument 
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still applies if at high frequencies jω(1 – )k2L1 is much 
larger than Rsrc. It follows that

Concept: The performance of a nonideal transformer is lim-
ited at low frequencies by the reactance of the windings and at 
high frequencies by the leakage reactance.

It is seen from the preceding discussion that the low 
and high frequencies at which a transformer is no longer 
useful depends on the source and load impedances. But 
it remains generally true that transformers intended for 
low frequencies must have large inductances of wind-
ings, which requires a large number of turns and a large 
cross-sectional area of the core, for a given core perme-
ability (Equation 7.24). The transformer becomes large 
in size and more expensive. On the other hand, high-
frequency transformers, such as pulse transformers, can 
be of small size but must have a low leakage flux. They 
commonly have a toroidal core in order to reduce the 
leakage flux.

10.5.4  Core Losses

These are of two types: eddy-current losses and hys-
teresis losses. Eddy-current losses occur in any core 
made of electrically conducting material. We have so far 
neglected the effect of the time-varying magnetic flux on 
the core itself. This time-varying flux induces a voltage 
around any closed path in the core that encloses some 
or all of the core flux. If the core material is electrically 
nonconducting, the induced voltage does not cause 
the flow of current in the core, and there is no effect on 
transformer behavior. However, it is impractical to have 
transformer cores made of perfectly nonconducting 
material, which means that the time-varying flux in the 
core will result in current in the core.

The case of a core of electrically conducting mate-
rial is illustrated in Figure 10.37a, which shows a coil 
wound on such a core. A cross section of the core, shown 
enlarged, will have a time-varying core flux that is nor-
mal to the cross section. Any closed path around the flux 
lines in this cross section will have a voltage induced 
in it in accordance with Faraday’s law. Since the core is 
conducting, this voltage will produce a current in this 
closed path, known as an eddy current, similar to the 
eddies produced in a turbulent flow of water. There 
are innumerable closed paths in an innumerable num-
ber of cross sections around the core, with the resulting 
eddy currents merging into a definite pattern of current 
flow in the core that depends on the shape of both the 
core and its cross section as well as the frequency of the 
applied voltage.

The eddy currents have two undesirable effects: (1) as 
in any current flow through a conductor, power is dis-
sipated because of resistance, which results in heat-
ing, and (2) in accordance with Lenz’s law, the eddy 

currents produce a flux, indicated in Figure 10.37a as 
eddy- current flux, which opposes the inducing flux. 
The resulting flux in the core is the difference between 
the flux due to the winding in the absence of eddy cur-
rents and that due to the eddy currents. The second 
undesirable effect of eddy currents is therefore to reduce 
the flux in the core.

The eddy currents are reduced in one of two ways. 
In high-frequency transformers, such as small toroidal 
transformers, the core is made of ceramic-type materi-
als, known as ferrites, composed of oxides of iron and 
other metals such as nickel, zinc, and manganese. These 
have high resistivity, which, for a given voltage induced 
by flux in a loop in the core, practically eliminates eddy 
currents. At low frequencies, ferrite cores are imprac-
tical because of transformer size. Eddy currents are 
reduced in low-frequency transformers by assembling 
the core using thin laminations. These are insulated 
from one another and stacked together so that the flux 
is in a direction parallel to the plane of the laminations 
(Figure  10.37b). The induced currents are confined by 
the insulation to within each lamination. This effec-
tively reduces the cross-sectional area of the loop that 
encloses flux and which can give rise to current flow, 
as illustrated in the figure. The induced voltage and 
hence the eddy currents are thereby greatly reduced. 
Laminations are usually made of iron alloys such as 
silicon steel, in which the added silicon increases the 
resistivity. The insulation is usually in the form of a thin 
layer of varnish.

Iron, steel, nickel, cobalt, and their alloys are 
 ferromagnetic materials that have the desired charac-
teristic of high permeability. However, this permeability 
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(a) Induced eddy currents in a conducting core and (b) effect of 
 laminations on eddy currents.
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is not constant, so that the B─H relation is nonlinear and 
also exhibits another type of nonlinearity in the form of 
hysteresis. In general, hysteresis arises when an effect 
lags behind its cause, as can happen in mechanical 
systems due to friction. As a result of hysteresis, the 
state of a system depends on its previous history, that 
is, the manner in which this state is reached. To illus-
trate hysteresis, consider that H in an initially unmag-
netized ferromagnetic specimen is increased from zero. 
B increases along a curve such as OP in Figure 10.38 
that flattens out at large values of H. This flattening of 
the curve B─H curve at high values of H is described as 
magnetic saturation. If, at point P, H is reduced, B lags 
behind H. When H is reduced to zero at Q, B retains the 
value of the positive intercept on the B-axis. To reduce 
B to zero at R requires a negative H. Making H more 
negative still brings the operating point to S. If H is 
now increased back to Hm, B changes along the lower 
part of the curve, STUP. It is seen that at a particular 
value Hx, for example, B can take on different values 
corresponding to points 1, 2, or 3, or intermediate val-
ues, depending on how Hx is reached. The loop that is 
traced by a cyclic variation in H is a hysteresis loop. 
With H proportional to current and B proportional to 
voltage, the area enclosed by the hysteresis loop repre-
sents power dissipated in the core and not returned to 
the supply. The power dissipation also appears as heat 
in the core.

Hysteresis is put to good use in permanent magnets, 
where the residual magnetism of such a magnet is due 
to the intercept OQ on the vertical axis of the B─H hys-
teresis curve. The intercept OQ is referred to as the 
remanence, whereas the intercept OR is the coercivity.

Both eddy-current loss and hysteresis loss are a func-
tion of the magnitude of the core flux ϕc. The voltage 
across the branch jωk2L1 in Figure 10.33b can be con-
sidered proportional to ϕc. Core losses are sometimes 
accounted for by adding, in parallel with this branch, a 
resistance Rc whose value is such that the same power is 
dissipated in this resistance as in the core.

10.5.5  Construction of Small Inductors 
and Transformers

Small transformers at high frequencies commonly have 
toroidal ferrite cores, as illustrated in Figure 10.39a. 
Small inductors and transformers at power and audio 
frequencies have laminated cores that are usually rect-
angular in shape or of the shell type. Figure 10.39b is an 
outside view of a small, two-winding transformer hav-
ing a shell-type core. Figure 10.39c is a cutaway view of 
a shell-type transformer.

The windings are wound on formers of rectangular 
or preferably square cross section that are fitted around 
one or both sides of a rectangular core (Figure 10.37) 
or around the central limb of the shell-type core. The 
formers are commonly made from plastic or impreg-
nated cardboard. They are not shown in Figure 10.39 
for a clearer view of the windings. The shell-type core 
is compact and rugged and naturally conforms to the 
two-sided distribution of the magnetic field of the 
windings (Figure 10.3).

Both primary and secondary windings are wound 
using insulated wire and are usually mounted one on 
top of the other, with the lower-voltage winding closer to 
the core, to reduce the stress on the insulation, since the 
core is usually connected to ground. Having the primary 
and secondary windings on separate limbs of a rectan-
gular core (Figure 9.9) markedly reduces the coupling 
between them but reduces the capacitance between the 
two windings and practically eliminates the possibility 
of a direct short circuit between the two windings in the 
event of insulation breakdown. This type of construc-
tion is seldom used except for special applications, such 
as safety isolation transformers where it is essential to 
have the primary and secondary sides isolated even in 
the event of insulation breakdown. Alternatively, isola-
tion between primary and secondary windings could be 
achieved by having a grounded metallic screen between 
the two windings. The screen also prevents coupling 
between primary and secondary windings through the 
interwinding capacitance. This is illustrated diagram-
matically in Figure  10.40, where a grounded screen is 
interposed between the two windings. Each winding 
now has a capacitance to ground but not directly to the 
other winding.

Learning Checklist: What Should 
Be Learned from This Chapter

• According to the analogy between magnetic 
and electric circuits, magnetic flux is analo-
gous to electric current; mmf, which is equal 
to the ampere-turns in Amperes circuital law, 
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FIGURE 10.38
Hysteresis loss.
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is analogous to a driving voltage. Permeance 
and permeability are analogous to conductiv-
ity and conductance, respectively. The analog of 
Ohm’s law in the form v = i/G is mmf = flux/
permeance.

• Permeance depends only on the geometry and 
magnetic properties of the magnetic circuit and 
is independent of the coil current or the number 
of turns of the coil.

• For a coil wound on a magnetic core, the  following 
applies:

 1. The total permeance of the magnetic circuit 
is the sum of the permeance of the core and 
the leakage path, with the same mmf acting 
on both the core and the leakage path. The 
electric circuit analog is an emf acting on 
two conductances in parallel.

 2. If the core permeability is infinite, the 
core permeance and inductance are infi-
nite. Zero mmf is required to establish a 
finite flux in a core of infinite  permeability. 
The  zero mmf will not drive any flux in 
the leakage path that is in parallel with the 
core path.

 3. The permeances of the core and the leakage 
path are in parallel because the same mmf acts 
on both. The inductances of the core and the 
leakage path are in series because the same 
time-varying coil current induces   voltages 
due to the changing core flux and leakage 
flux that add together in the coil.

• The defining properties of an ideal transformer 
and their implications are as follows:

 1. No power losses, implies zero coil resistance 
and no eddy currents or hysteresis in the 
core.

 2. No electric stored energy, implies neglect-
ing the electric field between the turns of a 
transformer coil and between different coils 
of the transformer.

 3. Perfect coupling to the core, that is, zero 
leakage flux, implies, together with zero 
resistance of the coils, that the terminal 
voltage of any given coil is the same as the 
 voltage induced in the coil by the core flux.

 4. Infinite core permeability, implies zero mmf 
on the core, and no magnetic energy stored 
in the transformer.

FIGURE 10.40
Grounded metallic screens between transformer windings.

(a)
(b)

(c)

FIGURE 10.39
Construction of small transformers. (a) Transformer having a toroidal core, (b) transformer having a shell type core, shown in section (c).
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• The circuit implications of the properties of an 
ideal two-coil transformer are as follows:

 1. Transformer voltage equation: 
v
v

N
N

1

2

1

2
= ± , 

where the sign is positive if the assigned 
positive polarities of the voltages conform 
to the dot markings of the two coils and is 
negative otherwise. The voltage equation 
expresses the fundamental concept that 
the magnitude of the induced volts per 
turn is the same for all the coils of an ideal 
transformer

 2. Transformer current equation: 
i
i

N
N

1

2

2

1
= ± ,

where the sign is negative if the assigned 
positive directions of currents are such 
that both currents flow into, or out of, the 
dotted terminals and is positive otherwise. 
The current equation expresses the fun-
damental concept that the net mmf on the 
core is zero.

 3. At any instant of time, the input power and 
output power are equal.

 4. The inductances of the coils are infinite, but 
their ratio is finite, because it is independent 
of μc and is equal to the square of the turns 
ratio.

 5. Impedance can be reflected from one side 
of an ideal transformer to the other  by 
multiplying by the square of the ratio 
by which the voltage is multiplied. The 
reflected impedance is independent of the 
dot markings. Consequently, a short circuit 
(ZL = 0) is reflected as a short circuit, and 
an open circuit (ZL → ∞) is reflected as an 
open circuit.

• In the case of an ideal transformer having two 
windings that are not externally coupled, as 
through a bridge-connected or a series-con-
nected subcircuit, the circuits on either side of 
the transformer can be reflected to the other 
side. The procedure for reflecting a circuit from 
one side of an ideal transformer to the other side 
can be summarized as follows:

 1. In reflecting from the side of smaller number 
of turns to the side of larger number of turns, 
voltages are multiplied by the larger-than-
unity turns ratio, impedances are multiplied 
by the square of this turns ratio, currents are 
divided by this turns ratio, and admittances 
are divided by the square of this turns ratio. 
Thus, voltages and impedances become 
larger, whereas currents and admittances 

become smaller. The converse applies when 
reflecting from a side of larger number of 
turns to the side of smaller number of turns: 
voltages and impedances become smaller, 
whereas currents and admittances become 
larger.

 2. When the dot markings on the transformer 
windings are aligned horizontally, polarities 
or directions of source voltages and currents, 
required voltages or currents, and control-
ling voltages and currents are unchanged. 
When the dot markings are aligned diago-
nally, the polarities or directions of these 
voltages or currents are reversed.

 3. In reflecting a circuit from one side of the 
transformer to the other, the order of the cir-
cuit elements must be preserved.

• In an ideal autotransformer, a second wind-
ing is connected so that its voltage adds to, 
or  subtracts from, the voltage of the primary 
winding. The result is a smaller total num-
ber of turns, but a loss of electrical isolation 
between the circuits on the two sides of the 
transformer.

• The ideal autotransformer is analyzed in exactly 
the same way as a conventional two-winding 
transformer, based on the same magnitude of 
the induced volts per turn in each winding, 
and zero net mmf in the core, while taking into 
account the dot markings at the terminal of each 
winding.

• The finite inductance of the windings and the 
finite leakage flux in a nonideal transformer can 
be accounted for by adding appropriate series 
and shunt inductances to an ideal transformer 
of modified turns ratio. The performance of a 
nonideal transformer is limited at low frequen-
cies by the reactance of the windings and at 
high frequencies by the leakage reactance.

• There are two types of core losses in a nonideal 
transformer: eddy-current loss and hysteresis 
loss. Both of these losses result is power dis-
sipation in the core that results in heating of 
the core.

 1. Eddy-current loss arises because of the 
 currents induced in an electrically con-
ducting core, with resultant power dissipa-
tion and reduction of flux in the core. It is 
mitigated at low frequencies by laminating 
the core and at high frequencies by using 
a core of metallic oxides that have high 
resistivity.
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 2. Hysteresis is exhibited by ferromagnetic 
materials due to a lag of B behind H. As a 
result, a hysteresis loop is formed when H 
is varied in a cyclic manner. The area of the 
loop represents a power loss that results in 
heating of the core. Moreover, a given value 
of, say, H can be associated with a range of 
values of B, depending on how this value of 
H is reached.

Problem-Solving Tips

 1. In analyzing a circuit using an ideal transformer, 
assign one voltage variable on one side of the 
transformer, usually the side of smaller number 
of turns, and one current variable on the other 
side. The other voltage and current of the trans-
former are expressed in terms of the assigned 
variables and the turns ratio.

 2. The polarities and directions of the transformer 
voltages and currents are assigned in accor-
dance with the dot markings so as to avoid 
negative transformer voltages and currents on 
either side of the transformer.

 3. In reflecting from a side of smaller number of 
turns to the other side, voltages and imped-
ances become larger, whereas currents and 
admittances become smaller. The converse 
applies when reflecting from a side of larger 
number of turns to the other side: voltages and 
impedances become smaller, whereas currents 
and admittances become larger.

 4. Voltage and current ratios in an ideal trans-
former, including an autotransformer, having 
any number of windings can always be deter-
mined from (a) the equality of the magnitude of 
the induced volts per turn in all windings and 
(b) a net zero mmf acting on the core, taking into 
account in both cases the dot markings at the 
terminals of the winding.

Problems

Apply ISDEPIC and verify solutions by PSpice simulation 
whenever feasible.

Ideal Transformer

P10.1 Determine VO in Figure P10.1 using the induced volts 
per turn concept and taking into account the dot 
markings.

 Ans. −36 V.

P10.2 Determine IS in Figure P10.2, using the net mmf con-
cept and taking into account the dot markings.

 Ans. 3.6∠−45° A.

P10.3 Determine IO in Figure P10.3.

 Ans. −j10 A.

P10.4 Determine vO(t) in Figure P10.4.

 Ans. 5cos(400t – 53.1°) V.

P10.5 Determine VO and IS in Figure P10.5.

 
Ans. 10 108 4Ð- °. V,

 

1
2 10

18 4Ð- °. A.

P10.6 Determine vO(t) in Figure P10.6, assuming vSRC(t)  = 
50sinωt V and w = 105 rad/s.

 Ans. 19.71sin(ωt − 9.8°) V.

1000
turns

VO

+

_

200
turns

2000
turns

–

+
20 0° V ~

FIGURE P10.1 

1000
turns

200
turns

2000
turns

–

+
VSRC

2 –45° A
IS

ZL~

FIGURE P10.2 

2:1

IO

5 90° A ~ –j2 j4

FIGURE P10.3 

10
2:1

+

–

vO525cos400t V

0.1 H

–

+
~

FIGURE P10.4 



Ideal Transformers 289

P10.7 Determine IO in Figure P10.7.

 Ans. 9.33∠−193.2° A.

P10.8 Determine the impedance seen by the source in 
Figure P10.8.

 Ans. 2.5(3 – j) Ω.

P10.9 Determine VO in Figure P10.9.

 Ans. −14.4 + j19.2 V.

P10.10 Determine IO in Figure P10.10, given that vSRC(t)  = 
100sin(100πt) V.

 Ans. 1.96cos(100πt + 86.6°) A.

P10.11 Determine VO in Figure P10.11.

 Ans. 2.58∠180° V.

P10.12 Derive TEC looking into terminals ‘ab’ in Figure P10.12.

 Ans. VTh = Vab = 40∠0° V, ZTh = 50 Ω.

P10.13 Derive TEC looking into terminals ‘ab’ in Figure P10.13.

 Ans. VTh = Vab = −3∠0° V, ZTh = 32 Ω.
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P10.14 Determine in Figure P10.14 (a) VL if ISRC = 1∠0° A and 
(b) VO if ISRC is such that VL = 7∠0° V.

 Ans. (a) 2∠180° V; (b) 4∠0° V.

P10.15 Show that Z a Z a Zin L c= + ±( )2 2
1  in Figure P10.15, 

where the plus or minus sign is used depending on the 
relative dot markings of the two windings.

P10.16 Derive TEC looking into terminals ‘ab’ in Figure 
P10.16.

 
Ans. VTh  = Vab  = - +( )160

197
14 j V

 
in series with

 
20

197
183 -( )j W.

P10.17 Determine ZTh looking into terminals ‘ab’ in Figure 
P10.17.

 Ans. j4 Ω.

P10.18 Determine ZX in Figure P10.18 so that VO = 0.

 Ans. ZX = −jωLa.

P10.19 Determine the power dissipated in the 30 Ω resistor in 
Figure P10.19 given that vSRC(t) = 30cos(10t + 15°) V.

` Ans. 15 W.

P10.20 Determine VL in Figure P10.20.

 Ans. 2 V.

P10.21 Derive TEC looking into terminal ‘ab’ in Figure P10.21.

 Ans. VTh = Vab = 15∠0° V, ZTh = 10 Ω.
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P10.22 Derive TEC looking into terminal ‘ab’ in Figure 
P10.22.

 Ans. VTh = Vab = 6∠0° V, ZTh = −j5 Ω.

P10.23 Determine vO(t) in Figure P10.23, assuming 
v t tSRC ( ) = -2 2 10 10cos( )� V.

 Ans. 3cos(10t + 125°) V.

P10.24 Derive TEC between terminals ‘ab’ in Figure P10.24.

 Ans. VTh = Vab = −10 V, ZTh = 2.5 Ω.

P10.25 Derive TEC between terminals ‘ab’ in Figure P10.25.

 Ans. VTh = Vab = (36 + j12) V, ZTh = (2.4 + j0.8) Ω.

P10.26 Determine IX in Figure P10.26.

 Ans. 2 A.

P10.27 Determine iO(t) and i1(t) in Figure P10.27, given that 

v t tSRC ( ) = - °( )5 2 2 45cos V and iSRC(t) = 0.5sin2t A.

 Ans. iO(t) = 0.5sin2t A, i1(t) = −0.5sin2t A.

P10.28 Derive TEC looking into terminals ‘ab’ in Figure 
P10.28.

 Ans. VTh = Vab

 
= 2∠0° V, 7/6 Ω.

P10.29 Determine IS in Figure P10.29.

 Ans. 2∠0° A.

P10.30 Determine Zin in Figure P10.30.

 Ans. –j2 Ω.
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P10.31 Determine ISRC in Figure P10.31.

 Ans. 0.9(1 + j2) A.

P10.32 Determine ρ in Figure P10.32 so that the impedance 
seen by the independent source is purely reactive, and 
specify this reactance.

 Ans. ρ = −5, and X = 10 Ω.

P10.33 Determine V1 in Figure P10.33.

 Ans. 5(1 + j) V.

P10.34 Determine Zin looking into terminals ‘ab’ in Figure 
P10.34.

 Ans. 10.92∠−36.12° = 8.818 – j6.435 Ω.

P10.35 Determine I1, I2, Io, V1, and V2 in Figure P10.35.

 Ans. I1  =  1.851 – j0.584  A, I2  =  −1.481  +  j0.467  A, 
IO = 0.37 – j0.117 A. 

 V1 = 0.772 – j0.651 V, V2 = 3.86 – j3.25 V.
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P10.36 Determine the average power dissipated in the 2 Ω 
resistor in Figure P10.36.

 Ans. 1 W.

P10.37 Derive TEC looking into terminals ‘ab’ in Figure 
P10.37.

 Ans. VTh = Vab = 10(1 – j) V, ZTh = 100(1 – j) Ω.

P10.38 Determine iS(t) in Figure P10.38, assuming that 
vSRC(t) = 20cos1000t V.

 Ans. 2 1000cos t A.

P10.39 Determine VO in Figure P10.39.

 Ans. −400∠0° V.

P10.40 Determine Zin in Figure P10.40.

 Ans. 10 Ω.

P10.41 Derive TEC looking into terminal ‘ab’ in Figure P10.41.

 Ans. VTh = Vab = (−64 + j48) V,  Z jTh = -( )96
5

4 3 W.

P10.42 Derive TEC looking into terminal ‘ab’ in Figure 
P10.42.

 Ans. VTh  = Vab  (−26.1  +  j 9.65) V in series with 
(15.44 + j1.69) Ω.

P10.43 Determine IX in Figure P10.43.

 Ans. 7.5 A.
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P10.44 Determine ZTh looking into terminals ‘ab’ in Figure 
P10.44 assuming (a) the number of turns N1 = N2, (b) 
N1 ≠ N2, and (c) reversed dot markings, irrespective of 
the relation between N1 and N2. Note that in this case, 
that of a series ideal transformer, changing the dot 
markings gives a different ZTh when N1 = N2.

 Ans. (a) Z; (b) and (c) ∞.

Linear and Ideal Transformers

P10.45 Determine VTh = Vab. In Figure P10.45.

 Ans. 2(−1 + j) V.

P10.46 Derive TEC looking into terminals ‘ab’ in Figure 
P10.46, assuming vSRC(t) = 10cos(103t + 45°).

 Ans. VTh = Vab = 20∠45° V, ZTh = (20 + j40) Ω.

P10.47 Determine k in Figure P10.47 so that no current flows 
in ZX.

 Ans. 0.4.

P10.48 Determine X in Figure P10.48 so no current flows in the 
5 Ω resistor.

 Ans. 2.5 Ω.

P10.49 Determine Leq in Figure P10.49.

 Ans. 6 H.

P10.50 Determine Leq in Figure P10.50.

 Ans. 4 H.

P10.51 Derive TEC looking into terminals ‘ab’ in Figure 
P10.51, where VTh = Vab.

 Ans. VTh = Vab = 7∠−90° V, ZTh = j100 Ω.
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P10.52 Determine a in Figure P10.52 so that Yin = 0, assuming 
ω = 1 Mrad/s

 Ans. 2.

Probing Further

P10.53 Consider the definition of an ideal transformer. Argue 
that the voltage equation (Equation 10.23) is satisfied 
by assuming zero coil resistance, no coil currents, and 
infinite core permeability, even in the presence of a 

leakage path. Then argue that in the presence of cur-
rent in the coils, the equation is not satisfied unless it is 
assumed that the coupling is perfect, that is, there is no 
leakage path and hence no leakage flux.

P10.54 The circuit of Figure P10.54 is purely passive, no 
energy being generated. The circuit remains passive if 
R is reflected as a2R to the left side. However, if R is 
reflected as –a2R, argue that energy is delivered to RA, 
which violates conservation of energy.

P10.55 Referring to Example 10.5, replace Z2, by a current 
source I V2 2= /Z2 and Z3 by a current source I3 = V3/
Z3. Determine I1 by superposition, applying I2 and I3 
one at a time, then substituting for V2 and V3 in terms 
of V1 so as to obtain Equation 10.44.

P10.56 Show that by first reflecting the shunt reactance and 
then the series reactance in Figure 10.33b, the trans-
former equivalent circuit can be represented as in 
Figure P10.56.
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P10.57 Show that, after the leakage flux is added in Figure 
10.33a, Equation 10.49 can be satisfied by the circuit of 
Figure P10.57. In order to satisfy the relation V2 = jωMI1 
with the secondary open-circuited, the inductance 
ratio should be L1:k2L2, leading to an alternative form 
of the transformer equivalent circuit.

P10.58 In Figure P10.58a, three lumped capacitors are added in 
the high-frequency equivalent circuit of the transformer 
to account for the capacitances of the windings as well 
as the interwinding capacitance Ci. Show that Ci can be 
replaced by the capacitances shown in Figure P10.58b.
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Objective and Overview

This chapter examines the basic responses of RC and RL 
circuits to initial energy storage or to dc excitation.

The first part of the chapter is concerned with the 
 discharging of a capacitor or an inductor through a 
resistor and the charging of these energy storage ele-
ments when associated with a resistor and connected to 
a dc source. In discussing the circuit responses, duality 
is extensively illustrated and physical interpretations 
are strongly emphasized.

First-order circuits are later generalized to include 
more than one resistor and more than one capacitor 
or inductor as well as dependent sources. A general 
 procedure is formulated for analyzing first-order 
circuits in response to initial energy storage or to dc 
excitation without having to derive and solve the dif-
ferential equation. The chapter ends with an explana-
tion of the role of the transient component of circuit 
responses.

11.1  Capacitor Discharge

Consider a capacitor C connected to a battery of voltage 
VSRC and to a resistor RC through a changeover switch, 
as illustrated in Figure 11.1a. When the switch is in posi-
tion ‘a’, the capacitor is charged to the battery voltage 
VSRC and stores electric energy 1 2 2/( )CVSRC. Suppose that 
the switch is moved at t = 0 to position ‘b’ so that the 
capacitor and resistor in parallel are isolated from the 
battery (Figure 11.1b). In all switching operations, it is 
tacitly assumed that switching occurs instantaneously. 

If the switch is moved at t = 0, then t = 0− denotes the 
instant of time just before the switch is moved, whereas 
t = 0+ denotes the instant of time just after the switch is 
moved. These two instances of time are considered to 
be infinitesimally separated. It should be noted in this 
connection that if a function is continuous at t = 0, that 
is, it does not have a step, or discontinuity at t = 0, the 
value of the function is the same at t = 0, t = 0−, or t = 0+.

In Figure 11.1a, the voltage across the capacitor, just 
before the switch is moved, is v(0−) = VSRC. What is v(0+) 
just after the switch is moved? The answer is that it is 
still VSRC because of the following universal concept:

Concept: Energy in general, including stored energy, can-
not be changed instantaneously by any physically realizable 
means, as this would require infinite driving forces, that is, 
infinite voltages or currents in the case of energy storage 
 elements in electric circuits. Such infinite values are not 
 physically realizable.

Mathematically, this concept is embodied in the 
 derivative/integral form of the v–i relation of ideal 
energy storage circuit elements. Considering the deriv-
ative form of the v–i relation of a capacitor, i = Cdv/dt, 
an instantaneous change in v implies that dv/dt → ∞. 
This would require an infinite i, which is not physi-
cally realizable (but refer to Example 11.7 for more on 
this). Alternatively, it can be argued that dv = idt/C. As 
dt → 0 at the instant of switching, then as long as i 
remains finite, dv → 0, which means that the change in 
the capacitor charge, and hence v, is zero at the instant 
of switching. It follows that in Figure 11.1, v at t = 0+ 
is the same as t = 0−, although i starts to flow at t = 0+. 
It is like suddenly opening an outlet valve at the bot-
tom of a vessel containing some water. The outflow, 
analogous to i, in Figure 11.1b jumps instantly from 
zero to some finite value. However, at the instant of 
opening the outlet valve, water has not yet flowed out 
of the vessel so that the amount of water in the tank, 
analogous to the stored charge, does not change at this 
instant.

Similarly, for an inductor, di = vdt/L. As dt → 0 at the 
instant of switching, then as long as v remains finite, 
di → 0, which means that the change in i is zero at the 
instant of switching.

Although v(0+)  =  VSRC in Figure 11.1b, v does not 
remain constant at this value for t ≥ 0+. This is because 
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(a) Capacitor is charged when the switch is in position ‘a’ and begins 
to discharge when the switch is moved to position ‘b’ at t = 0 and (b) 
capacitor discharge for t ≥ 0+.



298 Circuit Analysis with PSpice: A Simplified Approach

RC is now connected across C, resulting in a current 
i(0+)  =  VSRC/RC. This current carries positive charge 
from the upper plate of the capacitor through the resis-
tor to the lower plate, thereby neutralizing some of the 
negative charge on this plate. The capacitor charge, and 
hence voltage, therefore decreases with time, as long as 
i continues to flow. As t → ∞, the charge on the capaci-
tor is reduced to zero, that is, the capacitor is fully dis-
charged, so that v and i become zero. It is required to 
determine how v and i vary with time for t ≥ 0+.

If we choose i as the variable for analyzing the circuit 
in Figure 11.1b, then we are in effect considering the cir-
cuit to be a series circuit, in which KCL is automatically 
satisfied and KVL has to be expressed in terms of the v–i 
relations of C and RC. On the other hand, if we chose v as 
the variable for analyzing the circuit, we are in effect con-
sidering the circuit to be a parallel circuit, in which KVL 
is automatically satisfied and KCL has to be expressed in 
terms of the v–i relations of C and RC. Choosing the lat-
ter case, we have, for the resistor, i = v/RC, whereas for 
the capacitor, i = −Cdv/dt, where the minus sign applies 
because i through the capacitor is in the direction of a volt-
age rise v across the capacitor (Equation 7.7). KCL gives

 

v
R

C
dv
dt

v R C
dv
dtC

C= - + =or 0
 

(11.1)

Dividing by RCC and rearranging,

 

dv
dt R C

v
dv
dt

v
t

C C
+ = + = ³ +1

0 0 0or
t

,
 

(11.2)

where τC = RCC is the time constant.
Mathematically, the responses of lumped-parameter, 

linear time-invariant (LTI) circuits are governed by lin-
ear, ordinary, differential equations with constant coef-
ficients, whose order depends on the number of distinct 
energy storage elements in the circuit, as will be clarified 
later. Equation 11.2 is an example of such a differential 
equation of the first order, since the highest order of 
the derivative of v is the first derivative. For the sake of 
brevity, we will henceforth refer only to the order of cir-
cuit differential equations, without the other attributes. 
Circuits having a single energy storage element are 
referred to as first order because their responses obey 
first-order differential equations.

The variation of v with time is given by the solution 
of Equation 11.2. Although the solution can be readily 
obtained by straightforward integration after separation 
of variables (Exercise 11.1), let us digress a little and con-
sider a more general approach that will be first applied 
to the first-order differential equation

 
dy
dt

y
t+ = ³ +

t
0 0,

 
(11.3)

where y is a variable that can be a current or a voltage. 
A differential equation with the variable and its deriva-
tives on the LHS and zero on the RHS, as in Equation 11.3, 
is referred to as the homogeneous differential equation. 
The general solution of a homogeneous, linear, ordinary, 
differential equation of any order, but having constant 
coefficients, is the sum of exponentials of the form Aest, 
where A and s are constants that depend on the circuit 
and on the initial conditions, and where the number of 
exponential terms in the sum is equal to the order of the 
differential equation. Since Equation 11.3 is of the first 
order, its general solution is y(t) = Aest. Substituting in 
Equation 11.3 and collecting terms,

 
Ae sst +æ

è
ç

ö
ø
÷ =

1
0t  

(11.4)

To satisfy Equation 11.4, either A = 0 or the terms in 
brackets must add to zero. If A = 0, then y = 0, and the 
response is zero. This is a trivial solution that contradicts 
the assumption of initial energy storage in the circuit. It 
follows that in order to satisfy the differential equation,

 
s+ =1

0t  
(11.5)

This equation in s is the characteristic equation of 
the differential equation. It gives the value of s as −1/τ, 
which shows that s is a constant that depends only on 
the circuit parameters, which are R and C in the case of 
the RC circuit of Figure 11.1. The general solution is then

 y t Ae tt( ) = ³- +/ ,t 0  (11.6)

A is an arbitrary constant that corresponds to the 
constant of integration, since, formally, the solution of 
a first-order differential equation involves a single inte-
gration. The value of A can be determined from initial 
conditions. Substituting t  =  0+ in Equation 11.6 gives 
y(0+) = A. This initial value may also be denoted as y0. We 
conclude, therefore, that the solution to Equation  11.3 
with y = y0 at t = 0+ is

 y t y e tt( ) = ³- +
0 0/ ,t  (11.7)

Equation 11.7 is a decaying exponential function. It 
is plotted in Figure 11.2 in normalized form, where the 
horizontal axis represents x =  t/τ and the vertical axis 
represents e y yx- = / 0. Note that e x-  is continuous at x = 0 
so that its value is unity at t = 0− or t = 0+. At x = 1 or t = τ, 
the response decreases to 1/e or approximately 36.8% of 
its initial value. Another interpretation of τ is based on 
the magnitude of the slope at x = 0. Thus,
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In other words, the magnitude of the slope of the tan-
gent to e x-  at x = 0 is unity. Since the value of e y yx- = =/ 0 1 
at x  =  0, the tangent intersects the horizontal axis at 
x = 1 or t = τ. The interpretation is that if the response 
decreases linearly at the initial, maximum rate, instead 
of exponentially, the response is reduced to zero at t = τ.

Note that if a variable decays exponentially with a 
time constant τ, as in the case of y(t) in Equation 11.7, 
then y(t + τ) = y(t)/e, which means that for every time 
interval τ, y(t) is reduced at the end of the interval to 1/e 
of its value at the beginning of the interval. After five 
time constants, the response decays to 1 0 00675/ .e =  or 
0.67% of its initial value. This is close enough to zero for 
most practical purposes.

The time constant is an important parameter of a 
first-order response in that it is indicative of the speed 

of response of the circuit. The larger the time constant, 
the longer it would take the response to reach a given 
fraction of its initial value; conversely, the smaller the 
time constant, the faster is this fraction reached. This is 
illustrated in Figure 11.3, which shows a simulation of 
the three exponentials corresponding to time  constants 
of 1, 0.5, and 0.25 s. Note that in each case, the tangent to 
the curve at t = 0 intersects the time axis at t = τ.

Concept: The time constant of a first-order circuit is a 
measure of its speed of response. The larger the time con-
stant, the slower or more ‘sluggish’ the response is and 
conversely.

Comparing Equations 11.2 and 11.3, the variation of v 
with time is obtained from Equation 11.7 by replacing y 
with v, y0 with V0, and τ with τC = RC, which gives

 v t V e tt C( ) = ³- +
0 0/t

 (11.9)

and

 
i t

v
R

I e t
C

t C( ) = = ³- +
0 0/ ,t

 
(11.10)

where
V0 = v(0+) = VSRC

I0 = V0/RC

Both v and i are decaying exponentials as in Figure 11.2, 
since they are related by Ohm’s law for RC. As t → ∞, 
v and i go to zero. The charge carried by the current com-
pletely discharges the capacitor (Primal Exercise  11.2), 
and the energy initially stored in the capacitor is dissi-
pated in the resistor (Problem P11.57).
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FIGURE 11.2
Decaying exponential response.
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It may be wondered why v and i decay exponentially 
with time rather than linearly. The answer lies in the rate 
at which v decreases. A linear decrease implies that v 
decreases at a constant rate, irrespective of the value of v 
at any given time. In fact, however, v does not decrease 
at a constant rate. From the v–i relation for the capacitor, 
the rate of decrease of v, which is −dv/dt, is

 
- =dv

dt
i
C  

(11.11)

That is, the decrease in v is proportional to i, because 
with the assigned positive directions of v and i as in 
Figure 11.1b, the decrease in v is due to the discharg-
ing of the capacitor by i. But with RC connected across 
the capacitor, v and i are related by Ohm’s law, v = RCi. 
Substituting in Equation 11.11,

 
- =dv

dt
v

R CC  
(11.12)

As v decreases, therefore, the rate of decrease of v also 
decreases. In other words, v decreases at a progressively 
reduced rate as the capacitor discharges. Mathematically, 
when the rate of decrease of a variable at any instant t is 
proportional to the value of the variable at that instant, 
the variable decays exponentially.

The system response that arises solely from the ini-
tial energy storage, with no other inputs, is the natural 
response of the system.

Exercise 11.1

Rearrange Equation 11.3 in the form of dy/y = −(1/τ)dt. 
Integrate both sides of this equation, including a con-
stant of integration. Express the equation in exponen-
tial form and show that it reduces to Equation 11.6.

Primal Exercise 11.2

Integrate Equation 11.10 to show that the charge car-
ried by the current is equal to that initially stored in the 
capacitor.

Primal Exercise 11.3

A 0.5 F capacitor is initially charged to 5 V and is paral-
leled at t = 0 with a 1 Ω resistor. Derive the expression 
for the voltage across the capacitor as a function of time 
for t ≥ 0+.
Ans. 5 2e tt- V is in s, .

Primal Exercise 11.4

A 1 μF capacitor is initially charged to 1 V and discon-
nected from the charging source at t = 0. If the capacitor 
voltage drops to 0.9 V after 100 hours (h), determine (a) 
the time constant and (b) the resistance Rp that is effec-
tively in parallel with the capacitor. This resistance is 
that of the dielectric between the plates of the capacitor.
Ans. (a) 949.1 h, (b) 3.42 × 1012 Ω.

Example 11.1: Capacitor Discharge

A 5 mF capacitor charged to 3 V is paralleled at t = 0 
with a 2 Ω resistor. Another 2 Ω resistor is connected 
in parallel with the combination at t = 5 ms (Figure 11.4). 
It is required to determine v for t ≥ 0+.

Solution:

0+  ≤  t  ≤  5  ms: from Equation 11.9, v t V e t C( ) = =-
0

1/t
 

3e−t/10 V, where tC1 ms= ´ ´ º-R C =C 2 5 10 103 ; t in 
the exponent is in ms because τ is in ms. v decays 
exponentially from 3  V toward zero with a time 
constant of 10 ms. At t = 5 ms, v e= =-3 1 820 5. . V.

t ≥ 5 ms: the resistance in parallel with C is 2∥2 = 1 Ω 
and tC2 1 5 10 53= ´ ´ º- ms. Applying Equation 11.9, 
v t e t( ) = - -( )1 82 5 5. / V, where at t = 5 ms, the  exponent 
is zero and v = 1.82 V.

Simulation: The circuit is entered as in Figure 11.5. The 
capacitor having marked terminals is entered from the 
ANALOG_P library and oriented so that the voltage of 
terminal 1 is positive with respect to ground. The initial 
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FIGURE 11.4
Figure for Example 11.1.
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FIGURE 11.5
Figure for Example 11.1.
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condition of 3 V is entered in the Property Editor spread-
sheet. A normally open switch is set to close at t = 5 ms. 
In the Simulation Settings, ‘Analysis type’ is ‘Time 
Domain (Transient),’ ‘Run to time’ is 15m, ‘Start Saving 
Data After’ is 0, and ‘Maximum Step size’ is 1u. After 
the simulation is run, the plot shown in Figure 11.6 is 
displayed and consists of two exponentials: the first 
decaying from v = 5 V at t = 0 to v = 1.82 V at t = 5 ms, 
with a time constant of 10 ms, and the second decaying 
from v = 1.82 V at t = 5 ms toward zero, with a time con-
stant of 5 ms. Note that the tangent at the start of the first 
exponential intersects the time axis at tC1 10= ms and the 
tangent to the second exponential at t0 = 5 ms intersects 
the time axis at  t C0 2 5 5 10+ = + =t ms, which is equal to  
tC1 in this case.

Problem-Solving Tip

• In the exponent t/τ, t naturally has the same units 
as τ. If τ is in seconds, then t is in seconds, and if τ 
is in ms, then t is in ms. If t is in seconds and is to 
be expressed in ms, while keeping the same value 
of the exponent, then the new t in ms should be 
multiplied by s/ms or 10−3. Another way of look-
ing at this is that t in ms is a larger number than t 
in s, so t in ms in the exponent must be multiplied 
by 10−3 to maintain the same numerical value of 
the exponent as when t is in s.

11.2  Capacitor Charging

Consider next the case of an initially uncharged capaci-
tor connected through a resistor and a normally open 
switch to a battery of voltage VSRC (Figure 11.7a). The 
switch is closed at t = 0. At t = 0−, the capacitor voltage 
is zero, by assumption, and no energy is stored in the 
capacitor. At t = 0+, the stored energy and hence the volt-
age remain zero, because of the previously mentioned 

fundamental concept that the stored energy cannot be 
changed instantaneously by any physically realizable 
means. Terminal ‘b’ of the resistor is therefore at 0  V, 
with respect to ground at t  =  0+, whereas terminal ‘a’ 
is connected to the battery and is at a voltage VSRC with 
respect to ground. The voltage across RC is VSRC, causing 
a current VSRC/RC to flow through the resistor and the 
capacitor at t  =  0+. Note that the uncharged capacitor 
acts as a short circuit at the instant of switching, since the 
voltage across it is zero at this instant, while the capaci-
tor current is VSRC/RC.

The flow of current through the resistor charges the 
capacitor, increasing vC, the voltage across the capacitor 
(Figure 11.7b). However, as vC increases, the voltage across 
the resistor decreases, because vC + vR = VSRC is constant 
so that the current i decreases. Eventually, the capacitor 
charges to VSRC, and i drops to zero. The capacitor now 
acts as an open circuit in the steady state. It is required to 
determine how vC and i vary with time for t ≥ 0+.

Since the circuit is a series circuit, KCL is automati-
cally satisfied. At any time t, KVL in Figure 11.7b gives 
vC + vR = VSRC. Substituting for vC in terms of the integral 
form of the v–i relation for the capacitor and for vR in 
terms of Om’s law,

 
1

0
C

idt R i V tC SRCò + = ³ +,
 

(11.13)

Note that the v–i relation for the capacitor is written 
with a positive sign since i is in the direction of a voltage 
drop vC. If both sides of Equation 11.13 are differentiated 
with respect to time, the RHS becomes zero, since VSRC 
is a constant. Dividing the LHS by R and substituting 
τC = RCC, Equation 11.13 becomes

 

di
dt

i
t

C
+ = ³ +

t
0 0,

 
(11.14)

Equation 11.14 is of the same form as Equation 11.3. Its 
solution is given by Equation 11.7 by replacing y with i, 
y0 with I0 = VSRC/RC, and τ with τC, which gives

 i t I e tt C( ) = ³- +
0 0/ ,t

 (11.15)
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i therefore decays exponentially, as in Figure 11.2, 
from an initial value of I0 = VSRC/RC at t = 0+ to zero as 
t → ∞, as the capacitor becomes fully charged.

The time variation of vC is obtained from the v–i rela-
tion of the capacitor as

 
v t

C
idt tC

t

( ) = + ³ +

+ò1
0 0

0
,

 
(11.16)

where vC  =  0 at the lower limit of integration, t  =  0+. 
Substituting for i from Equation 11.15 and integrating,

 
v t

V
e dt V eC
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t
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t tt
C C( ) = = -éë ùû
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t t/ /

00  

or

 v t V e V e tC SRC
t

CF
tC C( ) = -( ) = -( ) ³- - +1 1 0/ / ,t t

 (11.17)

where VCF  =  VSRC  =  vC(∞) is the final value of vC and 
vC(0+)  =  0. Equation 11.17 is plotted in Figure 11.8 in 
normalized form as vC/VCF vs. t/τ. The response is 
a “saturating” exponential that starts from zero and 
approaches unity as t → ∞. At t = τ, the response is (1 – 
1/e) or approximately 63.2% of its final value. Another 
interpretation of τ is that if the response increases lin-
early at its maximum initial value, it will reach the final 
value at t = τ. This can be demonstrated by differentiat-
ing Equation 11.17, which gives

 

d v V

d t
e tCF t/

/
./( )

( )
= = =- +

t
t 1 0at

 
(11.18)

This means that v/VCF = 1 at t/τ = 1 or v = VCF at t = τ.

The exponential variation of vC again follows from 
the argument that as vC increases, its rate of increase is 
reduced as a linear function of vC itself. Thus, the rate of 
increase of vC is dvC/dt = i/C. But i = (VSRC – vC)/RC so 
that as vC increases, i decreases and the rate of increase 
of vC also decreases as a linear function of vC.

Note that as t → ∞, the energy dissipated in the resis-
tor is equal to that stored in the capacitor (Problem 
P11.58).

11.2.1  Charging with Initial Energy Storage

Suppose the capacitor in Figure 11.7 is initially charged 
to a voltage V0 < VSRC. The initial value of the current 
is (VSRC – V0)/RC instead of VSRC/RC for an initially 
uncharged capacitor. Equation 11.15 becomes
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(11.19)

It is seen from this equation that i(0+) = I0 = (VSRC – V0)/RC 
and i(∞) → 0, as required. Equation 11.16 for vC becomes
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Thus, vC(0+) = V0 and vC(∞) = VCF, as required.
It is instructive to derive Equations 11.19 and 11.20 

from superposition, since the circuit is LTI. According 
to the principle of superposition, the total response 
is the algebraic sum of the response to the excitation 
applied to an uncharged capacitor and the response 
due to a charged capacitor with the excitation set to 
zero. Considering i first, Equation 11.15 applies to the 
response when the capacitor is charged from an initially 
uncharged state. When the capacitor is initially charged 
and the battery is replaced by a short circuit, the capaci-
tor discharges, as in Figure 11.1b. The discharge current 
is given by Equation 11.10, but the direction of the dis-
charge current is opposite to that of i in Figure 11.7b. 
Hence, the current in Equation 11.10, with I0 = V0/RC, 
should be subtracted from that given by Equation 11.15. 
This gives
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FIGURE 11.8
Saturating exponential response.
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which is the same as Equation 11.19. Similarly, vC in this 
case is the sum of vC given by Equation 11.17 for the 
charging of a capacitor from an initially uncharged state 
and v given by Equation 11.9 for capacitor discharge. 
Thus,

 

v t V e V e V V V e

t

C SRC
t t

SRC SRC
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1
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/ / / ,t t t

 

which is the same as Equation 11.20. This is a funda-
mental and very useful property of LTI circuits that is 
expressed by the following concept:

Concept: The responses in an LTI circuit, with initial energy 
storage, to an applied excitation can be derived as the alge-
braic sum of two responses: (i) the response to the applied exci-
tation acting alone, with zero initial energy storage, and (ii) 
the response to the initial energy storage acting alone, with 
zero applied excitation.

Capacitor charging through a current source is dis-
cussed in Example 11.2.

Primal Exercise 11.5

Assume that in Figure 11.7 C = 1 μF. Determine RC such 
that vC(10 μs) = VSRC/2.
Ans. 14.4 Ω.

Primal Exercise 11.6

A 1 μF capacitor that is initially charged to 6 V is con-
nected at t = 0 to a 12 V battery through a 10 kΩ resistor, 
as in Figure 11.7. Determine (a) the time constant and 
(b) the expressions for capacitor current and voltage 
for t ≥ 0+.
Ans. (a) 10 ms; (b) i t e t( ) = -0 6 0 1. . mA, v t eC

t( ) = - -12 6 0 1. V, 
t is in ms.

Primal Exercise 11.7

Repeat Primal Exercise 11.6 assuming the initial voltage 
on the capacitor is 18 V.
Ans. (a) 10 ms; (b) i t e t( ) = - -0 6 0 1. . mA, v t eC

t( ) = + -12 6 0 1. V, 
where t is in ms.

Example 11.2: Capacitor Charging by Current Source

A dc current source ISRC is applied at t = 0 to an uncharged 
capacitor C in parallel with a resistor RC (Figure 11.9a). It 
is required to determine how v across the parallel com-
bination, iR and iC, vary with time for t ≥ 0+ (Figure 11.9b).

Solution:

At t = 0−, the stored energy in C is zero, since the voltage 
across C is zero, because of the closed switch. At t = 0+, 
this energy and hence v remain zero. v = 0 means iR = 0 
so that all of ISRC initially flows in C. C acts as a short 
circuit at this instant since the voltage across it is zero, 
while the current through it is ISRC. C begins to charge, 
increasing v. As v increases, iR increases in accordance 
with Ohm’s law. This reduces iC because iC + iR = ISRC is 
constant. Eventually, C charges fully, iC drops to zero, 
and all of ISRC flows through RC. C acts as an open circuit, 
which means that the final value of v is VCF = RCISRC.

To analyze the circuit, we note that KVL is automati-
cally satisfied in Figure 11.9b, because of the parallel con-
nection. KCL gives iC + iR = ISRC. Substituting iC = Cdv/dt 
and iR = v/RC,

 
C

dv
dt

v
R

I t
C

SRC+ = ³ +, 0
 

(11.21)

Dividing by C and substituting τC = RCC,

 

dv
dt

v I
C

t
C

SRC+ = ³ +

t
, 0

 
(11.22)

Equation 11.22 differs in form from Equation 11.14 in 
that the RHS is not zero. In other words, Equation 11.22 is 
a nonhomogeneous differential equation. The solution 

Ct = 0 RC C

t   0+

iC iR

RC

+

–

vISRC ISRC

(a) (b)

FIGURE 11.9
Figure for Example 11.2.
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to this equation is discussed in detail in Section 11.5, 
where it is argued that the solution is the sum of two 
components: (1) v that is the solution to the homoge-
neous differential equation and (2) any v that satisfies 
Equation 11.22. In particular, as t → ∞, steady conditions 
prevail so that dv/dt = 0 and VCF = (τC/C)ISRC = RCISRC, as 
argued previously. The first component of the solution 
is given by Equation 11.6, with an arbitrary constant A. 
It follows that the complete solution is

 v t Ae R I tt
C SRC

C( ) = + ³- +/ ,t 0  (11.23)

A is determined from the initial condition that v(0+) = 0, 
which gives A = −RISRC. The complete solution is then

 v t R I e V e tC SRC
t

CF
tC C( ) = -( ) = -( ) ³- - +1 1 0/ / ,t t  (11.24)

This is a saturating exponential of zero initial value 
and a final value of RCISRC, as required.

How will v change with time if C is charged to a voltage 
V0 at t = 0− in Figure 11.9b? At t = 0−, the energy stored in 
the capacitor is 1 2 0

2/( )CV . At t = 0+, this energy, and hence 
V0, remains the same, since the stored energy cannot be 
changed instantaneously by any physically realizable 
means. At this instant, iR = V0/RC so that iC = ISRC – V0/RC. 
As t → ∞, C charges fully, iC = 0, ISRC flows though RC, 
and the final voltage is RCISRC, irrespective of V0. The 
analytical solution is obtained from the general solution 
(Equation 11.23) but substituting the initial condition 
that v = V0 at t = 0. This gives A = V0 – RCISRC so that
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(11.25)

where VCF = RCISRC. The resistor current is 
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where IR0  =  iR(0+)  =  V0/RC and IRF  =  iR(∞)  =  ISRC. The 
capacitor current is
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(11.27)

where
IC0 = iC (0+) = ISRC – V0/RC

iC(∞) = 0

The current values at the two limits are in agreement with 
those argued previously. Note that iC + iR = ISRC for all t.

Equations 11.25 through 11.27 can be derived from 
superposition. Thus, with the excitation applied alone, 
v is given by Equation 11.24. When the initial energy 
storage is applied alone, with ISRC in Figure 11.9b set to 
zero, that is, the ideal source replaced by an open circuit, 
v is given by Equation 11.9. Adding the two responses 
gives Equation 11.25, bearing in mind that VCF = RCISRC. 
Similar considerations apply to iR and iC (Exercise 11.9).

If C = 5 mF, RC = 2 Ω, ISRC = 5 A, and V0 = 4 V, then 
RCC = 10 ms, VCF = 10 V, IR0 = 2 A, and

 v t e tt( ) = - ³- +10 6 010/ ,V ms (11.28)

 i t e tR
t( ) = - ³- +5 3 010/ ,A ms (11.29)

and

 i t e tR
t( ) = ³- +3 010/ ,A ms (11.30)

Simulation: The circuit is entered as in Figure 11.10. 
A  5  A, IDC source is applied without a switch, since 
PSpice considers a dc source applied at t  =  0, at the 
beginning of the simulation, as if the dc source is applied 
through a switch at t = 0.

In the Simulation Settings, ‘Analysis type’ is ‘Time 
Domain (Transient),’ ‘Run to time’ is 30m, ‘Start Saving 
Data After’ is 0, and ‘Maximum Step size’ is 1u. After 
the simulation is run, the plots shown in Figure 11.11 are 
displayed, which shows the time variation of v, iR, and iC 
in accordance with Equations 11.28 through 11.30. Note 
that in the three plots, a tangent at t = 0 intersects the 
asymptote of the plot at t = τC.

Problem-Solving Tip

• Never apply initial conditions except in the com-
plete solution, as in Equation 11.23.

Exercise 11.8

Transform the current source ISRC in parallel with RC to a 
voltage source RCISRC = VCF in series with RC. Verify that 
v and iC are given by the same expressions.

5Adc 2

0

5m

IC = 4

1

2

V
I I+

–

FIGURE 11.10
Figure for Example 11.2.
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Exercise 11.9

Derive Equations 11.26 and 11.27 for iR and iC using 
superposition.

Primal Exercise 11.10

The switch is moved from position ‘a’ to position ‘b’ in 
Figure 11.12 at t = 0, after being in position ‘a’ for a long 
time. The switch is moved back to position ‘a’ after 1 ms. 
Determine vC at t = 2 ms.

Ans. 1 1 1 2+ -- -e e / V.

11.3  Inductor Discharge

In the circuit of Figure 11.13a, a dc current source is con-
nected to RL and L through a normally closed switch that is 
opened at t = 0. The switch is assumed to have been closed 
for a long time so that at t = 0−, steady conditions prevail. 
This means that the inductor acts as a short circuit so that 
the current ISRC flows through the inductor, with zero 

voltage across the paralleled circuit elements. RD ensures 
that after the switch is opened, the ideal current source is 
not left open-circuited, as this would result in a theoreti-
cally infinite voltage across the source (Section 3.6).

At t  =  0−, the current in the inductor is ISRC, as in 
Figure 11.13a, and the energy stored in the inductor is 
1 2 2/( )LISRC. At t  =  0+, the inductor current remains ISRC 

because the stored energy cannot be changed instanta-
neously by any physically realizable means. The circuit 
reduces to that of Figure 11.13b for t ≥ 0+, with the posi-
tive directions of i and v assigned as shown and with i 
having an initial value I0 = ISRC at t = 0+. It is required to 
determine how i and v vary with time for t ≥ 0+.

That i decreases from its initial value of ISRC is evident 
from energy considerations. i flowing through RL dis-
sipates energy, which can only come from the energy 
stored in the inductor. As energy continues to be dissi-
pated in RL, i decreases until all the initially stored energy 
is dissipated so that i and v eventually become zero.

Choosing i as the variable for analysis is tantamount to 
considering the circuit of Figure 11.13b as a series circuit, 
so KCL is automatically satisfied. In terms of i, the voltage 
drop across the resistor is RLi in the direction of i, whereas 

Time
0s 10ms

iR

iC

20ms 30ms
0

5

10

V
or
A

v

FIGURE 11.11
Figure for Example 11.2.
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FIGURE 11.13
(a) Inductor is charged when the switch is opened at t = 0 and 
(b) inductor discharge for t ≥ 0+.
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b

FIGURE 11.12
Figure for Primal Exercise 11.10.
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the voltage drop across the inductor is Ldi/dt also in the 
direction of i. From KVL, the sum of these voltage drops 
is zero, that is, RLi + Ldi/dt = 0. Dividing by L,

 

di
dt

R
L

i
di
dt

i
tL

L
+ = + = ³ +0 0 0or

t
,

 
(11.31)

where τL = L/RL is the time constant and the initial con-
ditions are i(0+) =  I0 =  ISRC and v = RLISRC at t = 0+. Note 
that Equation 11.31 is the dual relation of Equation 11.2. 
It can be derived from Equation 11.2 by replacing v with i 
and τC = RCC with τL = L/RL, where L is the dual of C and 
GL = 1/RL is the dual of RC. The series circuit of Figure 11.13b 
is the dual of the parallel circuit of Figure 11.1b.

From duality or from the general solution (Equation 11.7), 
the solution to Equation 11.31 is

 i t I e tt L( ) = ³- +
0 0/ ,t

 (11.32)

and

 v t R i V e tL
t L( ) = = ³- +

0 0/ ,t
 (11.33)

where
i(0+) = I0 = ISRC

v(0+) = V0 = RLISRC

i(∞)  =  v(∞)  =  0, as the energy initially stored in the 
inductor is dissipated in the resistor (Problem P11.57). 
Both the current and the voltage decay exponentially.

It is instructive to interpret the decay of i and v in 
terms of flux linkage. Suppose that iSRC in Figure 11.14a 
increases, during t ≤ 0−, while the switch is closed, from 
zero to a steady value I0  =  ISRC in some manner that 
need not be specified. The induced voltage v′ opposes 
the buildup of current through the inductor by being 

a voltage drop in the direction of current through the 
inductor (Figure 11.14a). Hence, for t  ≤  0−, v′ varies 
with time in some arbitrary manner, as illustrated in 
Figure 11.14b. λ in the inductor is equal to the area under 
the v′ vs. t graph. Eventually at t = 0−, the circuit is in a 
steady state, the current in the inductor is I0, v′ = 0, and 
the flux linkage λ0 = LISRC is the area under the graph 
of v vs. t for t ≤ 0−.

At t = 0+, v = RLI0. Since the polarity of v across the 
inductor is now opposite to that of v′ during the estab-
lishment of I0, the time integral of v, t ≥ 0+, is a flux 
linkage òvdt that subtracts from λ0. At any time t, λ is 
(Figure 11.14c).

l l t tt vdt LI R I e dt LI e tL

t
t t

t
L L( ) = - = - = ³

+ +ò ò - - +
0 0 0

0
0

0
0/ / ,

 
(11.34)

At t = 0+, λ = λ0 = LI0. As t → ∞, λ = 0. Dividing λ(t) 
in Equation 11.34 by L gives i(t) in Equation 11.32. Note 
that λ is the dual of q, the charge on the capacitor in 
Figure 11.1b.

The rate of decrease of i is

 
- = - =di

dt
v
L

R i
L
L

 
(11.35)

Since the rate of decrease of i is proportional to i, the 
decay of i is exponential. v, being proportional to i, will 
also decay exponentially.

It must not be construed, because the initial current 
I0, due to flow of electric charges, eventually decays 
to zero that charge is not being conserved. Recall that 
a current source excites a circuit by imparting kinetic 
energy to electric charges, and that current is the rate 
of flow of electric charge. Hence, as the inductor dis-
charges, the charges loose kinetic energy, without any 
loss of charge.

Primal Exercise 11.11

A 0.5 H inductor having an initial current of 5 A is paral-
leled at t = 0 with a 2 Ω resistor. Derive the expression 
for the inductor current as a function of time for t ≥ 0+.

Ans. 5 4e tt- A is in s, .

Example 11.3: Inductor Discharge

A 5 mH inductor having an initial current of 3 A is con-
nected at t = 0 in series with a 0.5 Ω resistor and a closed 
switch. Another 0.5 Ω resistor is added in series with the 
combination at t  =  5  ms (Figure 11.15) by opening the 
switch. It is requited to determine the inductor current 
for t ≥ 0+.

t = 0
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Time
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(b)
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ii

(c)

RD iSRC

0

0
v

v

FIGURE 11.14
(a) Charging of the inductor while switch is closed, (b) arbitrarily 
assumed variation of voltage across the inductor while charging, and 
(c) decay of flux linkage of the inductor for t ≥ 0+.
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Solution:

The circuit in Figure 11.15 is the dual of that in Figure 11.4. 
The 5  mH inductor is the dual of the 5 mF capacitor. 
The dual of the 2 Ω resistor in Figure 11.4 is a 2 S resis-
tor or a 0.5 Ω resistor, as in Figure 11.15. For t ≥ 5 ms, 
the two resistors are in parallel with the 5 mF capacitor 
in Figure 11.4 and in series with the 5 mH inductor in 
Figure 11.14. The normally open switch in Figure 11.4 is 
the dual of the normally closed switch as in Figure 11.15.

0+ ≤ t ≤ 5 ms: From Equation 11.32, i t I e et tL( ) = =- -
0

101 3/ /t A, 
where τL1 = L/RL = 5 × 10−3/0.5 ≡ 10 ms. i decays 
exponentially from 3  A with a time constant of 
10 ms. At t = 5 ms, i e= =-3 1 820 5. . A.

t  ≥  5  ms: The resistance in series with L is 1 Ω and 
τL2 = 5 × 103/1 ≡ 5 ms. Equation 11.32 applies with 
I0 = 1.82 A and τ2 = 5 ms. Thus, i e t= - -( )1 82 5 5. / A, 
where at t = 5 ms, the exponent is zero and i = 1.82 V.

Simulation: The circuit is entered as in Figure 11.16. 
The inductor is oriented so that positive inductor cur-
rent flows upward. The initial condition of 3 A is entered 

in the Property Editor spreadsheet. A normally closed 
switch is set to open at t  =  5  ms. In the Simulation 
Settings, ‘Analysis type’ is ‘Time Domain (Transient),’ 
‘Run to time’ is 15m, ‘Start Saving Data After’ is 0, and 
‘Maximum Step size’ is 1u. After the simulation is run, 
the same plot shown in Figure 11.6 is displayed, with v 
V replaced by i A.

11.4  Inductor Charging

In Figure 11.17, a dc current source ISRC is connected in 
parallel with L and RL. For t ≤ 0−, ISRC flows through a nor-
mally closed switch connected across the parallel combi-
nation. The current in RL and L and the voltage across the 
combination are all zero. The switch is opened at t = 0.

At t  =  0+, the energy in the inductor, and hence the 
inductor current, remains zero. This means that ISRC 
flows through RL so that v = RLISRC at this instant. Note 
that the inductor acts as an open circuit at the instant of 
switching, since its current is zero, while the voltage v 
across it jumps from 0 to RLISRC. The time integral of v, the 
flux linkage λ, increases with time, as does the inductor 
current iL = λ/L. But as iL increases, iR decreases, because 
iL + iR = ISRC is constant, which means that v decreases. 
Eventually as t → ∞, v, and hence iR, goes to zero. All of 
ISRC flows through L, and the inductor behaves as a short 
circuit in the final steady state. It is required to deter-
mine how v and iL vary with time.

With KVL automatically satisfied by the assign-
ment of v across the parallel elements, KCL gives 
iL + iR = ISRC. Substituting for iL in terms of the integral 
form of the v–i relation for the inductor and for iR in 
terms of Ohm’s law,
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L
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I t
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SRC+ = ³ +ò ,
 

(11.36)

If both sides of Equation 11.36 are differentiated with 
respect to time, the RHS becomes zero, since ISRC is a 
constant. Multiplying the LHS by RL and substituting 
τL = L/RL, Equation 11.36 becomes
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dt

v
t

L
+ = ³ +

t 0 0,
 

(11.37)
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FIGURE 11.15
Figure for Example 11.3.
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Figure for Example 11.3.
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FIGURE 11.17
(a) Inductor begins to charge when the switch is opened at t = 0 and (b) inductor charging for t ≥ 0+.
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The solution to Equation 11.37 is given by Equation 11.7 
with v replacing y; y0 replaced by the initial value of v at 
t = 0, which is RLISRC; and τL replacing τ. Thus,

 v t V e tt L( ) = ³- +
0 0/ ,t

 (11.38)

where V0 = RLISRC; v therefore decays exponentially, as in 
Figure 11.2, from an initial value of V0 to zero as t → ∞, 
as the inductor becomes fully charged.

The time variation of iL is obtained from the v–i  relation 
of the inductor as

 
i t

L
vdt tL

t

( ) = + ³ +

+ò1
0 0

0
,

 
(11.39)

where iL(0+) = 0 at t = 0+. Substituting for v from Equation 
11.38 and then integrating it,

 
i t

I
e dt I eL

SRC

L

t
SRC

t tt
L L( ) = = -éë ùû

- -
++òt

t t/ /

00  

or

 i t I e tL LF
t L( ) = -( ) ³- +1 0/t

 (11.40)

where iL(∞) = ILF = ISRC. Equation 11.40 satisfies the ini-
tial condition that iL(0+) = 0 and represents a saturating 
exponential, as in Figure 11.8.

The exponential variation again follows from the 
argument that the rate of change of the variables at a 
given instant is proportional to the variable itself at 
that instant. Considering v, its rate of decrease is, from 
Equation 11.37, −dv/dt = v/τL, which is proportional to v. 
Since v changes exponentially, so will the currents.

What if in Figure 11.17 the inductor had an initial 
current I0? In this case the initial value of the voltage 
is RL(ISRC – I0) instead of RLISRC. Equation 11.38 becomes

 v t R I I e V e tL SRC
t tL L( ) = -( ) = ³- - +

0 0 0/ / ,t t
 (11.41)

It is seen from this equation that v(0+)  =  V0 and 
v(∞) = 0. Substituting for v(t) in Equation 11.39,
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ee tt L- +³/ ,t 0  (11.42)

where ILF = i(∞) = ISRC and i(0+) = I0, as required.
Equations 11.41 and 11.42 can be derived from super-

position, since the circuit is LTI. Considering v, Equation 
11.38 applies to the response when the inductor is 

initially uncharged. Figure 11.13b applies to the cur-
rent through the inductor acting alone, with the current 
source replaced by an open circuit. However, the direc-
tion of the discharge current through RL is opposite 
to iR in Figure 11.17b so that the response given by 
Equation 11.33 should be subtracted from that given by 
Equation 11.38. This gives.

 v t R I e R I e R I I e tL SRC
t

L
t

L SRC
tL L L( ) = - = -( ) ³- - - +/ / / ,t t t

0 0 0  

which is the same as Equation 11.41. Similarly, iL in this 
case is the sum of iL given by Equation 11.40 and i given 
by Equation 11.32. Thus,

 i t I e I e I I I e tL LF
t t

LF LF
tL L L( ) = -( ) + = + -( ) ³- - - +1 00 0

/ / /t t t

 

which is the same as Equation 11.42.
As to be expected, duality applies. The circuit in 

Figure 11.17b is the dual of that in Figure 11.7b, with 
L replacing C, GL = 1/RL in Figure 11.17b replacing RC 
in Figure  11.7b, ISRC replacing VSRC, I0 replacing V0, v 
replacing i, iL replacing vC, and λ replacing q. All the 
relations derived in this section can be obtained 
from  those  in  Section 11.2 by applying these replace-
ments. For  example, Equation 11.41 becomes, in 
terms of GL,
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t L( ) = -( )
³- +0 0/ ,t

 
(11.43)

Making the aforementioned replacements gives

 
i t

V V
R

e tSRC

C

t C( ) = -( )
³- +0 0/ ,t

which is the same as Equation 11.19, where τ in Equation 
11.43 is GLL, the dual of RCC in Equation 11.19.

Inductor charging through a voltage source is dis-
cussed in Example 11.4.

Primal Exercise 11.12

A 1 μH inductor having an initial current of 6 A is con-
nected at t = 0 to a 12 A source through a 10 kS resistor, 
as in Figure 11.17. Determine (a) the time constant and 
(b) the expressions for inductor current and voltage 
for t ≥ 0.
Ans. (a) 10  ms; (b) v e t= -0 6 0 1. . mV, i t eL

t( ) = - -12 6 0 1. A, 
t is in ms. Note that the  numerical  values make this 
exercise the dual of that Exercise 11.6.
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Example 11.4: Inductor Charging by Voltage Source

A battery voltage VSRC is applied at t = 0 to an uncharged 
inductor L in series with a resistor RL (Figure 11.18a). It 
is required to determine how i, vR, and vL vary with time 
(Figure 11.18b).

Solution:

At t = 0−, the stored energy in the uncharged L is zero, 
by assumption. At t = 0+, this energy remains zero. This 
implies that i = 0 and vR = 0 so that all of VSRC initially 
appears across L, which therefore acts as an open cir-
cuit. The time integral of vL, which is the flux linkage λ, 
increases with time, as does i  =  λ/L. As i increases, vR 
increases in accordance with Ohm’s law. This reduces vL, 
because vL + vR = VSRC is constant. Eventually, L charges 
fully, vL drops to zero, and all of VSRC appears across RL, 
with L acting as a short circuit. The final value of i is 
 therefore i(∞) = IF = VSRC/RL.

From KVL, vL + vR = VSRC. Substituting vL = Ldi/dt and 
vR = RLi,

 
L

di
dt

R i V tL SRC+ = ³ +, 0
 

(11.44)

Dividing by L and substituting τL = L/RL,

 

di
dt

i V
L

t
L

SRC+ = ³ +

t
, 0

 
(11.45)

As in Example 11.2, the general solution is the sum of 
two components: (1) i that is the solution of the homo-
geneous differential equation and (2) any i that satisfies 
the nonhomogeneous differential Equation 11.45. In par-
ticular, as t → ∞, steady state conditions prevail so that 
di/dt = 0 and IF = (τ/L)VS = VSRC/RL as argued previously. 
The first component is given by Equation 11.6, with an 
arbitrary constant A. It follows that the general solution is

 i t Ae V R tt
SRC L

L( ) = + ³- +/ / ,t 0  (11.46)

A is determined from the initial condition that i(0+) = 0, 
which gives A = −VSRC/RL. The general solution is then

 i t V R e I e tSRC L
t

F
tL L( ) = ( ) -( ) = -( ) ³- - +/ ,/ /1 1 0t t

 (11.47)

This is a saturating exponential of zero initial value and 
a final value of IF = VSRC/RL, as required.

Suppose that i has an initial value I0 at t = 0− so that the 
energy stored in the inductor is 1 2 0

2/( )LI  at t = 0−. At t = 0+, 
this stored energy, and hence I0, remains the same, since the 
stored energy cannot be changed instantaneously by any 
physically realizable means. At this instant, VR0 = RLI0 so 
that vL = VSRC – RLI0. Eventually, L charges fully, vL = 0, VSRC 
appears across RL, and the final current is IF = VSRC/RL, irre-
spective of I0. The analytical solution is obtained from the 
general solution (Equation 11.46) by substituting the initial 
condition that i(0+) = I0. This gives A = I0 – VSRC/RL so that

 
i t I V R e V R

I I I e t

SRC L
t

SRC L

F F
t

L

L

( ) = -( ) +

= + -( ) ³

-

- +

0

0 0

/ /

,

/

/

t

t
 

(11.48)

where IF = VSRC/RL. The voltages are

 

v t R i V V e V

V V V e t

R L R SRC
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SRC R SRC
t

L

L
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t

t  (11.49)

and

 
v t L

di
dt

L
I V R e

V V e t
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(11.50)

where vR(0+) = VR0 = RLI0, vL(0+) = VSRC – VR0, vR(∞) = VSRC, 
and vL(∞)  =  0, as argued previously. Note that 
vL + vR = VSRC at all t.

Again, i, vR, and vL can be derived from superposition 
(Exercise 11.14).

If L = 5 mH, RL = 0.5 Ω, VSRC = 5 V, and I0 = 4 A, then 
L/RL = 10 ms, IF = 10 A, VR0 = 2 V, and

 i t e tt( ) = - ³- +10 6 010/ ,A ms (11.51)

 v t e tR
t( ) = - ³- +5 3 010/ ,V ms (11.52)

and

 v t e tL
t( ) = ³- +3 010/ ,V ms (11.53)

(a)

L

RL RL

(b)
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t = 0

FIGURE 11.18
Figure for Example 11.4.
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Duality should be noted. The circuit in Figure 11.18 
is the dual of that in Figure 11.9 when R in one circuit 
is replaced by G in the other circuit. Equations  11.44 
through 11.53 are the duals of Equations 11.21 
through  11.30 when the following are interchanged: 
VSRC and ISRC, v and i, vR and iR, vL and iC, L and C, and RC 
and GL = 1/RL. The numerical values in this example are 
the duals of those in Example 11.2.

Simulation: The circuit is entered as in Figure 11.19. The 
source VDC applies a voltage of 5 V at t = 0, at the start of the 
simulation, so no switch is needed. A differential marker is 
used to display the voltage across the 0.5 Ω resistor.

In the Simulation Settings, ‘Analysis type’ is ‘Time 
Domain (Transient),’ ‘Run to time’ is 30 m, ‘Start Saving 
Data After’ is 0, and ‘Maximum Step size’ is 1u. After 
the simulation is run, the plot is as shown in Figure 11.1 
for the dual quantities, that is, i replaces v, vR replaces iR, 
and vL replaces iC.

Problem-Solving Tip

• Always check the correctness of a derived response 
for current or voltage as a function of time by 
determining the values at t = 0 and as t → ∞ and 
by satisfying KVL and KCL.

• Duality can be helpful in checking the correctness 
of assumptions and expressions.

Exercise 11.13

Transform the voltage source VSRC in series with RL in 
Figure 11.18 to a current source ISRC = VSRC/RL in parallel 
with RL. Verify that vL and the inductor current are given 
by the same expressions.

Exercise 11.14

Derive i, vR, and vL (Equations 11.48 through 11.50) using 
superposition.

Primal Exercise 11.15

The switch in Figure 11.20 is opened at t = 0, after being 
closed for a long time. The switch is closed again after 
1 ms. Determine iL at t = 2 ms. Assume that the conduc-
tance of RD is much less than 2 kS so it can be neglected. 
Note that this is the dual of Primal Exercise 11.10.
Ans. 1 1 1 2+ -- -e e / A.

11.5  Generalized First-Order Circuits

The first-order circuits discussed so far were basic, pro-
totypical, LTI circuits consisting of a single resistor and 
a single energy storage element. First-order circuits, 
however, can be more complex, consisting of more than 
a single resistor, capacitor, or inductor, and can include 
dependent sources. Nevertheless, for a circuit to be first 
order, it must be an LTI circuit that is reducible to one of 
the prototypical circuits that have a single ideal capacitor or 
a single ideal inductor, in combination with a single resis-
tor. For example, the circuit of Figure 11.21 includes 
two capacitors that cannot be combined into a single 
ideal capacitor. The circuit therefore is not first order. 
But in the absence of the 4 Ω resistor, the two capaci-
tors combine into a single 1.25 F capacitor in series with 
a 1 Ω resistor, which is a first-order circuit. It may be 
argued that the 4 Ω resistor and 0.25 F capacitor can be 
converted to an equivalent resistor in parallel with an 
equivalent capacitor that can then be combined with the 
1 F capacitor, resulting in a first-order circuit. However, 
the equivalent resistance and capacitance are functions 
of frequency (Exercise 11.16). The equivalent parallel 
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FIGURE 11.19
Figure for Example 11.4.
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FIGURE 11.20
Figure for Primal Exercise 11.15.
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FIGURE 11.21
Second-order circuit that cannot be reduced to a first-order circuit.
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capacitor cannot therefore be considered as the ideal 
capacitor of a first-order circuit, since the capacitance of 
an ideal capacitor is a constant that is independent of 
frequency.

Exercise 11.16

Determine the equivalent parallel resistance and 
capacitance of the 4 Ω resistor and 0.25  F capacitor 
(Figure 11.21).

Ans. G Ceqp eqp=
+

=
+

1
4 1

1
4

1
1

2

2 2

w
w w

W and F.

11.5.1  Generalized Response

Any natural response of a first-order circuit, or the 
response to a dc excitation, obeys a first-order differen-
tial equation of the form

 
dy
dt

y
K t+ = ³ +

t
, 0

 
(11.54)

where
y is the voltage or current under consideration
K is zero for a natural response or a constant in the 

case of a dc excitation. Thus, K = 0 in Equations 11.2 
and 11.31, whereas K = ISRC/C in Equation 11.22 and 
K = VSRC/L in Equation 11.45.

The general solution of Equation 11.54 is the sum of two 
components:

 1. A component that is the solution of the homo-
geneous differential equation. This component 
is of the form of Equation 11.7, including an 
arbitrary constant of integration. It is termed 
the complementary function in mathematics 
and the transient response in circuit analysis, 
because it decays with time in a stable circuit. 
The time course of the transient is that of the 
natural response, and the role of the transient is 
explained in Section 11.6.

 2. A component that satisfies the nonhomoge-
neous differential equation. This component 
is the particular integral in mathematics and 
the final, steady-state response in circuit anal-
ysis. As its name implies, it is the value of the 
variable as t → ∞. When K is a constant, the 
steady-state, final value YF is obtained from 
Equation 11.54 by setting dy/dt  =  0, which 
gives YF = Kτ.

The complete solution is the sum of these two 
components:

 y Ae Y tt
F= + ³- +/ ,t 0  (11.55)

That Equation 11.55 is the general solution of 
Equation  11.54 is evidenced by (1) satisfying Equation 
11.54, as can be readily verified by substitution, and 
(2) having an arbitrary constant of integration, A, which 
can be found from initial conditions in the circuit. Thus, if 
y = Y0 at t = 0, it follows from Equation 11.55 that

 A Y YF= -0  (11.56)

Substituting for A in Equation 11.55,

 y t Y Y Y e tF F
t( ) = + -( ) ³- +

0 0/ ,t  (11.57)

It must be emphasized that the initial conditions are 
applied to the complete solution (Equation 11.55) and 
not to the transient component of the solution alone.

All the currents and voltages derived in the preceding 
sections are of the form of Equation 11.57, with various 
values for Y0, YF, and τ.

The attractive feature of Equation 11.57 is that it gives 
y(t) without having to derive and solve the differential 
equation for y. It suffices to determine Y0, YF, and τ, which 
can be done directly from the circuit, as discussed in 
what follows. It must also be emphasized that Equation 
11.57 applies only when the RHS of Equation 11.54 is 
zero or a constant, that is, the desired response is a 
natural response, with zero applied excitation, or is the 
response to a dc excitation. Equation 11.57 does not apply 
when the excitation is time varying.

The homogeneous differential equation (Equation 11.54 
with K = 0) is a very basic attribute of any circuit. The fol-
lowing features of this equation and their implications 
should be carefully noted:

 1. Independent sources appear in the nonhomoge-
neous differential equation, but not in the homo-
geneous differential equation, which implies 
that the homogeneous differential equation can just as 
well be derived with independent sources set to zero. 
Thus, the homogeneous differential equation of 
v in Figure 11.9, which is Equation  11.22 with 
zero on the RHS, can be derived from Figure 11.9 
with ISRC set to zero. Similarly, the homogeneous 
differential equation of i in Figure 11.18, which 
is Equation 11.45 with zero on the RHS, can be 
derived from Figure 11.18 with VSRC set to zero 
(Exercise 11.17).

 2. In the standard form of the homogeneous 
differential equation of a first-order circuit 
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(Equation 11.54), the coefficient of the dy/dt 
term is unity and the coefficient of the y term is 
the reciprocal of the time constant. A first-order 
homogeneous differential equation is therefore 
completely determined by the time constant τ. 
In turn, τ = CR or L/R, irrespective of indepen-
dent sources, which means that τ can be deter-
mined with independent sources set to zero. 
Accordingly, τ is the same for the charging of a 
capacitor from a voltage source VSRC (Equation 
11.19) as for its discharging, with VSRC  =  0 
(Equation 11.10), similarly for an inductor.

 3. The solution of the homogeneous differen-
tial equation contains the arbitrary constant 
and the exponent in terms of τ. As explained 
in Section  8.1, all voltages and currents in an 
LTI circuit are related by linear operations. All 
these operations do not affect the exponent in 
the expressions for the voltages and currents. It 
follows from the preceding two items ‘1’ and ‘2’ 
that all voltages and currents have the same τ 
and therefore obey the same homogeneous dif-
ferential equation. They differ only in the val-
ues of the arbitrary constant and of the final 
steady state.

Exercise 11.17

Verify that the homogeneous differential equation 
(Equation 11.22) can be derived from Figure 11.9 with 
ISRC = 0 and that the homogeneous differential equation 
(Equation 11.45) can be derived from Figure 11.18 with 
VSRC = 0.

11.5.2  Determining Initial and Final Values

Y0 and YF can be determined by any of the circuit tech-
niques discussed so far in this book, bearing in mind the 
following basic considerations:

 1. In the steady state, inductors act as short circuits 
and capacitors as open circuits.

 2. When a sudden change is made at t  =  0 in a 
circuit containing energy storage elements, 
the voltage across a capacitor and the current 
through an inductor remain the same at t = 0+, 
because the stored energy cannot be changed 
instantaneously by any physically realizable 
means.

 3. The voltages and currents at t = 0+ are the initial 
values used in determining the arbitrary con-
stant in the general solution of the differential 
equation for a given voltage or current.

 4. However, the current through a capacitor and the 
voltage across an inductor are not directly related 
to stored energy and can therefore change instanta-
neously to satisfy KCL or KVL.

 5. When energy storage elements are charged 
through a sudden change, an uncharged capaci-
tor acts as a short circuit, and an uncharged 
inductor acts as an open circuit.

 6. If the capacitor or inductor is initially charged, 
the preceding procedure is applied assuming 
no initial energy storage. The effect of the initial 
energy storage, acting alone, can then be added 
algebraically by superposition.

Note that Y0 and YF in the circuits considered in this 
chapter are either zero or dc values of current or voltage. 
Such values are independent of L and C, since under dc 
conditions, inductors act as short circuits and capacitors 
as open circuits.

11.5.3  Effect of Sources on Time Constant

A physical interpretation can be given for τ not being 
affected by independent dc sources: during charging or 
discharging of energy storage elements, currents and 
voltages change with time. If the current through an 
ideal, independent dc voltage source varies by ΔiSRC, the 
source voltage does not vary, by definition of an ideal, 
independent voltage source. This also follows from the 
fact that the source resistance of an ideal voltage source 
is zero so that ΔvSRC = 0 × ΔiSRC = 0. Since ΔiSRC produces 
no change in voltage across the dc voltage source, the 
source appears as a short circuit as far as the changing 
current is concerned. Similarly, if the voltage across an 
ideal, independent dc current source changes by ΔvSRC, 
the source current does not change. Hence, the source 
appears as an open circuit as far as the changing volt-
age is concerned. The effective time constant is therefore 
determined with ideal, independent voltage sources 
replaced by short circuits and ideal, independent cur-
rent sources by open circuits.

The time constant is formally derived as the resistance 
seen by the energy storage element in a first-order circuit. 
This is illustrated in Figure 11.22a, in which the energy 
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FIGURE 11.22
Energy storage element is separated from the rest of the circuit (a) and 
which can be represented by its TEC (b).
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storage element is shown, separated from the rest of the 
circuit at terminals ‘ab’ of the energy storage element. The 
rest of the circuit can be represented by its Thevenin’s 
equivalent circuit (TEC) as seen by the energy storage ele-
ment (Figure 11.22b). Since independent sources can be 
set to zero when determining the time constant, VTh = 0. 
The resistance that combines with the circuit parameter of the 
energy storage element to determine the time constant is RTh. 
That is, the time constant is RThC in the case of a capacitor 
and L/RTh in the case of an inductor.

The foregoing can be illustrated by the circuit of 
Figure 11.23, where C is assumed to have an initial volt-
age V0 at t = 0−. It is required to determine v and iC for 
t ≥ 0+, after the switch is closed at t = 0. The circuit can 
be reduced to a prototypical, series RC circuit by deriv-
ing TEC seen by the capacitor. This will be done in two 
easy steps. The first is to derive TEC for the circuit to 
the left of Rp in Figure 11.23, as shown in Figure 11.24a. 
When terminals ‘ab’ are open-circuited, the current 

(ρ + 1)IS = 0, which means that IS = 0, since ρ can have, 
in general , any value. The current source is replaced by 
an open circuit and no current flows in RS. It follows that 
VTh = VSRC. When terminals ‘ab’ are short-circuited, the 
current that flows in the short circuit is ISC =  (ρ + 1)IS, 
where IS = VSRC/RS. This gives ISC = (ρ + 1)VSRC/RS and 
R R RTh S S= ¢ = +( )/ r 1 . TEC is shown in Figure 11.24b.

The second step is to add RP, as in Figure 11.25a. If 
VSRC is set to zero, the new RTh is R R RS S P

² = ¢( )� , and the 
new VTh is
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(11.58)

The final TEC, with C connected, is shown in 
Figure  11.25b. v(0+)  =  V0 and v V R R VF S S SRC¥( ) = = ² ¢( )/ . 
When the voltage source is set to zero, the resistance seen 
by C is RS² and t = ²CRS . It follows that

 v t V V V e tF F
t( ) = + -( ) ³- +

0 0/ ,t  (11.59)

The final value of iC is zero, when C is fully charged. 
The initial value of iC is
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(11.60)

and

 i t I e tC C
t( ) = ³- +

0 0/ ,t  (11.61)

The following should be noted:

 1. VF and IC0 are functions of both the independent 
and dependent sources, as well as the resistances, 
but are not a function of C.

 2. t = ²CRS is a function of the resistances and the 
dependent source but not the independent 
source.
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FIGURE 11.23
Circuit for determining the resistance seen by energy storage element.
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(a) Circuit to the left of Rp in Figure 11.23 for t ≥ 0+ and (b) intermediate 
TEC looking into terminals ‘ab’.
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Determining Thevenin’s resistance. (a) Intermediate TEC with Rp connected and (b) capacitor connected to the final TEC.
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In summary, the following concepts apply to first-order 
circuits:

Concepts:

 1. Any natural response or response to dc excitation in 
a first-order circuit is of the general form

 y t Y Y Y e tF F( ) = + -( ) ³- +
0

t 0/ ,t  

  where
Y0 is the initial value at t = 0+, after the change in 

the circuit takes place
YF is the final, steady-state value
τ is the time constant

  Y0, YF, and τ can be determined directly from the 
 circuit. It is important to note that Y0 for any given 
voltage or current in the circuit is determined by the 
constancy of capacitor voltages and inductor cur-
rents. One cannot assume that variables other than 
these remain constant at the instant of switching. 
This is illustrated by Example 11.6.

 2. τ can be determined from Thevenin’s resistance seen 
by C or L and is the same for all currents and volt-
ages in the circuit.

 3. Both independent and dependent sources affect the 
initial and steady-state, final values of currents or 
voltages in a first-order  circuit. Dependent sources, 
but not independent sources, affect the time constant 
so that independent sources can be set to zero when 
determining the time constant.

 4. Initial and steady-state, final values of currents and 
voltages are independent of C or L.

Exercise 11.18

Verify that the same expressions for v and iC in Figure 11.23 
can be obtained by solving the differential equations sat-
isfied by these variables.

11.5.4  Effective Values of Circuit Elements

If a first-order circuit contains more than one resistor 
and more than one capacitor or inductor, with or with-
out dependent sources, then the circuit should be reduc-
ible to a single effective resistor and a single effective 
capacitor or inductor, with or without an independent 
source. Otherwise, the circuit is not first order, as in the 
case of the circuit of Figure 11.21.

In Figure 11.26a, for example, the three inductors can 
be combined into a single inductor, Leff, and the three 
resistors can be combined into a single resistor Reff, where

 L L L L R R R Reff eff= +( ) = +( )1 2 3 1 2 3� �and  (11.62)

The circuit reduces to a prototypical circuit consisting 
of a voltage source applied to a series combination of 
Leff and Reff (Figure 11.26b).

As demonstrated in previous chapters, dependent 
sources generally alter the coefficients multiplying cur-
rents and voltages in circuit equations. They will generally 
affect the effective values of resistance, capacitance, and 
inductance and hence initial values, final values, and the 
time constant.

Primal Exercise 11.19

(a) Assume that in Figure 11.26, L1 = 5 μH, L2 = 3 μH, 
L3 = 2 μH, R1 = 8 kΩ, R2 = 6 kΩ, and R3 = 2 kΩ. Determine 
Leff, Reff, and τeff. (b) Repeat (a) if the inductors are 
replaced by capacitors having the same numerical val-
ues in microfarads.
Ans. (a) Leff  =  2.5  μH, Reff  =  4 kΩ, τeff  =  0.625  ns; (b) 
Ceff = 6.2 μF, Reff = 4 kΩ, τeff = 24.8 ms.

Example 11.5: Analysis of First-Order Circuit

The switch in Figure 11.27 is closed at t = 0 after being 
open for a long time. It is required to determine iL(t) 
for t ≥ 0+.

Solution:

iL(t) will be determined from its initial value, final, 
steady-state value, and the time constant. The initial 
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FIGURE 11.26
Inductances and resistances in the circuit shown in (a) are replaced by the effective inductance and resistance in (b).
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value IL0 is that which applies at t  =  0+. But because 
the stored energy cannot change instantaneously, 
iL(0+) = iL(0−), where iL(0−) = IL0 is the steady-state value 
with the switch open, which means that the inductor 
acts as a short circuit (Figure 11.28). From current divi-
sion, Iϕ0 = 20 × 3/4 = 15 mA. IL0 = Iϕ0 + Vϕ0/3, where Vϕ0 = 
(Iϕ0 mA) × (1 kΩ). It follows that IL0 = (4/3)Iϕ0 = 20 mA.

When the switch is closed, the 66  V source and the 
6 kΩ resistor are added to the circuit. This combination 
can be transformed to its equivalent current source, 
the circuit to the right of the 1 kΩ resistor becom-
ing as shown in Figure 11.29. The two current sources 
can be combined into a 9 mA current source, directed 
upward, in parallel with 6∥3 kΩ, which is 2 kΩ. In the 
steady state, the inductor is again a short circuit so that 
the circuit becomes as in Figure 11.28 but with the new 
source values (Figure  11.30). From current division, 
IϕF = 9 × 2/3 = 6 mA. This gives ILF = (4/3)IϕF = 8 mA.

To determine the time constant, we note that the resis-
tance seen by the inductor is Thevenin’s resistance to the 
right of the inductor terminals. The short-circuit current 
between these terminals is ILF = 8 mA, as has just been 
determined. When the inductor is replaced by an open 
circuit (Figure 11.31), VϕF/1 + VϕF/3 = 0 so that VϕF = 0 
and IϕF = 0. It follows that VTh is the voltage that appears 
across the 2 kΩ resistor, which is (9 mA) × (2 kΩ) = 18 V. 
RTh = 18/8 = 2.25 kΩ. The time constant is τ = L/R = 18 mH/
(2.25 kΩ) = 18 × 10−3/(2.25 × 103) = 8 × 10−6 s ≡ 8 μs. From 
Equation 11.57, i t e eL

t t( ) = + -( ) = +- -8 20 8 8 128 8/ / mA, 
t ≥ 0+, where t is in μs.

Simulation: The circuit is entered as in Figure 11.32. 
When the simulation is started at t = 0, with zero initial 
current in the inductor, PSpice applies the 20 mA current 
source at t = 0, so sufficient time must be allowed for the 
circuit to reach a steady state before the switch is closed. 
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In Figure 11.32, the switch is closed at t = 50 μs. Since we 
are not interested in iL prior to closing the switch, 50u 
is entered for ‘Start saving data after’ in the Simulation 
Settings. The other entries in the Simulation Settings are 
‘Time Domain (Transient)’ for ‘Analysis type,’ 80u for 
‘Run to time,’ and 1n for ‘Maximum Step size’. A default 
time of 1 μs is allowed in PSpice for the switch to close, 
which means that closure will actually occur at 51  μs. 
To have closure occur more nearly at 50 μs, the default 
value for TTRAN is changed to 1n in the Property Editor 
spreadsheet of the switch. After the simulation is run, 
the plot for iL is displayed as in Figure 11.33.

Alternatively, the initial steady-state current in the 
inductor can be calculated and entered as the IC value. 
Or zero is entered for ‘Start saving data after’ and both 
the buildup and decay of iL displayed. This would also 
allow confirmation that a steady state is reached before 
the switch is closed.

Example 11.6: Jump in Voltage upon Switching

The switch is closed at t = 0 in Figure 11.34 after being 
open for a long time. It is required to determine vX(t) 
for t ≥ 0+.

Solution:

When the switch has been open for a long time, the induc-
tor acts as a short circuit. The circuit reduces to that shown 
in Figure 11.35. (12∥6) = 4 Ω. The current in the 4 Ω resis-
tor is 12/(4 + 4) = 1.5 A, and iL(0−) = IL0 = 1.5 × 12/18 = 1 A; 
vX(0−) = 4 × 1.5 = 6 V.

At t = 0+, with the switch closed, the circuit becomes 
as in Figure 11.36. The 24 Ω resistor is in parallel with 
the 12 Ω resistor so that (12∥24) = 8 Ω; i(0+) = IL0 = 1 A, 
from the constancy of stored energy. From KCL, 
v vX X/ /4 12 8 1= -( ) + , which gives vX(0+) = 20/3 V. Note 
that vX jumps at t = 0 from 6 V to 20/3 V. It is the latter 
value that should be used as the initial value of vX for 
t ≥ 0+, based on the constancy of iL. As t → ∞, the induc-
tor acts as a short circuit, and VXF = 12 V. The resistance 
seen by the inductor when the 12 V source is set to zero 
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is 4∥12∥24 = 8/3 Ω. Hence, τ = 8/(8/3) = 3 s. It follows 
that v t e eX

t t( ) = + -( ) = ( )- -12 20 3 12 12 16 33 3/ // /- V .

Simulation: The circuit is entered as in Figure 11.37. In 
the Simulation Settings, ‘Analysis type’ is ‘Time Domain 
(Transient),’ ‘Run to time’ is 10s, ‘Start Saving Data 
After’ is 0, and ‘Maximum Step size’ is 2m. After the 
simulation is run, the plot is as shown in Figure 11.38. vX 
jumps at t = 0 from 6 to 6.6667 V, and τ = 3 s.

★Example 11.7: Analysis of Repetitive Response

A nonlinear “threshold” device D is connected across 
the capacitor in Figure 11.39. The device changes its 
resistance R abruptly once the increasing voltage vC 
reaches a certain level or threshold. It is assumed that R 
is infinite for 0 < vC < 3 V, while the capacitor is charging. 
When vC = 3 V, R becomes zero, instantly discharging 
the capacitor, and immediately becomes infinite again 
when the capacitor is discharged. The capacitor starts 
charging again, and the cycle is repeated. vC is therefore a 
periodic waveform that repeats at a certain frequency, as 

illustrated by the solid-line in Figure 11.40. It is required 
to determine the frequency of oscillation. This type of 
oscillator, based on a nonlinear element, such as D, that 
repetitively charges and discharges an energy storage 
element is referred to as a relaxation oscillator.

Solution:

Let t = 0 be the time when the capacitor is fully discharged 
and R becomes infinite. For t ≥ 0, the capacitor charges 
toward 6  V with t = ´ ´ ´ = º- -10 10 0 1 10 10 13 6 3. ms. 
Hence, vC(t) = 6(1 – e−t) V, where t is in ms and vc ≤ 3 V. 
When vc = 3 V, 1 3 6 0 5- = =-e tD / . . This gives e tD- = 0 5.  , or 
tD = ln2 ms. Hence, fD = =1 2/ln 1.44 kHz.
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This problem illustrates some interesting and impor-
tant points concerning the analysis and behavior of 
 electric circuits:

1. It was repeatedly stressed in this chapter that 
the voltage across a capacitor cannot be changed 
instantaneously by any physically realizable 
means. Yet it is assumed in Figure 11.40 that device 
D instantly discharges C. Does this mean that the 
instantaneous discharge depicted in Figure  11.40 
is not physically realizable? The answer is yes. 
Theoretically, C can be discharged instantaneously 
by a current impulse, which is discussed in detail in 
Chapter 18. The impulse function is not physically 
realizable, being a purely mathematical construct 
that is nevertheless extremely useful and impor-
tant in the analysis of signals and systems, as dem-
onstrated in Chapters 18 through 23.

2. If the assumption of instantaneous discharge of C is 
not physically realizable, are we justified in consider-
ing it? The answer is emphatically yes. The reason is 
that such assumptions provide an easy way of deter-
mining the limiting behavior of the circuit. The fre-
quency fC derived earlier is the highest theoretically 
possible frequency of oscillation for the circuit of 
Figure 11.39, for the assumed values of battery volt-
age, R, C, and threshold level. In practice, the resis-
tance of device D when it discharges the capacitor is 
small and nonlinear. But it can only prolong the time 
of discharge and hence reduce fC. Even analyzing 
the circuit assuming that R is small and linear com-
plicates the analysis considerably (Problem P11.59). 
Assuming R = 0 when R discharges C greatly simpli-
fies the analysis and provides a first approximation 
to the behavior of the circuit. Such an assumption is 
an extremely useful first step in designing a practical 
circuit, so this approach is extensively used in engi-
neering design. The analysis can be subsequently 
refined as in Problem P11.59, leading to a final design 
that is usually completed through simulation, tak-
ing into account such practical considerations as the 
behavior of device D according to its manufacturer’s 
data sheet, manufacturing tolerances of values of R 
and C, the effect of the drop in battery voltage with 
use, the effect of temperature variation, etc.

3. It should be carefully noted that in Figure 11.40, C 
charges toward a steady-state value of 6 V, the bat-
tery voltage, and not to 3  V, the threshold level. 
Fundamentally, the reason is that physical systems 
“operating in real time” are “causal”. Operation in 
real time means that the system response unfolds 
for the first time as the current time progresses. 
This is in contrast to a recorded signal that was cap-
tured at an earlier time and is being replayed later. 
At any instant of the recording, the future response 

is already available. For example, a football game 
that is being watched “live” is being watched in real 
time. The action in the game unfolds for the first time 
as the current time progresses. On the other hand, 
when a recorded game is watched, any future out-
come, such as the final score, is available at any time. 
By causal is meant that the system cannot anticipate 
what is going to happen in the future. This is true 
when one is watching the football game in real time. 
One cannot tell for sure what might happen next. 
In the same manner, the capacitor in Figure 11.40 
cannot anticipate that it is going to be discharged 
when vC reaches 3 V. An associated attribute of this 
behavior is that the system is “memoryless” in the 
sense that even if it is discharged at 3 V in one cycle, 
it does not remember this in the next cycle. The con-
sequence of being causal and memoryless is that the 
capacitor charges in every cycle in normal fashion 
toward a final value of 6 V.

4. How about the nature of device D? D could be a sim-
ple neon lamp that acts as an open circuit at low volt-
ages, without emitting light. When the voltage across 
the lamp reaches a certain threshold level, usually 
about few tens of volts, the gas in the lamp breaks 
down, an arc is struck between the two electrodes of 
the lamp, light is emitted by the arc, and the resis-
tance across the lamp falls to a low value, thereby dis-
charging the capacitor. When vC falls to a low enough 
level, the arc is extinguished, and the lamp reverts to 
the open-circuit state. The result is a “light flasher” 
at a suitable frequency (Problems P11.33 and P11.59). 
Alternatively, D could be a threshold electronic cir-
cuit that produces some signal when its threshold is 
reached. If a switch is inserted in series with R, the 
circuit can act as a simple “timer” that produces a 
signal when the threshold is reached at a preset time 
after the switch is closed. The time can be varied by 
varying R or C (Problem P11.52).

5. A variation of the circuit of Figure 11.39 is a pho-
toflash unit in which C is connected through a 
changeover switch, as in Figure 11.41. In one posi-
tion of the switch, C is charged to VSRC. When the 
switch is moved, the low-resistance flash lamp is 
connected across C. The large discharge current 
rapidly discharges C and produces an intense flash.

R

CVSRC

+

–

FIGURE 11.41
Figure for Example 11.7.
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11.6  Role of Transient

It was emphasized throughout this chapter that stored 
energy cannot be changed instantaneously by any physi-
cally realizable means. Since the energy stored in a capac-
itor is directly related to the voltage across the capacitor 
and the energy stored in an inductor is directly related to 
the current though the inductor, capacitor voltages and 
inductor currents cannot be changed instantaneously by 
any physically realizable means. So what if the steady-
state, final values of these circuit variables are different 
from the initial values, as they usually are? Evidently, 
there should be a smooth transition from the initial val-
ues to the steady-state, final values. This smooth transi-
tion is accomplished by the transient response.

Consider, for example, the case of a capacitor of initial 
voltage V0 being charged by a battery of voltage VSRC 
through a resistor R (Figure 11.42a). After the switch is 
closed and as t → ∞, the capacitor acts as an open circuit 
in the final steady state, so the final voltage across the 
capacitor is VSRC. The voltage across the capacitor at any 
time t ≥ 0+ is, from Equation 11.57,

 v t V V V e tSRC SRC
t( ) = + -( ) ³- +

0 0/ ,t  (11.63)

v(0+) = V0 and v(∞) = VF = VSRC. The transition from 
V0 to VSRC is accomplished by the transient term, which 
is the second term on the RHS of Equation 11.63 and 
which contains the exponential. This term is shown in 
the lower trace of Figure 11.42b, assuming for the sake 
of argument that V0  <  VSRC. When added to VSRC, the 
total response is obtained, starting from V0 at t = 0+ and 
approaching VSRC as t → ∞. The time course of the tran-
sient is determined by the time constant in a first-order 
circuit. In the special case of V0 = VSRC, there is no tran-
sient response, because the final state is assumed from 
the very beginning at t = 0+.

The same role is played by the transient response in 
the cases of inductor charging as well as the discharging 
of a capacitor or an inductor. In the case of a capacitor 
discharging through the resistor, for example, the final 
voltage across the capacitor is zero. The total response of 
capacitor voltage is a transient response that takes this 
voltage from its initial value to its final value of zero. The 
time-varying components of all the responses discussed 
in Sections 11.1 through 11.4 are transient responses that 
take the circuit from the initial to the final state. In fact, 
this role of the transient response is perfectly general:

Concept: The transient response in a given circuit response 
provides a smooth transition from the initial value of the 
response to its steady-state, final value. This transition from 
the initial value to the final value cannot occur instanta-
neously because energy stored in energy storage elements can-
not be changed instantaneously by any physically  realizable 
means. The time course of this transition in a first-order cir-
cuit is determined by the time constant.

Evidently, there is no transient in purely resistive 
circuits so that both resistor voltages and currents can 
change instantly from initial to final values. It may be 
wondered if this is a violation of the general principle 
enunciated in Section 11.1 that energy values cannot be 
changed instantaneously by any physically realizable 
means. The answer is, of course, no. It must be recog-
nized that when resistor voltages or currents change 
instantaneously, it is the power dissipated, p, that changes 
instantaneously, not the energy dissipated, w. These 
two quantities are related by p = dw/dt or dw = pdt. If 
p is finite and dt → 0, as between t = 0− and t = 0+, then 
dw = 0, that is, the energy dissipated does not change. The 
exception of infinite p implies infinite resistor voltages 
or currents, which are not physically realizable. Hence, 
the general principle of constancy of energy values at 
the instant of change, under physically realizable condi-
tions, is not violated.
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Learning Checklist: What Should 
Be Learned from This Chapter

• Energy, in general, including stored energy, can-
not be changed instantaneously by any physi-
cally realizable means, as this would require 
infinite driving forces, that is, infinite voltages 
or currents in the case of energy storage ele-
ments in electric circuits. Such infinite values 
are not physically realizable.

• The behavior of a first-order circuit is governed by 
a first-order, linear, ordinary, differential equation 
with constant coefficients. The general solution to 
this equation contains an arbitrary constant that is 
determined from the initial value at t = 0+ of the 
variable in the differential equation. Once this sub-
stitution is made, the response for t ≥ 0+ is obtained.

• The time constant of a first-order circuit is a 
measure of its speed of response. The larger the 
time constant, the slower or more “sluggish” 
the response is and conversely.

• The time constant is RC for a capacitive circuit 
and L/R for an inductive circuit.

• When energy storage elements are charged 
through a sudden change, an uncharged capaci-
tor acts as a short circuit and an uncharged 
inductor acts as an open circuit.

• The responses in an LTI circuit, with initial 
energy storage, to an applied excitation can be 
derived as the algebraic sum of two responses: 
(1) the response to the applied excitation act-
ing alone, with zero initial energy storage, 
and (2) the response to the initial energy stor-
age acting alone, with zero applied excitation.

• The general solution of a linear, ordinary, differ-
ential equation is the sum of two components: (1) 
a transient term, obtained from the solution of 
the homogeneous differential equation, and (2) a 
steady-state term that is the solution of the non-
homogeneous differential equation as t → ∞.

• The natural response of a first-order circuit, 
or  the response to a dc excitation, is of the 
form  y Y Y Y e tF F

t= + -( ) ³- +
0 0/ ,t , where YF 

is  the steady-state, final value of y and Y0 is its 
initial value. These values and the time constant τ 
can be determined directly from the circuit.

• The following are important features of the 
homogeneous differential equation of a first-
order circuit:

 1. Independent sources do not appear in the 
homogeneous differential equation, which 

means that the equation can be derived with 
independent sources set to zero.

 2. The homogeneous differential equation is 
completely determined by the time constant τ.

 3. The same homogeneous differential equa-
tion applies to all voltage and current 
responses in the circuit. These responses 
have the same time constant, so they differ 
only in the values of the arbitrary constant 
and of the final and steady state.

• The voltages and currents at t = 0+ are the initial 
values used in determining the arbitrary con-
stant in the general solution of the differential 
equation for a given voltage or current.

• Although the voltage across a capacitor and the 
current through an inductor do not change at 
t = 0, because the stored energy cannot be changed 
instantaneously by any physically realizable 
means, other voltages or currents in the circuit, 
including the current through a capacitor and the 
voltage across an inductor, are not directly related 
to stored energy and can therefore change instan-
taneously to satisfy KCL or KVL.

• Both independent and dependent sources 
affect the initial and steady-state, final val-
ues of currents or voltages in a first-order cir-
cuit. Dependent sources, but not independent 
sources, affect the time constant so that inde-
pendent sources can be set to zero when deter-
mining the time constant.

• The time constant can be determined from 
Thevenin’s resistance seen by C or L, when all inde-
pendent sources are set to zero.

• Initial and steady-state, final values of currents 
and voltages are independent of C or L, because 
in the steady state, inductors act as short circuits 
and capacitors as open circuits.

• If a first-order circuit contains more than one 
resistor and more than one capacitor or induc-
tor, with or without dependent sources, then the 
circuit should be reducible to a single effective 
resistor and a single effective capacitor or induc-
tor, with or without an independent source.

• The transient response in a given circuit 
response provides a smooth transition from the 
initial value of the response to its steady-state, 
final value. This transition from the initial value 
to the final value cannot occur instantaneously 
because energy stored in energy storage ele-
ments cannot be changed instantaneously 
by any physically realizable means. The time 
course of the transient response in a first-order 
circuit is determined by the time constant.
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Problem-Solving Tips

 1. When the exponent t/τ is first formed, t natu-
rally has the same units as τ. If τ is in seconds, 
then t is in seconds, and if τ is in ms, then t is 
in ms. If t is τ is in seconds and is to be expressed 
in ms, while keeping the same value of the expo-
nent, then the new t in ms should be multiplied 
by s/ms or 10−3. Another way of looking at this 
is that t in ms is a larger number than t in s, so t 
in ms in the exponent must be multiplied by 10−3 
to maintain the same value as when t is in s.

 2. Never apply initial conditions except to the 
complete solution, and not to the transient 
 solution alone.

 3. Always check the correctness of a derived response 
for current or voltage as a function of time by 
determining the values at t = 0 and as t → ∞.

 4. Duality can be helpful in checking the correct-
ness of expressions.

Problems

Apply ISDEPIC and verify solutions by PSpice simulation 
whenever feasible.

 Single Energy Storage Elements

P11.1 v(t) and i(t) in Figure P11.1 are given by v t e t( ) = -50 10 V 
and i t e tt( )= ³- +20 010 mA, s. Determine τ, RC, C, q(0+).

 Ans. 0.1 s, 2.5 kΩ, 40 μF, 2 mC.

P11.2 v(t) and i(t) in Figure P11.2 are given by v t e t( ) = -40 100 V 
and i t e tt( ) = ³- +10 0100 A s, . Determine τ, RL, L, λ(0+).

 Ans. 10 ms, 4 Ω, 40 mH, 0.4 Wb-T.

P11.3 IL0 = 2 A in Figure P11.3 at t = 0. Just before the switch is 
opened at t = 1 s, iL(1−) = IL0/2 A. Determine iL(t) at t = 2 s.

 Ans. 0.25 A.

P11.4 v(t) in a first-order circuit is governed by the differ-
ential equation 2 2 3 10 0dv dt v t/ / ,( ) + ( ) = ³ +s, with 
v(0+) = 3 V. Determine τ, VF, and v(t).

 Ans. 3 s, 15 V, v t e t( ) = - -15 12 3/ V.

P11.5 The switch in Figure P11.5 is moved from position ‘a’ 
to position ‘b’ after being in position ‘a’ for a long time. 
Determine v(t), t ≥ 0+.

 Ans. v t e tt( ) = -20 125 V is in s, .

P11.6 The switch in Figure P11.6 is moved to position ‘b’ 
at t  =  0 after being in position ‘a’ for a long time. 
Determine, for t  ≥  0+, (a) vC(t), (b) vO(t), (c) iO(t), and 
(d) the total energy dissipated in the 60 kΩ resistor 
as t → ∞.

 Ans. (a) v t e tC
t( ) = -100 25 V is in s, ; (b) v t eO

t( ) = -60 25 V; 

(c) i t eO
t( ) = -25 mA. (d) 1.2 mJ.

P11.7 The switch in Figure P11.7 is opened at t = 0 after being 
closed for a long time. Determine vO(t) for t ≥ 0+.

 Ans. v t e tO
t( ) = - -40 100 V is in s, .
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P11.8 The switch in Figure P11.8 is closed at t = 0, the capaci-
tor being initially uncharged. Determine, for t  ≥  0+, 
(a) vC(t) and (b) iX(t).

 Ans. (a) v t e tC
t( ) = -( )-30 1 0 3. ,V is in ms; (b) i tX ( ) =

3 6 0 3+ -e t. mA.

P11.9 (a) The switch in Figure P11.9 is closed at t = 0 after 
being opened for a long time. Determine vO(t) for t ≥ 0+. 
(b) The switch opens again at t = 10 s. Determine vO(t) 
for t ≥ 10 s.

 Ans. (a) v t e tO
t( ) = + £ £-2 25 0 75 0 1015. . ,/ V s; 

(b) v t e tO
t( ) = - ³- -( )3 0 37 100 05 10. ,. V s.

P11.10 The switch in Figure P11.10 is closed at t = 0 after being 
in the open position for a long time. Determine, for 
t ≥ 0+, (a) iO(t) and (b) vO(t).

 Ans. (a) i t eO
t( ) = - -20 15 12 5. A ; (b) v t eO

t( ) = -15 12 5. ,V  
t  is in s.

P11.11 The switch in Figure P11.11 is opened at t  =  0 after 
being closed for a long time. Determine iX(t), t ≥ 0+.

 Ans. i t e tX
t( ) = -5 mA, is in s.

P11.12 Both switches in Figure P11.12 are opened at t = 0 after 
being closed for a long time. Determine, for t ≥ 0+, (a) 
vC(t) and (b) the time it takes to dissipate 75% of the 
energy initially stored in the capacitor.

 Ans. (a) v t e tC
t( ) = - -102 25 V is in s, ; (b) 27.73 ms.

P11.13 Both switches in Figure P11.13 have been closed for a 
long time. The first switch opens at t = 0 and the sec-
ond switch opens at t = 35 ms. Determine (a) iL(t) for 
0 ≤ t ≤ 35 ms, (b) iL(t) for t ≥ 35 ms, and (c) the percent-
age of the energy initially stored in the inductor that is 
dissipated in the 18 Ω resistor.

 Ans. (a) i etL
t( ) ,/= -6 25 A  t is in ms; (b) i etL

t( ) . /= - -( )1 48 3 35 50A; 
(c) 31.31%.

P11.14 The switch in Figure P11.14 is moved to position ‘b’ 
at t  =  0, after being in position ‘a’ for a long time. 
Determine vC(t) for t ≥ 0+.

 Ans. v t e tC
t( ) = - - -20 10 10 V is in s, .
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P11.15 The switch in Figure P11.15 is moved to position ‘b’ at 
t = 0 after being in position ‘a’ for a long time. Determine, 
for t ≥ 0+, (a) vC(t) and (b) iC(t) from the initial and final 
values and from the v–i relation for the capacitor.

 Ans. (a) v etC
t( ) ,= - -90 120 5 V  t is in s; (b) i etC

t( ) .= -0 3 5 mA.

P11.16 The switch in Figure P11.16 is moved to position 
‘b’ at t = 0 after being in position ‘a’ for a long time. 
Determine, for t ≥ 0+, (a) vc(t) and (b) ic(t) from the ini-
tial and final values and from the v–i relation for the 
capacitor.

 Ans. (a) v etc
t( ) = - + -60 90 100 V, t is in s; (b) i tc ( ) = 

- -225 100e t mA .

P11.17 Switch S1 in Figure P11.17 is closed at t = 0, with the 
capacitor initially uncharged. Switch S2 is closed at 
t = 30 ms, and switch S3 is closed at t = 50 ms. Determine 
vC(t) for all t ≥ 0+.

 Ans. v t e tC
t( ) = -( ) £ £-40 1 0 3010/ ,V ms, v tC ( ) = +20

 
18 3030 2( ) ³- -( )e tt / ,V ms.

P11.18 The switch in Figure P11.18 is moved to position 
‘b’ at t = 0 after being in position ‘a’ for a long time. 
Determine, for t ≥ 0+, (a) vO(t) and (b) iO(t).

 Ans. (a) v t e tO
t( )= -40 10 V is in s, ; (b) i t eO

t( )= - -12 20 10 A.

P11.19 The switch in Figure P11.19 is closed at t = 0+, with the 
capacitor initially uncharged. Determine, for t  ≥  0+, 
(a) iY(t) and (b) vX(t).

 Ans. (a) i t e tY
t( ) = -3 200 mA, is in s; (b) v tX ( ) = -150

60 200e t- V.

P11.20 The capacitor in Figure P11.20 was initially uncharged 
and the switch was in position ‘a’. At t = 0, the switch 
is moved to position ‘b’. Determine for t ≥ 0+ (a) vC(t), 
(b) iC(t), (c) the energy delivered by the 12  V battery 
as t → ∞, (d) the energy absorbed by the 6 V battery as 
t  →  ∞, and (e) the energy dissipated in the resistor 
as  t  →  ∞; verify this by integrating the power dissi-
pated by iC from t = 0+ to t → ∞. (f) If after a long time, 
t′ = 0, the switch is moved to position ‘c’, determine 
vC(t) and iC(t) for t′ ≥ 0+, the energy delivered by the 
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6 V battery, the energy gained or lost by the capacitor, 
and the energy dissipated in the resistor.

 Ans. (a) v t e tC
t( ) = -( )-6 1 V is in, ms; (b) i t eC

t( ) = -6 mA; 
(c) 72  μJ; (d) 36  μJ; (e) 18  μJ; (f) v t eC

t( ) = - + - ¢6 12 V, 
i t eC

t( ) = - - ¢12 , 72 μJ, 0, 72 μJ.

P11.21 It is given in Figure P11.21 that (i) the time constant 
with the switch open is twice the time constant with 
the switch closed, and (ii) if the switch is closed with 
an initial voltage Vc0  =  1  V across the capacitor, the 
initial value of the capacitor current is Ic0 = 1 mA and 
the final value of the capacitor voltage is vC(∞) = 2 V. 
(a)  Determine VSRC, R1, and R2. (b) If the switch is 
opened at t = 0, with Vc0 = 1 V, determine vC(t), t ≥ 0+. 
(c) If the switch is then closed at t = 1 ms, determine 
vC(t), t ≥ 1 ms.

 Ans. (a) VSRC = 4 V, R1 = R2 = 2 kΩ; (b) v t eC
t( ) = -0 5. ,V

0 £ £t ms; (c) v t e e tC
t( ) = + -( ) ³- - -( )2 2 10 5 1. ,V ms.

P11.22 Both switches in Figure P11.22 have been open for a 
long time. S1 is closed at t = 0 and S2 at t = 1s. Determine 
vC(t) for t ³ 1s.

 Ans. v t e tC
t( ) = - - -( )8 19 21 35 1 12. ,/ V is in s.

P11.23 Switch S1 in Figure P11.23 has been in position a for a 
long time, with switch S2 closed. At t = 0, S1 is moved 
to position b and remains in this position. S2 is opened 

at t = 50 μs and closed again at t = 100 μs. Determine vC 
for (a) 0 ≤ t ≤ 50 μs, (b) 50 ≤ t ≤ 100 μs, and (c) t ≥ 100 μs.

 Ans. (a) 
500
7

17 1400e tt- / ,V is in sm ; (b) 38 9 50 140. /e t- -( ) V; 

(c) 27 2 17 100 1400. /e t- -( ) V.

P11.24 The switch in Figure P11.24 is moved at t = 0 to position 
‘b’ after being in position ‘a’ for a long time. Determine 
vC(t) for t ≥ 0+ and the time at which vC(t) = 0.

 Ans. v t e tC
t( ) = - + -50 95 30/ ,V is in ms ; vC  =  0 at 

t = æ
è
ç

ö
ø
÷ =30

95
50

19 3ln . ms.

P11.25 The switch in Figure P11.25 is moved to position ‘b’ 
at t  =  0, after being in position ‘a’ for a long time. 
Determine, for t  ≥  0+, (a) vL(t) and (b) iL(t). A make-
before-break switch is used to avoid open-circuiting 
the source.

 Ans. (a) v t e tL
t( ) = -5 2 5. ,V is in s; (b) i t eL

t( ) = - -5 2 5. A.

P11.26 The switch in Figure P11.26 is moved to position 
‘b’ at t = 0 after being in position ‘a’ for a long time. 
Determine vC(t) for t ≥ 0+.

 Ans. v t e tC
t( ) = -( )-160

7
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P11.27 The capacitor in Figure P11.27 is charged to 10  V at 
t = 0. Determine vC(t) for t ≥ 0.

 Ans. v t e tC
t( ) = -10 10/ ,V is in ms.

P11.28 The voltage across the inductor in Figure P11.28 is 10 V 
at t = 0. Determine vL(t) for t ≥ 0+.

 Ans. vL(t) = 10e−40t/3 V, t is in μs.

P11.29 The switch in Figure P11.29 is opened at t  =  0 after 
being closed for a long time. Determine iL(t) for t ≥ 0+.

 Ans. i t e tL
t( ) = -2 8 V is in s, .

P11.30 The switch in Figure P11.30 is moved to position ‘b’ 
after being in position ‘a’ for a long time. Determine 
v tO ( ) for t ≥ 0+.

 
Ans. v t e tO

t( ) = + -1680
101

168
1010

101 16/ ,V is in s.

P11.31 The switch in Figure P11.31 is closed at t = 0 after being 
open for a long time. Determine vO(t) for t ≥ 0+.

 Ans. vO(t) = 24 + 48e−t/0.12 V, t is in s.

P11.32 The switch in Figure P11.32 is opened at t = 0 after hav-
ing been closed for a long time. Determine iX(t) and 
vX(t), t ≥ 0+.

 Ans. iX(t) = 4e−1.5t mA; vX(t) = −2e−1.5t V.

Multiple Energy Storage Elements

P11.33 The switch in Figure P11.33 is closed at t = 0, with the 
1 μF capacitor charged to 10 V and the 4 μF capacitor 
uncharged. Determine i(t), for t ≥ 0+.

 Ans. i t e t( ) = -8 mA, where t is in ms.

P11.34 The switch in Figure P11.34 is closed at t = 0, with both 
capacitors charged to 6 V each. Determine, for t ≥ 0+, 
(a) i(t), (b) v1(t), and (c) v2(t).

 Ans. (a) i t e tt( ) = -3 4/ ,mA msis in ; (b) v t e t
1

410 4( )= - - / V; 
(c) v t e t

2
48 2( ) = - - / V.
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P11.35 The switch in Figure P11.35 has been in position ‘a’ 
for a long time. It is moved to position ‘b’ at t  =  0. 
Determine (a) vC(0+), (b) VCF, (c) τ, (d) vC(t) for t  ≥ 0+, 
and (e) ic1(t) for t ≥ 0+.

 Ans. (a) 10 V; (b) 0; (c) 15 ms; (d) v t e tt( ) = -10 15/ ,V is in ms; 

(e) i t eC
t

1
152

3
( ) = - / mA.

P11.36 The switch in Figure P11.36 is moved to position 
‘b’ at t = 0 after being in position ‘a’ for a long time. 
Determine iX(t), t ≥ 0+.

 Ans. i t e tX
t( ) = -1

3
1 2/ . ,mA ms.is in

P11.37 The switch in Figure P11.37 is moved to position ‘b’ at 
t = 0 after having been in position ‘a’ for a long time. 
Determine vO(t) for t ≥ 0+.

 Ans. v t e tO
t( ) = - -80 5 V is in s, .

P11.38 Both switches in Figure P11.38 are opened at t  =  0 
after being closed for a long time. Determine iO(t) 
for t ≥ 0+.

 Ans. i t e tO
t( ) = -10 5 mA ms, is in .

P11.39 The switch in Figure P11.39 is closed at t = 0 after being 
open for a long time. Determine iX(t), for t ≥ 0.

 Ans. -
-1

6
0 72e t

t
. ,mA ms.is in

P11.40 The switch in Figure P11.40 is initially in position ‘a’, 
with the capacitors uncharged. At t = 0, the switch is 
moved to position ‘b’. When vC = 10 V, the switch is 
moved to position ‘c’. Determine v tC ( ) for the time 
when the switch (a) is in position ‘b’ and (b) after it 
was moved to position ‘c’.

 Ans. (a) v t e tC
t( ) = -( )-14 86 1 0 74. ,/ . V is in ms; (b) v tC ( ) =

0 94 9 06 0 83 4 76. . . / .+ -( )e t V.
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P11.41 RC = 1 ms in Figure P11.41. Before the switch is closed, 
the circuit is in a steady state, with a total energy stor-
age of 1 J. If the switch is closed at t = 0, determine the 
total energy stored at t = 1 ms.

 Ans. 0.5(e−2 + e−1) = 0.25 J.

P11.42 The switch in Figure P11.42 is moved at t = 0 from posi-
tion ‘a’ to position ‘b’ after being in position ‘a’ for a 
long time. Determine, for t ≥ 0+, (a) v(t) and (b) energy 
dissipated in the resistor.

 Ans. (a) v t e tt( ) = -20 20/ ,V is in sm ; (b) 2 μJ.

P11.43 The switch in Figure P11.43 is closed at t = 0 after being 
open for a long time. Determine, for t ≥ 0+, (a) v(t) and 
(b) the energy dissipated in the resistor.

 Ans. (a) v t e tt( ) = -( )-6 1 10 V is in s, ; (b) 0.18 J.

P11.44 The switch in Figure P11.44 is moved at t  =  0 from 
position ‘a’ to position ‘b’ after being in position ‘a’ for 
a long time. Determine, for t ≥ 0+, (a) v(t) and (b) the 
energy dissipated in the resistor.

 Ans. (a) v t e tt( ) = - -10 5/ ,V is in ms; (b) 12.5 mJ.

P11.45 The switch in Figure P11.45 has been closed for a long 
time. It is opened at t  =  0 and is closed at t  =  1  ms. 
Determine i1(t) and vO(t), t ≥ 0+.

 Ans. 0 ≤ t ≤ 1 ms, i t e t
1

30 2( ) = -. A, v t eO
t( ) = -30 3 V; t ≥ 1 ms, 

i t e t
1

2 5 10 2 0 19( ) = - - -( ). . . A, v t eO
t( ) = - - -( )23 75 2 5 1. . V.

P11.46 The switch in Figure P11.46 is moved from position ‘a’ 
to position ‘b’ at t = 0 and back to position ‘a’ at t = 1 s. 
Determine v(t), t ≥ 0+.

 Ans. 0 ≤ t ≤ 1 s, v t e t( ) = - -4 2/ V; t ≥ 1 s, v t e( ) = -( )-4 1 0 5.

e t- -( )0 5 1. V.

P11.47 The switch in Figure P11.47 is closed at t = 0 after being 
open for a long time. Determine v(t), t ≥ 0+.

 Ans. v t e t( ) = -10 0 5. V.

P11.48 The switch in Figure P11.48 is moved at t = 0 from posi-
tion ‘a’ to position ‘b’, after being in position ‘a’ for a 
long time. Determine for t ≥ 0+ (a) iO(t) and (b) vO(t).

 Ans. (a) i t eO
t( ) = - + -16 28 5 A; (b) v t eO

t( ) = - -56 5 V, t is 
in s.
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P11.49 Switch S1 in Figure P11.49 is opened at t = 0 after being 
closed for a long time. Switch S2 is closed at t = 5 ms. 
Determine iL(t) at t = 20 ms.

 Ans. 6.69 A.

P11.50 The switch in Figure P11.50 is opened at t = 0 with no 
energy initially stored in the circuit. Determine vS(t), 
t ≥ 0+.

 Ans. 5 V.

Design Problems

P11.51 A 1  μF capacitor in a cardiac defibrillator is charged 
to 2  kV during operation. When the defibrillator is 
switched off, the capacitor should discharge to 20  V 
within 1 s. What should be the effective resistance in 
parallel with the capacitor?

 Ans. < 217 kΩ.

P11.52 Figure P11.52 illustrates the basic circuit of a timer. 
Timing starts when the switch is closed, with the capac-
itor discharged, and ends when the threshold device D 
is activated by a voltage of 5  V across the capacitor. 

The timing interval is to be varied between 1 and 5 s 
by means of a variable resistor Rv in series with a fixed 
resistor R. Select suitable values of R and Rv .

 Ans. R = 465 kΩ; Rv = 1.86 MΩ.

P11.53 It is required to design a neon lamp flasher to flash for 
1 s every 5 s (P11.59). Assume VSRC = 100 V, Vmax = 80 V, 
Vmin = 10 V, and C = 1 μF. Determine R1 and R2. (Hint: 
Determine R′ from Ton by successive approximation 
using a spreadsheet program.)

 Ans. R1 = 2.659 MΩ; R2 = 261.1 kΩ.

P11.54 An RC circuit is to be used to integrate a 6  V step 
(Problem P11.60). Determine RC if the error at T = 10 s 
is not to exceed 5% and derive the value of the inte-
grated voltage.

 Ans. 96.71 s, 0.589 V.

P11.55 The circuit of P11.61 is to be used to differentiate a 
pulse 100 μs wide. Determine the maximum RC that 
will give at the end of the pulse an output that does not 
exceed 1% of the pulse height.

 Ans. 21.71 μs.

P11.56 An electronic voltage measuring instrument has an 
input impedance of 5 MΩ in parallel with 90  pF and 
a maximum input voltage of 100  V (Figure P11.56). 
Specify R and C for an attenuator probe that allows mea-
surement of voltages up to 1000 V without phase shift.

 Ans. 45 MΩ, 10 pF.

Probing Further

P11.57 Show that the energy dissipated in RC in Figure 11.1b is 

w t CV e tR
t C( ) = -( ) ³- +1

2
1 00

2 2 / ,t , which indicates that 

as t → ∞, the energy initially stored in the capacitor 
is dissipated in the resistor. Show that analogous con-
siderations apply in the case of inductor discharge in 
Figure 11.13b.
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P11.58 Note that in capacitor charging (Figure 11.7b), the energy 

delivered by the battery for t ≥ 0+ is V idt V qSRC SRC

t

=
+ò0 ,

 
where q is the charge delivered by the battery and 
stored in the capacitor. Deduce that as t  →  ∞, the 
energy dissipated in the resistor is equal to that stored 
in the capacitor. Show that analogous considerations 
apply in the case of inductor charging in Figure 11.17b.

P11.59 Figure P11.59 illustrates a neon lamp flasher. The neon 
lamp is assumed to turn on when v = Vmax and to turn 
off when v falls to Vmin. The lamp acts as an open cir-
cuit when turned off and has a negligible resistance 

when turned on. Show that T R C
V V
V V

off
SRC

SRC
=

-
-

1 ln min

max
 and 

T R C
V V
V V

on
SRC

SRC

= - ¢

- ¢
¢ ln max

min

, where Ton is the flash dura-

tion, Toff is the duration of the off interval, Rʹ = (R1∥R2), 

and V V R R RSRC SRC
¢ = +( )2 1 2/ .

P11.60 The switch in Figure P11.60 is closed at t  =  0, with 
the capacitor initially uncharged. For t ≤ 0−, VS  =  0 
and vC = 0, whereas for t ≥ 0+, VS = VSRC. If vC << VS, 

i  ≅  VS/R and v
C

idt
V
RC

t V tC
S

S

t

@ @ = ¢ò1
0

, where ¢t  is a 

normalized, dimensionless time variable. It is seen that 
the voltage across the capacitor is proportional to the 
time integral of the applied voltage step VS so that the 
circuit acts as an integrator at low output voltages. The 

expression for vC(t) is v V eC S
t= -( )-1 /t . Expand 1-( )-e t/t

 
to show that for an integration interval T, the devia-
tion from the true value T/τ of the integral of vC/VS 

is - æ
è
ç

ö
ø
÷ + æ

è
ç

ö
ø
÷ - æ

è
ç

ö
ø
÷ +

é

ë
ê
ê

ù

û
ú
ú

1
2

1
3

1
4

2 3 4
T T T
t t t! !

� , and the percent-

age error is this deviation divided by T/τ and multi-
plied by 100. For a given T, the error decreases with 
increasing τ, but for a given VS, the integral vC = VST/τ 

decreases as τ is increased. The magnitude of vC could 
be increased using an operation amplifier (Chapter 13).

P11.61 The switch in Figure P11.61 is closed at t  =  0, with 
the capacitor initially uncharged. For t ≤ 0−, VS  =  0 
and vC = 0, whereas for t ≥ 0+, VS = VSRC. If vR << VS, 
i  ≅  CdVS/dt and vR  =  RCdVS/dt. In other words, the 
voltage across the resistor is proportional to the time 
derivative of the applied voltage step VS so that the cir-
cuit acts as a differentiator at low output voltages. For 
an ideal differentiator, vR = 0 at t = 0+. In the circuit in 
Figure P11.61, vR ≅ 0 at t ≅ 5τ. Hence, to approximate 
a good differentiator, τ should be small, which means 
the output is small.

P11.62 The coil of an electromagnetically operated switch or 
relay is sometimes controlled by an electronic transistor 
switch, as illustrated in Figure P11.62a, where the circuit 
connected to the relay coil is represented by its TEC. (a) 
If the relay coil has an inductance 0.5 H and the tran-
sistor switch interrupts a relay current of 1 A in 1 ms, 
determine the magnitude and polarity of the voltage 
that appears across the relay coil and the transistor as it 
interrupts the current, neglecting the voltage drop in the 
resistances. (b) To protect the transistor from this volt-
age, a diode (Figure P11.62b) is connected across termi-
nals ‘ab’ of the coil. The diode presents an open circuit 
when terminal ‘a’ is positive with respect to terminal ‘b’, 
during normal operation, but when the voltage polarity 
reverses, the diode conducts, virtually short-circuiting 
the coil terminals ‘ab’. The main limitation is a small 
delay in de-energizing the relay. Determine this delay if 
the relay de-energizes when the current drops to 0.2 A, 
assuming a relay coil resistance of 10 Ω.

 Ans. (a) 500 V across the coil, with terminal ‘b’ positive 
with respect to terminal ‘a’, (500 + VTh) across the tran-
sistor; (b) 80.5 ms.
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Objective and Overview

This chapter extends the discussion of Chapter 11 to 
prototypical, second-order circuits consisting of a resis-
tor, capacitor, and inductor, connected in series or in 
parallel. The main objective is to present the three basic 
types of responses that are possible with second-order 
circuits, namely, overdamped, critically damped, and 
underdamped responses, and to explore the main char-
acteristic features of these responses.

The natural responses of the prototypical series 
and parallel circuits are discussed in the first part of 
the chapter. These natural responses are due to ini-
tial energy storage in capacitors or inductors, in the 
absence of any other excitation. The second part of 
the chapter is concerned with the responses of the 
prototypical circuits to applied, steady excitations. 
Appendix 12A outlines the procedure for deriving the 
natural responses of more general second-order cir-
cuits and the responses of these circuits to applied dc 
excitations. Responses of second-order circuits to more 
general forms of excitation are discussed in Part II of 
the book.

12.1  Natural Responses of Series RLC Circuit

A  second-order LTI circuit is so called because its 
responses obey a second-order, linear, ordinary differ-
ential equation with constant coefficients. Second-order 
circuits discussed in this chapter are reducible to a com-
bination of a resistor, a capacitor, and an inductor, con-
nected in series or in parallel.

Figure 12.1a illustrates an RLC circuit in which 
the switch is opened at t  =  0. It is assumed that the 
switch has been closed for a sufficiently long time so 
that steady-state conditions prevail before the switch 
is opened. Under these steady-state conditions, the 
inductor acts as a short circuit, so that the source cur-
rent ISRC flows through the inductor and the voltage 
across the capacitor is zero. With the switch open, the 
circuit becomes a series RLC circuit, as in Figure 12.1b. 
The source current is diverted through RD, so that the 
ideal current source is not left open-circuited. It is 
required to determine how the current i in the circuit 

of Figure 12.1b and all the voltages in the circuit vary 
with time for t ≥ 0+.

KCL is automatically satisfied in the series circuit. 
From KVL, vR + vC + vL = 0. Substituting the v–i relations 
for the circuit elements,

 
Ri

C
idt L

di
dt

t+ + = ³ò +1
0 0,

 
(12.1)

Differentiating, dividing by L, and rearranging,

 
d i
dt

R
L
di
dt

i
LC

t
2

2 0 0+ + = ³ +,
 

(12.2)

Equation 12.2 is a homogeneous differential equation 
in i. It is of the general form

 
d y
dt

dy
dt

y t
2

2 0
22 0 0+ + = ³ +a w ,

 
(12.3)

where y is a voltage or current variable and a wand 0
2 are 

given by

 
a w= =R

L LC2
1

0and
 

(12.4)

Note that α and ω0 depend on the circuit parameters 
R, L, and C only. Moreover, since the first term, d2i/dt2, in 
Equation 12.3. has the units of y divided by t2, the other 
two terms must have the same units. This means that α 
and ω0 are in radians/s. For reasons that will become 
clear later, α is referred to as the damping factor and ω0 
as the resonant frequency.
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(a) Inductor is charged when the switch has been in the closed position 
for a long time and (b) series RLC circuit having an initially charged 
inductor.
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As mentioned in connection with Equation 11.3, the 
general solution of a homogeneous, linear, ordinary, 
differential equation of any order, but having constant 
coefficients, is the sum of exponentials of the form Aest , 
where s and A are constants for a given circuit and initial 
conditions, and the number of exponential terms in the 
sum is equal to the order of the equation. Substituting in 
Equation 12.3 and collecting terms,

 Ae s sst 2
0
22 0+ +( ) =a w  (12.5)

In order to satisfy Equation 12.5 for all t, either A = 0 
or the bracketed terms must sum to zero. If A = 0, all 
the responses in the circuit will be zero. The solution is 
trivial and contradicts the assumption of nonzero initial 
energy storage. Hence,

 s s2
0
22 0+ + =a w  (12.6)

Equation 12.6 is the characteristic equation of the dif-
ferential Equation 12.3, similar to Equation 11.4, for a 
first-order homogeneous differential equation. It is of 
fundamental importance in the analysis of circuits and 
systems, because it governs the basic natural response 
of the circuit or system. The roots s1 and s2 of Equation 
12.6 are

 s s1
2

0
2

2
2

0
2= - + - = - - -a a w a a wand  (12.7)

where s1 and s2 depend on R, L, and C only, since α and ω0 
depend only on R, L, and C (Equation 12.4). s1  and s2 
are related by the following equations:

 s s
R
L

s s s s1 2 1 2
2

0
2

1 2 0
22 2+ = - = - - = - =a a w w, , and  

(12.8)

The general solution of the homogeneous differential 
equation is then of the form

 y t Ae Be ts t s t( ) = + ³ +1 2 0,  (12.9)

where A and B are arbitrary constants that depend, 
in general, on the initial conditions as well as s1 
and  s2. Note that since Equation 12.3 is second order 
and formally involves two integrations, the general 
solution should have two arbitrary constants, as in 
Equation 12.9. Fundamentally, the initial conditions are 
the values of the energy-related variables at t = 0+, that 
is, inductor current and capacitor voltage, which do not 
change between t = 0− and t = 0+. Mathematically, and 
for convenience, the initial conditions applied are those 
of the variable under consideration and its first deriva-
tive at t = 0+.

It is evident from Equation 12.7 that there are three 
cases to consider, corresponding to α > ω0, α < ω0, and 
α = ω0. These three conditions result in three different 
types of natural responses of second-order circuits, as 
will be discussed in the following subsections. Before 
doing so, however, we will make some generalizations 
based on the discussion in the preceding chapter on 
first-order circuits:

 1. As t → ∞, all responses in Figure 12.1 will go to 
zero, because stored energy will eventually be 
dissipated in the resistor, which means that all 
steady-state responses will be zero. The solution 
to Equation 12.3 is therefore a purely transient 
response.

 2. The second-order homogeneous differential 
equation is completely specified by α and ω0 and 
hence by the exponents s1 and s2. Linear opera-
tions in LTI circuits do not change the exponents 
s1 and s2. Hence, as discussed in Section 11.5, the 
following concept applies:

Concept: All the circuit variables in a given second-order 
circuit obey the same homogeneous differential equation. The 
same characteristic equation applies to all the circuit variables, 
which means that all these variables have the same s1, s2, α, 
and ω0 and, hence, the same form of the natural response.

It follows that the natural responses in Figure 12.1 
have the general form

 i t A e B e ti
s t

i
s t( ) = + ³ +1 2 0,  (12.10)

 v t A e B e tC C
s t

C
s t( ) = + ³ +1 2 0,  (12.11)

 v t A e B e tL L
s t

L
s t( ) = + ³ +1 2 0,  (12.12)

where the exponents are the same but the arbitrary 
constants are, in general, different, and s1  ≠  s2. All the 
responses vanish as t → ∞, because s1 and s2 are either 
negative real or have negative real parts (Equation 12.7). 
vR = Ri is directly proportional to i.

Since the same form of the general solution applies to 
all the circuit variables in a given circuit, and in cases 
where the responses to more than one variable are 
required, it will be demonstrated that in a series circuit, 
it is convenient to derive first the general solution for 
vC, the voltage across the capacitor. This has two advan-
tages: (1) the general responses for i, or vR, and vL, are 
obtained by successive differentiation. This is more con-
venient than having to derive some responses through 
integration by parts, as can happen if a variable other 
than vC is considered first. (2) It is easy to verify the volt-
age responses by checking that they satisfy KVL.
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Exercise 12.1

Verify, by applying the relations between vC and i, 
and between vL and i, in Equation 12.1, that vC and vL 
obey the same homogeneous differential equation in i 
(Equation 12.2).

12.1.1  Overdamped Responses

The natural responses will be illustrated by consider-
ing a numerical example having R = 500 Ω, C = 12.5 μF, 
L = 0.5 H, and I0 = 3 A. Hence, α = R/2L = 500 rad/s 
and w0 1 400= =/ /LC rad s. With α > ω0. It follows that 

s1
2 2500 500 400 200= - + ( ) - ( ) = - rad/s and s2 500= - -  

500 400 8002 2( ) - ( ) = - rad/s. Considering vC, as explained 
earlier, and substituting in Equation 12.11

 v t Ae Be tC
t t( ) = + ³- - +200 800 0,  (12.13)

where the subscripts have been dropped from the arbi-
trary constants A and B for convenience. Note that, 
according to Equation 12.13, A and B have the same units 
as vC(t). A and B are determined from the initial condi-
tions. In the circuit of Figure 12.1, the stored energy just 
before the switch is opened at t = 0− is zero in the capaci-
tor and 1 2 0

2/( )LI  in the inductor. It follows from the con-
stancy of stored energy in the capacitor at the instant of 
switching that vC(0+) = 0. Substituting in Equation 12.13,

 A B+ = 0 (12.14)

or A = −B. To apply the second initial condition, Equation 
12.13 is differentiated to give

 
dv t
dt

Ae Be tC t t( )
= - - ³- - +200 800 0200 800 ,

 
(12.15)

i(0−) = I0 = 3 A and does change at t = 0+ because the stored 
energy in the inductor does not change at the instant of 
switching. It follows that (dvC/dt)0+ = i(0+)/C = 3/C = 3/
(12.5 × 10−6) = 24 × 104 V/s. With A = −B, Equation 12.15 
gives 600A = 24 × 104, or A = 400 V = −B. Substituting in 
Equation 12.13,

 v t e e tC
t t( ) = -( ) ³- - +400 0200 800 V,  (12.16)

Once vC is obtained, all the other responses readily 
 follow. Thus,

 
i t C

dv
dt

e eC t t( ) = = ´ ´ - +( )- - -12 5 10 400 200 8006 200 800.
 

or

 i t e e tt t( ) = - + ³- - +200 8004 0A,  (12.17)

 v t Ri e e tR
t t( ) = = - + ³- - +500 2000 0200 800 V,  (12.18)

 
v t L

di
dt

e eL
t t( ) = = -( )- -0 5 200 3200200 800.

 

or

 v t e e tL
t t( ) = - ³- - +100 1600 0200 800 V,  (12.19)

It is important to note the following checks on the 
expressions for the responses: (1) vC(0+) = 0, i(0+) = 3 A, 
vR(0+)  =  3  ×  500  =  1500  V, and vL(0+)  =  −1500  V, in 
accordance with KVL at t  =  0+, as illustrated in 
Figure 12.2; (2) as t → ∞, i(∞) = vC(∞) = vL(∞) = 0, since 
all responses become zero when the energy initially 
stored in the  inductor is dissipated in the resistor; and 
(3) vR + vC + vL = 0 for all t, as required by KVL.

Note that constancy of stored energy in C at the instant 
of switching requires that vC(0+) = 0, but the capacitor 
current can jump instantaneously from zero at  t = 0 − to 
I0 = 3 A at t = 0+ in order to satisfy KCL. Similarly, con-
stancy of stored energy in the inductor at the instant of 
switching requires that the i(0+)  =  I0, but the inductor 
voltage can jump from 0 to −RI0 in order to satisfy KVL.

Figure 12.3 shows the variation with time, for t ≥ 0+, 
of i, vC, and more conveniently, v vL L¢ = - , rather than vL. 
A positive i charges the capacitor, which stores electric 
energy. Both the energy stored in the capacitor and that 
dissipated in the resistor can only come from the energy 
initially stored in the inductor. This means that i must 
decrease with time and eventually go to zero. However, 
the decrease in i is not monotonic, as in a first-order cir-
cuit. The capacitor continues to charge while i is positive 
but decreasing. When i = 0, vC = vL¢ , and vC is at a maxi-
mum, since dvC/dt = i/C = 0 at this instant, as indicated 
by the dashed line on the left in Figure 12.3. Beyond this 
time, the capacitor discharges and drives i in the nega-
tive direction. i then reaches a minimum before decaying 
to zero. Note that since vL¢  = −Ldi/dt, then vL¢ > 0 when i 
is decreasing, vL¢ < 0 when i is increasing, and vL¢ = 0 
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FIGURE 12.2
KVL at t = 0+ in the circuit of Figure 12.1.
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when i is minimum. Eventually, all the energy initially 
stored in the inductor is dissipated in the resistor, and 
all the circuit responses decay to zero. The responses of 
Figure 12.3 are described as overdamped.

What is the effect of increasing R on the overdamped 
response? Suppose that R is increased from 500 to 1500 Ω. 

This gives s1
2 21500 1500 400 54 3= - + ( ) - ( ) = - . /rad s 

and s2
2 21500 1500 400 2946= - - ( ) - ( ) = rad/s. It is seen 

that as R increases, the magnitude of s1 decreases, whereas 
the magnitude of s2 increases, so that es t1  decreases at a 
slower rate, whereas es t2  decreases at a faster rate. The 
overall effect can be argued from vL(0+). With I0 = 3 A, 
as before, and R  =  1500 Ω, vL(0+)  =  −4500  V/s instead 
−1500 V/s. But v L di dtL 0

0
+( ) = ( )( ) +/ . Thus, as R increases, 

vL(0+) becomes more negative, and i decreases at a faster 
rate. This is illustrated in Figure 12.4 for R = 1500 Ω and 

R = 500 Ω. The latter is the same as in Figure 12.3 but on 
an expanded time scale.

Primal Exercise 12.2

Determine (a) α, ω0, s1, and s2 for the series RLC circuit in 
Figure 12.1b with R = 2.6 kΩ, L = 0.1 mH, and C = 0.4 nF, 
and (b) i(t), t ≥ 0+, if i(0+) = 24 mA and vC(0+) = 0.

Ans. (a) α = 13 Mrad/s, ω0 = 5 Mrad/s, s1 = −1 Mrad/s, 
s2 = −25 Mrad/s. (b) i t e et t( ) = - +- -25 25 mA, t is in μs.

12.1.2  Underdamped Responses

Consider next the case when R is reduced to 100 Ω. This 
makes α = 100 rad/s, which is less than ω0 = 400 rad/s. 
Under these conditions, s1 and s2, as given by 
Equation 12.7, become complex conjugates and can be 
expressed as

 s j s jd d1 2= - + = - -a w a wand  (12.20)

where

 w w ad = -0
2 2

 (12.21)

and is referred to as the damped natural fre-
quency. Substituting the numerical values, ωd  = 

400 100 100 15 387 32 2( ) - ( ) = = . /rad s. Equation 12.11 
becomes

 v t A e B e tC C
j t

C
j t( ) = + ³

- -( ) - +( ) +100 1 15 100 1 15
0,  (12.22)

where AC and BC are in general complex constants. 

If e t j tj t100 15 100 15 100 15= +cos sin  and e j t- =100 15  
cos sin100 15 100 15t j t-  are substituted in Equation 
12.22, the general solution of Equation 12.22 can be 
expressed as

 v t e A t B t tC
t( ) = +( ) ³- +100 100 15 100 15 0cos sin ,  

(12.23)

where A =  (AC + BC) and B =  j(AC − BC) are new arbi-
trary constants. Evidently, A and B are real, since vC(t) 
must be a real function of time. The general solution 
of Equation 12.23 is more convenient to work with than 
Equation 12.22 because it does not involve any complex 
quantities. The initial condition that vC(0+)  =  0 gives 
A = 0, and Equation 12.23 becomes

 v t Be t tC
t( ) = ³- +100 100 15 0sin ,  (12.24)
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Effect of resistance on the overdamped current response in a series 
RLC circuit.

10ms 15ms 20ms 25ms

0

0s 5ms

600

1200

–300

0

300

900

1500

V

Time

3

2.4

1.8

1.2

0.6

–0.6

A

vC

i

vL

FIGURE 12.3
Overdamped, natural responses of series RLC circuit.
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To apply the second initial condition, Equation 12.24 
is differentiated to give

 

dv
dt

B e t e t

t

C t t= - +( )
³

- -

+

100 100 15 100 15 100 15

0

100 100sin cos ,
 

(12.25)

Substituting (dvC/dt)0+ = 24×104, as was done in con-
nection with Equation 12.15, gives B = 2400 15/ V. Hence,

 
v t e t tC

t( ) = ³- +2400
15

100 15 0100 sin ,V
 

(12.26)

It follows from Equation 12.26 that

i t C
dv
dt

e t e

C

t

( ) = = ´

- +

´-

- -

12 5 10

2400
15

100 100 15 100 15

6

100 100

.

sin tt tcos100 15( )
 

or

 
i t e t t tt( ) = -æ

è
ç

ö

ø
÷ ³- +3 100 15

1
15

100 15 0100 cos sin ,A
 

(12.27)

 
v t e t t tR

t( ) = -æ

è
ç

ö

ø
÷ ³- +300 100 15

1
15

100 15 0100 cos sin ,V
 

(12.28)

v t L
di
dt

e t t

e

L
t( ) = = - -æ

è
ç

ö

ø
÷

é

ë
ê

+

-1 5 100 100 15
1
15

100 15100. cos sin

-- - -( )ùû100 100 15 100 15 100 100 15t t tsin cos

or

 

v t e t t

t

L
t( ) = - +é

ëê
ù

ûú

³

-

+

150 2 100 15
14
15

100 15

0

100 cos sin ,V

 
(12.29)

The same checks apply as for Equations 12.16 
through 12.19. 

i, vL¢ =  −vL and vC are plotted in Figure 12.5. The 
responses are damped sinusoids, that is, sinusoidal func-
tions whose amplitudes decrement with time because 
of the exponential term e t-a  that multiplies the sinu-
soids. That is why α is termed the damping factor. The 
responses of Figure 12.5 are described as underdamped.

When α is large, the amplitudes attenuate rapidly, con-
versely when α is small. This is illustrated in Figure 12.6 

for i and two values of R. i decrements more slowly 
when R = 20 Ω and α = 20 rad/s than when R and α have 
larger values.

Because of the marked oscillations, there is an 
 appreciable alternation of stored energy between the 
inductor and the capacitor. Thus, when i  =  0, energy 
is stored only in the capacitor, but when vC = 0, energy is 
stored only in the inductor.

Primal Exercise 12.3

Determine (a) α, ω0, and ωd for the series RLC circuit of 
Figure 12.1b, with R = 0.6 kΩ, L = 0.1 mH, and C = 0.4 nF, 
and (b) i(t), t ≥ 0+, if i(0+) = 24 mA and vC(0+) = 0.
Ans. (a) α = 3 Mrad/s, ω0 = 5 Mrad/s, ωd = 4 Mrad/s; 
(b) i t e t tt( ) = -( )-6 4 4 3 43 cos sin mA, t is in μs.
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FIGURE 12.5
Underdamped, natural responses of series RLC circuit.
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Effect of resistance on the underdamped current response in a series 
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12.1.3  Critically Damped Responses

The third possibility, when α  =  ω0, makes s1  =  s2  = 
−ω0 = −400 rad/s. The value of R is then R = 2ω0L = 
400 Ω. The responses in this case are described as criti-
cally damped.

Equation 12.11 becomes v t A B eC C C
t( ) = +( ) -w0 , having 

only one arbitrary constant (AC + BC), which means that 
it is not the general solution of the homogeneous differ-
ential equation. The general solution in this case, with 
only one exponential e t-w0 , is

 v t Ae Bte tC
t t( ) = + ³- - +w w0 0 0,  (12.30)

where the subscripts have been dropped from A and B 
for convenience. That Equation 12.30 satisfies Equation 
12.10 can be readily verified by substitution. The initial 
condition that vC(0+) = 0 makes A = 0.

To apply the second initial condition, Equation 12.30 
is differentiated to give, with A = 0,

 
dv
dt

Be B te tC t t= - ³- - +w ww0 0
0 0,

 
(12.31)

Substituting (dvC/dt)0+ = 24 × 104 V/s, as was done in 
connection with Equation 12.15, gives B = 24 × 104 V/s. 
Hence,

 v t te tC
t( ) = ´ ³- +24 10 04 400 V,  (12.32)

It follows from Equation 12.32 that

 
i t C

dv
dt

e teC t t( ) = = ´ ´ ´ -( )- - -12 5 10 24 10 4006 4 400 400.
 

or

 i t e t tt( ) = -( ) ³- +3 1 400 0400 A,  (12.33)

 v t e t tR
t( ) = -( ) ³- +1200 1 400 0400 V,  (12.34)

 
v t L

di
dt

e t eL
t t( ) = = - -( ) -éë ùû

- -1 5 400 1 400 400400 400.
 

or

 
v t L

di
dt

e t tL
t( ) = = - -[ ] ³- +600 2 400 0400 ,

 
(12.35)

The same checks apply as for Equations 12.16 through 
12.19.

i, v vL L¢ = -  and vC are plotted in Figure 12.7. It is 
seen that the responses are qualitatively similar to the 

overdamped responses of Figure 12.3, although the 
mathematical expressions are of quite different form.

Summary:

 1. When R is large enough so that α > ω0, s1 and s2 are neg-
ative real and distinct. The responses are overdamped.

 2. When R is such that α = ω0, then s1 = s2 = −ω0. The 
responses are critically damped.

 3. When R is small enough so that α < ω0, s1 and s2 are 
complex, the responses are damped sinusoids. The 
responses are underdamped.

Primal Exercise 12.4

If the series RLC circuit of Figure 12.1b has L = 0.1 mH, 
and C = 0.4 nF, determine (a) R for critical damping and 
(b) i(t), t ≥ 0+, if i(0+) = 24 mA and vC(0+) = 0.
Ans. (a) R = 1 kΩ; (b) i t e tt( ) = -( )-24 1 55 mA, t is in μs.

What if initial energy was stored in the capacitor 
rather than in the inductor? As emphasized earlier, this 
does not change α and ω0, and hence s1 and s2, because 
these depend only on R, L, and C, and not on the ini-
tial conditions. The type of response, whether over-
damped, underdamped, or critically damped, is the 
same, because the type of response depends only on the 
relative magnitudes of α and ω0. But the arbitrary con-
stants change with the initial conditions, which changes 
the coefficients of the terms in the responses. Example 
12.1 considers the cases of initial energy storage in the 
capacitor alone, and in both the capacitor and inductor. 
The following important concept is illustrated:

Concept: The natural responses due to initial energy storage 
in both the inductor and capacitor can be obtained by super-
position, that is, by adding algebraically the responses due to 
energy storage in the inductor alone and in the capacitor alone.
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FIGURE 12.7
Critically damped, natural responses of series RLC circuit.
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Example 12.1: Natural Responses of Series 
RLC Circuit with Initial Energy Storage

Determine i(t), vR(t), vC(t), and vL(t) in the circuit of 
Figure  12.1b if at t  =  0, (a) the capacitor has an initial 
voltage V0  =  −1200  V and the inductor has zero ini-
tial current and (b) the capacitor has an initial voltage 
V0 = −1200 V and the inductor has an initial current of 
i(0−) = 3 A.

Solution:

 (a) The circuit is illustrated in Figure 12.8a, where the 
capacitor is charged by the battery to V0 = VSRC and 
is connected via the changeover switch at t = 0 to 
be in series with a resistor R and an uncharged 
inductor L. The circuit becomes as in Figure 12.8b 
for t ≥ 0+. To avoid unnecessary repetition, only the 
case of overdamped responses, with R  =  500 Ω, 
will be considered.

As determined previously for the overdamped 
case, α = 500 rad/s, ω0 = 400 rad/s, s1 = −200 rad/s, 
and s2  =  −800  rad/s. The general solution of 
Equation 12.13 therefore applies, expressed as

 v t Ae Be tC
t t( ) = + ³- - +200 800 0,  

At t = 0−, the energy stored in the capacitor is 
1 2 0

2/( )CV  and no energy is stored in the induc-
tor. At t = 0+, these energies stay the same, so that 
vC(0+) = V0 and i(0+) = 0. This gives

 A B+ = -1200 (12.36)

To apply the second initial condition, Equation 
12.13 is differentiated to give

 
dv
dt

Ae BeC t t= - -- -200 800200 800

 
(12.37)

(dvC/dt)0+  =  i(0+)/C  =  0, so that A  =  −4B. 
Substituting in Equation 12.36 gives A = −1600 V 
and B = 400 V. It follows that

 v t e e tC
t t( ) = - -( ) ³- - +400 4 0200 800 V,  (12.38)

 
i t C

dv
dt

e eC t t( ) = = ´ ´ -( )- - -12 5 10 400 800 8006 200 800.
 

or

 i t e e tt t( ) = -( ) ³- - +4 0200 800 A,  (12.39)

 
v t

di
dt

e e tL
t t( ) = = - -( ) ³- - +0 5 400 4 0200 800. ,V

 
(12.40)

As a check, (1) vC(0+)  =  −1200  V, i(0+)  =  0, 
vL(0+) = 1200 V; (2) as t → ∞, vC(∞) = i(∞) = vL(∞) = 0, 
since all responses become zero when the energy 
initially stored in the capacitor is dissipated in the 
resistor; and (3) vR + vC + vL = 0 for all t, as required 
by KVL.

i v vC C, ¢ = - , and vL are plotted in Figure 12.9. At 
t  =  0+, vC¢ = 1200 V, which means that the upper 
plate in Figure  12.8b is positively charged with 
respect to the lower plate. The capacitor begins 
to discharge, driving i in the positive direction, 
so i increases. As i varies with time, it induces a 
voltage vL in the inductor. While i is increasing, 
its increase is opposed by a positive vL. i increases 
at a decreasing rate because of the drop in v'C as 
the capacitor discharges, and because the increase 
in i is opposed by a positive vL, added to the volt-
age drop across the resistor.  vL decreases with the 
decreasing rate of increase of i. i reaches a maxi-
mum, at which time vL = Ldi/dt = 0. i then decreases 
towards zero, resulting in a negative vL that opposes 
the decrease in i. Eventually, all the energy initially 
stored in the capacitor is dissipated in the resistor.

 (b) The general solution of Equation 12.13 applies, that is,

 v t Ae Be tC
t t( ) = + ³- - +200 800 0,  

At t  =  0−, the energy stored in the capacitor 
is 1 2 0

2/( )CV  and the energy stored in the induc-
tor is 1 2 0

2/( )LI . At t  =  0+, these energies stay the 
same. This means that at vC(0+) = V0 = −1200 V and 
i(0+) = I0 = 3 A. The first condition gives, as before, 
A + B = −1200. From Equation 12.37,

 i t C
dv
dt

Ae BeC t t( ) = = - ´ ´ +( )- - -12 5 10 200 46 200 800.  (12.41)
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FIGURE 12.8
Figure for Example 12.1.
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At t  =  0+, Equation 12.41 reduces to 
A  +  4B  =  −1200. It  follows that A  =  −1200  V and 
B = 0, so that

 v t e tC
t( ) = - ³- +1200 0200 V,  (12.42)

 
i t C

dv
dt

eC t( ) = = ´ ´ ´- -12 5 10 1200 2006 200.
 

or

 i t e tt( ) = ³- +3 0200 A,  (12.43)

 v t e tR
t( ) = ³- +1500 0200 V,  (12.44)

 
v t

di
dt

e tL
t( ) = = - ³- +0 5 300 0200. V,

 
(12.45)

It should be noted that the initial conditions in 
this example have been deliberately chosen so as to 
give B = 0. It can be shown that the condition for 
B = 0 is that I0 = s1CV0, which is satisfied in this case 
(Problem  P12.63). This condition is tantamount to 
having the capacitor initially charged to VO and dis-
charging with a time constant 1/s1. vC(t) is then given 
by - -V e s t

0
1 . The initial value of the discharge current 

is s1CV0. If this happens to be equal to I0, the initial 
current in the circuit, as is the case in this example, 
then B = 0. This eliminates the term involving the 
exponential in s2, leaving only the term involving 
the exponential in s1. All the responses will have a 
single time constant, as for a first-order circuit.

As a check, (1) vC(0+) = −1200 V, i(0+) = 3 A, vL(0+) = 
−300 V; (2) as t → ∞, vC(∞) = i(∞) = vL(∞) = 0, since 
all responses become zero when the energy ini-
tially stored in the capacitor and in the inductor is 
dissipated in the resistor; and (3) vR + vC + vL = 0 for 
all t, as required by KVL.

The responses are shown in Figure 12.10. Being 
simple exponentials, the tangents to the curves at 
t = 0 intersect the time axis at t = 1/200 s, or 5 ms.

It is important to note that superposition 
applies. Table 12.1 lists the overdamped responses 
due to stored energy in the inductor alone, in the 
capacitor alone, and in both the inductor and 
the  capacitor. Superposition applies, of course, 
to the underdamped and critically damped 
responses as well.

Primal Exercise 12.5

Repeat Example 12.1 for the cases of underdamped and 
critically damped responses.

Ans. Critically damped responses: v t eC
t( ) = - +( -1200 400  

200 400te t- ) V, i t e tet t( ) = +( )- -3 400400 400

 A, v tL ( ) = - ´24  

104 400te t-  V.

Underdamped responses: v t eC
t( ) = - ´-1200 100

  

cos / sin100 15 1 15 100 15t t- ( )( )  V, i t e t( ) = ´-1 5 100.   
2 100 15 14 15 100 15cos / sint t+ ( )( ) A,

 
v t e t tL

t( ) = - ( )( )-300 3 100 15 11 15 100 15100 cos / sin .V
 

Exercise 12.6

Verify that in all the responses of the series RLC derived 
so far, the time integral of the current is equal to the ini-
tial charge on the capacitor, and the time integral of the 
voltage across the inductor is equal to the initial flux 
linkage of the inductor.

Primal Exercise 12.7

Both switches in Figure 12.11 are moved at t  =  0, the 
initial stored energies being 12.5 J in the capacitor and 
0.5 J in the inductor. Determine vL(0+).
Ans. 8 V.

TABLE 12.1

Superposition of Responses due to Stored Energy

Quantity
Energy Stored in 

Inductor
Energy Stored in 

Capacitor

Energy 
Stored in 

Inductor and 
Capacitor

i, A - +- -e et t200 8004 4 200 800e et t- --( ) 3 200e t-

vL, V 100 1600200 800e et t- -- - -( )- -400 4200 800e et t - -300 200e t

vC, V 400 200 800e et t- --( ) - -( )- -400 4 200 800e et t - -1200 200e t
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Primal Exercise 12.8

Determine whether the response of the circuit in 
Figure 12.11 for t ≥ 0+ is overdamped, critically damped, 
or underdamped.
Ans. Underdamped.

Primal Exercise 12.9

In a series RLC circuit, the natural voltage response 
across one of the elements is 2 34e tt- cos V, t is in s. If R 
is divided by 2, what would be the values of α and ωd?
Ans. α = 2 rad/s, wd = 21 rad/s.

Table 12.2 lists, for reference purposes, the responses 
due to energy storage in each of the capacitor or induc-
tor alone. These responses are derived by following the 
same procedure as in the preceding numerical cases, 
and in Example 12.1, but retaining the general symbols 
(Exercise 12.10).

Exercise 12.10

Derive the general expressions listed in Table 12.2.

Exercise 12.11

Verify that the numerical, overdamped responses i, vR, vL, 
and vC derived in this section, for both the cases of initial 
inductor current and initial capacitor voltage, are in accor-
dance with the general expressions listed in Table 12.2.

12.1.4  Sustained Oscillations

The series RLC circuit is shown in Figure 12.12a but with 
R = 0. Assuming L = 0.5 H, C = 12.5 μF, and I0 = 3 A, as 
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FIGURE 12.11
Figure for Primal Exercise 12.7.

TABLE 12.2

Natural Responses of Series RLC Circuit, t ≥ 0+ (Assigned Positive Directions as in Figure 12.1b)

 Initial Inductor Current I0 Initial Capacitor Voltage V0
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in Section 12.1.2, this makes α = 0 and ωd = 400 rad/s. 
Equation 12.23 becomes vC(t)  =  Acos400t  +  Bsin400t. 
Having v(0+) = 0 makes A = 0; so that vC(t) = Bsin400t; 
B is determined from the second initial condition that 
i(0+) = C(dvC/dt)0+ = 3 A. This gives 12 5 10 400 36. ´ ´ =- B , 
or B = 600. It follows that.

 v t t tC ( ) = ³ +600 400 0sin V,  (12.46)

 v t v t t tL C( ) = - ( ) = - ³ +600 400 0sin ,V  (12.47)

 
i t C

dv
dt

t tC( ) = = ³ +3 400 0cos ,A
 

(12.48)

The responses are nondecrementing, sustained oscil-
lations (Figure 12.12b). As to be expected, vL leads i by 
90° and vC lags i by 90°. With R = 0, there is no power dis-
sipation in the circuit. Energy is continually exchanged 
between magnetic energy stored in the inductor and 
electric energy stored in the capacitor. When vC = vL = 0, 
the magnitude of i is maximum, and all the energy 
is stored in the inductor. The energy at this instant is 
(1/2)Li2 = 9/4 = 2.25 J. When i = 0, the magnitude of vC 
is maximum, and all the energy is stored in the capaci-
tor. The energy at this instant is (1/2)Cv2 = (1/2) × 12.5 × 
10−6  ×  (600)2  =  2.25  J. At intermediate times, energy is 
stored partly in the inductor and partly in the capacitor, 
but the total energy w(t) at any instant is 2.25 J. Thus,

 

w t Li Cv

t t

C( ) = +

= ´( ) + ´ ´( )-

1
2

1
2

1
2

0 5 3 400 12 5 10 600 400

2 2

2 6. cos . sin
22

2 21
2

4 5 400 4 5 400 2 25

( )
= +( ) =. cos ) . sin .t t J

 

Having R = 0 may seem an ideal case that cannot be 
realized in practice. But active devices, such as tran-
sistors, can be used to introduce a negative resistance 
that effectively reduces R to zero. In other words, the 
active device introduces sufficient energy to compen-
sate for the power dissipated in the circuit, so that 

continuous oscillations are produced. This is the prin-
ciple behind LC oscillators, which are commonly used 
in practice.

Primal Exercise 12.12

If L  =  10  μH, determine C that gives an oscillation 
 frequency of 100 kHz.
Ans. 0.253 μF.

Primal Exercise 12.13

Assume that the circuit of Figure 12.12 started oscillating 
at 1 Mrad/s, with initial energies of 1.5 μJ in the inductor 
and 0.5 μJ in the capacitor. Determine L if the peak volt-
age across the circuit is 2 V.
Ans. 1 μH.

Primal Exercise 12.14

Given that i  =  sinω0t A in Figure 12.13, determine the 
smallest t > 0 at which the instantaneous energy stored 
in the capacitor (a) is a maximum, and (b) is equal to that 
stored in the inductor.
Ans. (a) 2π = 6.28 s; (b) π/2 = 1.57 s.

12.2  Natural Response of Parallel GCL Circuit

The dual of the series RLC circuit considered in Section 
12.1 is the parallel GCL circuit (Figure 12.14). For t < 0−, 
the capacitor is charged to V0  =  VSRC and the induc-
tor is uncharged (Figure 12.14a). At t  =  0+, the switch 
is moved, and the circuit becomes as in Figure 12.14b. 
Table 12.3 lists the dual quantities in both cases.

The initial conditions first considered in Section 12.1 
were i(0+)  =  3  A and vC(0+)  =  0  V. The corresponding 
initial conditions in the dual GCL circuit are, from 
Table 12.3, v(0+) = 3 V and iL(0+) = 0. We will analyze this 
case for overdamped responses from first principles 
to illustrate that v and the currents in Figure 12.14 are 
the same as those derived from substituting the dual 
quantities of Table 12.3 in the equations for the series 
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(a) Lossless LC circuit and (b) variations with time of i, vL, and vC.
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RLC circuit. Just as it is convenient in the case of the 
series RLC circuit to derive the solution for vC first, it 
is convenient in the case of the parallel GCL circuit to 
derive the solution for iL, the dual of vC, first.

From KCL, iG  +  iC  +  iL  =  0. The voltage v across 
the parallel combination is v(t)  =  LpdiL/dt, and 
iG(t)  =  Gpv  =  GpLpdiL/dt; iC(t)  =  Cpdv/dt  =  LpCpd2iL/dt2. 
Substituting in the KCL equation,

 
G L

di
dt

L C
di
dt

i tp p
L

p p
L

L+ + = ³ +0 0,
 

(12.49)

Dividing by LpCp and rearranging,

 

d i
dt

G
C

di
dt C L

i tL p

p

L

p p
L

2

2

1
0 0+ + = ³ +,

 
(12.50)

This is represented in standard form as

 
d i
dt

di
dt

i tL
p

L
L

2

2 0
22 0 0+ + = ³ +a w ,

 
(12.51)

where

 
a wp

p

p p p

G
C C L

= =
2

1
0and

 
(12.52)

Note that each of α and ω0 has the same value in dual 
series and parallel circuits, because the numerical values 
of R and Gp are the same, as are the numerical values 
of L and Cp, and C and Lp. The expression for ω0 is the 
same for both circuits in terms of the circuit parameters, 
being 1/ inductance capacitance´  in both circuits, but 
the expression for α is different.

Substituting i AeL
st=  in Equation 12.51,

 Ae s sst
p

2
0
22 0+ +( ) =a w  (12.53)

In order to satisfy Equation 12.53 for all t, and have 
nonzero responses, the bracketed terms must sum to 
zero:

 s sp2
0
22 0+ + =a w  (12.54)

The roots s1 and s2 of Equation 12.54 are given by the 
same expressions as in Equation 12.7 and would have 
the same numerical values for dual circuits.

The general solution is of the form

 i t Ae Be tL
s t s t( ) = + ³ +1 2 0,  (12.55)

Next, we will substitute numerical values in accor-
dance with duality, namely, Gp  =  500  S, Lp  =  12.5  μH, 
Cp = 0.5 F, and V0 = 3 V. This gives αp = Gp/2Cp = 500 rad/s, 
w0 1 400= =/ /C Lp p rad s. It follows that s1 = −200 rad/s 
and s2 = −800 rad/s. Substituting in Equation 12.55,

 i t Ae Be tL
t t( ) = + ³- - +200 800 0,  (12.56)

From the initial condition that iL(0+)  =  0, A  =  −B. 
To apply the initial condition of v(0+)  =  Lp di dtL/( ) +0

, 
Equation 12.56 is differentiated and both sides multi-
plied by Lp to give

 
L

di
dt

Ae Bep
L t t= ´ - -( ) =- - -12 5 10 200 800 36 200 800. V

 
(12.57)

TABLE 12.3

Dual Quantities

Series RLC R L C i vR vC vL α = R/2L w0 1= / LC

Parallel GCL Gp Cp Lp v iG iL iC αp = Gp/2Cp w0 1= / C Lp p
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FIGURE 12.14
(a) Capacitor is charged when connected to the battery for t ≤ 0− and (b) parallel GCL circuit having an initially charged capacitor. Inductances 
and resistances in the circuit shown in (a) are replaced by the effective inductance and resistance in (b).
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At t = 0+, this reduces to A + 4B = −1200. Substituting 
A = −B gives A = 400 A and B = −400 A. It follows that

 i t e e tL
t t( ) = -( ) ³- - +400 0200 800 A,  (12.58)

 
v t L

di
dt

e ep
L t t( ) = = ´ ´ - +( )- - -12 5 10 400 200 8006 200 800.

 

or

 v t e e tt t( ) = - + ³- - +200 8004 0V,  (12.59)

 i t e e tG
t t( ) = - + ³- - +500 2000 0200 800 A,  (12.60)

 
i t C

dv
dt

e eC p
t t( ) = = -( )- -0 5 200 3200200 800.

 

or

 i t e e tC
t t( ) = - ³- - +100 1600 0200 800 A,  (12.61)

As a check, (1) v(0+) = 3 V, iC(0+) = −1500 A, iG(0+) = 1500 
A, in accordance with KCL; (2) as t → ∞, v(∞) = iL(∞) = 
iC(∞)  = 0, since all responses become zero when the 
energy initially stored in the capacitor is dissipated in 
the resistor; and (3) iG + iC + iL = 0 for all t, as required by 
KCL. Equations 12.58 through 12.61 are the dual rela-
tions of Equations 12.16 through 12.19, respectively.

The general expressions for the overdamped,  critically 
damped, and underdamped natural responses of the 
parallel GCL circuit follow from those of the series RLC 
circuit listed in Table 12.2, but with dual quantities inter-
changed in accordance with Table 12.3.

Exercise 12.15

Derive from duality, using Tables 12.2 and 12.3, the 
responses of the parallel GCL circuit when initial energy 
is stored in the inductor alone.

Primal Exercise 12.16

Both switches in Figure 12.15 are moved at t = 0, the ini-
tial stored energies being 12.5 J in the inductor and 0.5 J 
in the capacitor. Determine iC at t = 0+. Note that this is 
the dual case of Primal Exercise 12.7.
Ans. 8 A.

Primal Exercise 12.17

The switch in Figure 12.16 is closed at t = 0, with an initial 
voltage VC0 = 5 V, and no energy stored in the inductor. 

(a) Determine v(0+), iL(0+), and iC(0+); (b) specify whether 
the response for t ≥ 0+ is overdamped, critically damped, 
or underdamped.
Ans. (a) v(0+) 5  V, iL(0+)  =  0, iC(0+)  =  −2.5  A; (b) 
underdamped.

12.3  Charging of Series RLC Circuit

In Figure 12.17, a battery of voltage VSRC is applied at 
t = 0 to a series RLC circuit with no initial energy stor-
age. It is required to determine the circuit responses 
for t ≥ 0+.

From KVL after the switch is closed, vR + vL + vC = VSRC. 
As explained earlier, it is convenient in a series circuit to 
derive vC first. We note that vR = Ri = RCdvC/dt and that 
vL  =  Ldi/dt  =  LCd2vC/dt2. Substituting these relations 
in KVL,

 
RC

dv
dt

LC
d v
dt

v V tC C
C SRC+ + = ³ +

2

2 0,
 

(12.62)
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Dividing by LC, and rearranging,

 
d v
dt

R
L
dv
dt LC

v
V
LC

tC C
C

SRC
2

2

1
0+ + = ³ +,

 
(12.63)

In standard form, Equation 12.63 is

 
d v
dt

dv
dt

v
V
LC

tC C
C

SRC
2

2 0
22 0+ + = ³ +a w ,

 
(12.64)

The complete solution of Equation 12.64 is the sum of 
two components: (1) the transient component, which is 
the solution of the homogeneous differential equation, 
and (2) the steady-state component. The homogeneous 
differential equation is the same as Equation 12.10, so 
that the transient component is given by Equation 12.11. 
The steady-state component, obtained by setting 
dvC/dt = 0 = d2vC/dt2 in Equation 12.62, is vC = VSRC. It 
 follows that the complete solution for vC is

 v t Ae Be V tC
s t s t

SRC( ) = + + ³ +1 2 0,  (12.65)

where s1 and s2 are given by Equation 12.7. Note that s1 
and s2 either are negative real or have a negative real 
part, so that vC → VSRC as t → ∞. It is clear from the circuit 
of Figure 12.17 that in the steady state after the switch is 
closed, the inductor acts as a short circuit and the capaci-
tor as an open circuit, so that i(∞) = 0 and vC(∞) = VSRC.

The arbitrary constants A and B are determined by 
applying the initial conditions to the complete solution. The 
stored energy is zero at t = 0−, so it remains zero at t = 0+. 
This means that i(0+) = 0, vC(0+) = 0, and vL(0+) = VSRC in 
order to satisfy KVL at this instant (Figure 12.18). Since, 
vC(0+) = 0, Equation 12.65 gives

 A B VSRC+ = -  (12.66)

The second initial condition that i(0+) = 0, which means 
that (dvC/dt)0+ = 0, is applied by differentiating Equation 
12.65 to obtain, at t = 0+:

 s A s B1 2 0+ =  (12.67)

Solving Equations 12.66 and 12.67 gives
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s V
s s
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s V
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1 2
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(12.68)

The following equations are derived:
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(12.69)

 
i t C

dv
dt
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s s e
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s s e
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é
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or

 
i t

V
L s s

e e tSRC s t s t( ) =
-( )

-éë ùû ³ +

1 2

1 2 0,
 

(12.70)

where the substitution  Cs s C L1 2 0
2 1= =w /  was made.

 
v t Ri

V
s s

e e tR
SRC s t s t( ) = =
-( )

-éë ùû ³ +2
0

1 2

1 2a
,

 
(12.71)

where the substitution R/L = 2α was made.

 
v t L

di
dt

V
s s

s e s e tL
SRC s t s t( ) = =
-( )

-éë ùû ³ +

1 2
1 2

1 2 0,
 

(12.72)

Equations 12.69 through 12.72 apply to overdamped 
and underdamped responses. They do not apply to the 
critically damped case, because s1 = s2 gives 0/0 in the 
responses, which is indeterminate.

12.3.1  Underdamped Response

Rather than substitute s j d1 = - +a w , s j s sd2 1 2= - - - =a w ,  
j d2w , and w w a0

2 2 2= +d  in Equations 12.69 through 12.72, 
it is more convenient to start with the general solution 
for vC being of the form

 v t e A t B t V tC
t

d d SRC( ) = +( ) + ³¢ ¢- +a w wcos sin , 0  
(12.73)

Since vC = 0 at t = 0+, then A′ = −VSRC. B′ is obtained 
from the initial condition that i(0+) = (dvC/dt)0+ = 0. To 
apply this condition, Equation 12.73 is differentiated 
and set to zero. But only the cosine terms need be con-
sidered in the derivative since the sine terms are zero at 
t = 0+. Thus,

 
dv
dt

V e t e B t X tC
SRC

t
d d

t
d= + + ( )¢- -a w w wa acos cos

 
(12.74)

where X(t) consists of sine terms that are zero at t = 0 
and the substitution A′ = −VSRC was made. Setting t = 0+ 
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FIGURE 12.18
KVL at t = 0+ in the circuit of Figure 12.17.
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in Equation 12.74 gives ¢ = -( )B Vd SRCa w/ . The following 
equations are derived:
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(12.75)
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w
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(12.76)

where the substitution C d da w w2/( ) +é
ë

ù
û =  

C C Ld d d da w w w w w2 2
0
2 1+( ) = =/ / /  was made.

 
v t
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w
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(12.77)

where the substitution R/L = 2α was made.
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(12.78)

12.3.2  Critically Damped Response

In a critically damped circuit, α = ω0, so that s1 = s2 = −ω0. 
The transient response is given by Equation 12.30. In 
the final steady state, the inductor acts as a short circuit 
and the capacitor as an open circuit, so that i (∞) = 0, 
vL(∞) = 0, and vC(∞) = VSRC. The complete solution for 
vC is

 v t Ae Bte V tC
t t

SRC( ) = + + ³- - +w w0 0 0,  (12.79)

Since vC = 0 at t = 0, then A = −VSRC. B is obtained from 
i(0+)  =  (dvC/dt)0+  =  0. Differentiating Equation 12.79, 
with A  =  −VSRC, and setting t  =  0, gives B  =  −ω0VSRC. 
The  following equations are derived:

 v t V e te tC SRC
t t( ) = - - +éë ùû ³- - +1 00 0

0
w ww ,  (12.80)
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C V e V e tV eC
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- - -w w ww w w

0 0 0
20 0 0

 

or

 
i t

V
L

te tSRC t( ) = ³- +w0 0,
 

(12.81)

where C Lw0
2 1= /  has been substituted.

  v t V te tR SRC
t( ) = ³- +2 00

0w w ,  (12.82)

where R/L = 2ω0 has been substituted.

 
v t L

di
dt

V e t tL SRC
t( ) = = -( ) ³- +w w0 1 00 ,

 
(12.83)

Note that Equations 12.69 through 12.72 for the over-
damped response, Equations 12.75 through 12.78 for the 
underdamped response, and Equations 12.80 through 12.83 
for the critically damped response all satisfy initial condi-
tions, final steady-state conditions, and KVL: (1) vC(0+) = 0, 
i(0+) = 0, vL(0+) = VSRC; (2) i(∞) = 0,  vL(∞) = 0, vC(∞) = VSRC; 
and (3) vR + vL + vC = VSRC, all in accordance with KVL.

The responses of the series RLC circuit during charg-
ing, with zero initial conditions, are summarized in the 
first column of Table 12.4.

12.3.3  Comparison of Responses

It is important to appreciate the differences in the 
step responses of the overdamped, critically damped, 
and underdamped circuits. In Figure 12.19, a voltage 
of 10 V is applied at t = 0 to a series RLC circuit hav-
ing L = 0.5 H and C = 12.5 μF, as used in Section 12.1. 
Figures 12.20 and 12.21 show the variation of i and vC 
for t  ≥  0+ and for R  =  100, 200, 400, and 700 Ω. The 
responses are overdamped for R  =  700 Ω, are criti-
cally damped for R  =  400  Ω, and are underdamped 
for R  =  100 and 200  Ω. The simulation procedure is 
described in Example 12.2.

All the current plots in Figure 12.20 have the same 
slope of (40 mA)/(2 ms) = 20 A/s at t = 0. This is because 
di dt/( ) +0

= vL(0+)/L = VSRC/L = 20 A/s, irrespective of R. 
As to be expected, the overdamped response has the 
smallest peak current value, because of the largest resis-
tance. This peak value increases for smaller values of 
resistance. The two underdamped responses are oscil-
latory, the oscillations becoming more marked as the 
resistance decreases.

The following characteristics of the responses of vC 
shown in Figure 12.21 should be noted:

 1. The overdamped response is the slowest of the 
responses to approach the steady-state value. This 
is to be expected, since vC is proportional to the 
integral of the current, and the amplitude of the 
current decreases with increasing R (Figure 12.20). 
This means that the larger R, the smaller the area 
under the current curve is, at least up to t between 
7 and 8 ms in Figure 12.20. The area under the i vs. 
t  curve is the same for all R as t → ∞, because the 
final value of vC is the same
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 2. The critically damped response is the fastest 
of the responses to approach the steady-state 
value without overshoot.

 3. The underdamped response is the fastest to 
reach the steady-state value, but overshoots this 
value and oscillates about it at a frequency ωd 
before settling to the final value. As the resis-
tance decreases, the overshoot increases, and 
the oscillations become more pronounced. In 
the limit, as R → 0, ωd → ω0.

If we consider the 9 V level in Figure 12.21, for exam-
ple, the overdamped response (700 Ω) reaches this level 

at  19.2  ms, the critically damped response at 9.72  ms, 
the underdamped response having R = 200 Ω at 5.31 ms, 
and the underdamped response having R  =  100  Ω at 
4.32 ms. However, the underdamped response can have 
unacceptable overshoot and undershoot.

TABLE 12.4

Charging of Dual Circuits, t ≥ 0+, with Zero Initial Energy Storage (Assigned Positive Directions as 
in Figures 12.17 and 12.25)
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A voltage of 10 V applied to a series RLC circuit.
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Current responses in the circuit of Figure 12.19 for various values of 
resistance.
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Example 12.2: Simulation of Step Responses 
of Series RLC Circuit

It is required to simulate the circuit in Figure 12.17 to 
obtain the variation of i and vc for t ≥ 0+ and for R = 100, 
200, 400, and 700 Ω.

Simulation: The schematic is entered as in Figure 12.22, 
with zero initial conditions (IC = 0) in the inductor and 
capacitor. PSpice automatically applies the 10  V VDC 
source at the start of the simulation (t = 0) without the 
need to connect a switch that closes at t = 0. In order to 
display a family of curves for various values of R, R is 
first declared as a global parameter, as follows: double-
click on the default resistance value displayed, which 
invokes the ‘Display Properties’ window. In the ‘Value’ 
field, enter a chosen designation enclosed in curly brack-
ets, which tells PSpice that this is a parameter and not a 
fixed value. In the present example, {R_val} is entered. 
The next step is to declare {R_val} a global parameter. 
Place the part ‘PARAM’ from the ‘SPECIAL’ library; this 
shows on the schematic as ‘PARAMETERS:.’ When this 
word is double-clicked, the Property Editor spreadsheet 
is displayed. Click on the ‘New Column’ button to display 
the ‘Add New Column’ dialog box. Enter R_val in the 
‘Name’ field and any value, say, 100, in the ‘Value’ field. 

A new column R_val is added to the spreadsheet with the 
entry 100. To have this displayed on the schematic, click 
on the ‘Display’ button and choose ‘Name’ and ‘Value’ in 
the ‘Display Properties’ dialog box. R_val = 100 appears 
under ‘PARAMETERS:,’ as shown in Figure 12.22.

To run the simulation, select ‘Time Domain 
(Transient)’ in the Simulation. Select ‘General Settings’ 
under ‘Options’ and enter 25m for ‘Run to time’, 0 for 
‘Start saving data after’, and 5u for ‘Maximum step size.’ 
Then select ‘Parametric Sweep’ under ‘Options’, choose 
‘Global parameter’ under ‘Sweep variable’, and enter 
R_val for ‘Parameter name’. In the ‘Value list’ under 
‘Sweep type’, enter: 100,200,400,700. Apply a current 
marker to the marked terminal of the inductor, without 
the voltage marker at the capacitor terminal, and run the 
simulation. An available sections window is displayed 
that allows you to select plots for one or more values 
of R. This is useful for identifying which trace belongs to 
which value of R. When all traces are selected, the current 
plots of Figure 12.20 are displayed. When the simulation 
is run with the voltage marker applied at the capacitor 
terminal, without the current marker at the inductor ter-
minal, the plots of Figure 12.21 are displayed.

Primal Exercise 12.18

An underdamped, series RLC circuit has ωd = 30 krad/s 
and α = 40 krad/s. If C = 1 μF, determine R.

Ans. 32 Ω.

Primal Exercise 12.19

Given a critically damped, series RLC circuit having 
L = 1 mH and R = 2 kΩ. Determine C.
Ans. 1 nF.

Primal Exercise 12.20

The switch in Figure 12.23 is closed at t  =  0 with no 
energy initially stored in the circuit. Determine the larg-
est value of di/dt.

Ans. 2 A/ms at t = 0.
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FIGURE 12.21
Capacitor voltage response in the circuit of Figure 12.19 for various 
values of resistance.
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Primal Exercise 12.21

The switch in Figure 12.24 is opened at t  =  0 with no 
initial energy storage in the circuit. Determine diL/dt 
at t = 0+.
Ans. 10 A/s.

12.3.4  Charging of Parallel GCL Circuit

The dual of the series RLC circuit charged by a dc volt-
age VSRC is the parallel GCL circuit charged by a dc 
current ISRC (Figure 12.25), where the dual quantities 
are those listed in Table 12.3 and with the value of ISRC 
numerically equal to that of VSRC. The responses are 
derived in a manner exactly analogous to that of the 
series RLC circuit for the three cases of overdamping, 
critical damping, and underdamping. These responses 
are summarized in the second column of Table 12.4, for 
zero initial conditions. The dual of the response i of the 
series RLC circuit in Figure 12.17 is v of the parallel GCL 
parallel circuit, whereas the dual response of vC of the 
series RLC circuit in Figure 12.17 is iL of the parallel GCL 
parallel circuit.

12.4  Procedure for Analyzing Prototypical 
Second-Order Circuits

All second-order circuits containing both inductors and 
capacitors that are considered in this chapter are reduc-
ible to the prototypical series RLC or parallel GCL cir-
cuits discussed in the preceding sections. An essential 
difference between the series and parallel configurations 
when deriving the circuit responses is the  expression 
for α. The expression for ω0 is 1/ LC  in both cases. 

But α = R/2L in the case of the series circuit, whereas in 
the case of the parallel circuit,

 
ap

p

p p p
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C R C

= =
2
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2  

(12.84)

where Rp = 1/Gp. Only when the series and parallel cir-
cuits are duals are the numerical values of α and αp equal 
to one another. It is seen that, for given L and C, increas-
ing the resistance R in the series circuit increases α and the 
damping, whereas increasing the resistance Rp in the parallel 
circuit decreases αp and the damping.

In the absence of independent sources, differential 
equations governing circuit responses are homoge-
neous, which means that the responses are purely tran-
sient in nature, with zero responses in the final steady 
state. In the presence of independent sources:

Com plete response =  transient response + final, 
steady-state response

The transient response is the solution of the homoge-
neous differential equation, and the final, steady-state 
response is the solution of the nonhomogeneous differ-
ential equation, for t ≥ 0+, with all time derivatives set 
to zero.

It is important to bear in mind the following:

 1. When determining the transient response, indepen-
dent sources are set to zero. The argument is analo-
gous to that made in Section 11.5, to justify that 
the time constant is not affected by indepen-
dent sources. First, independent sources do not 
appear in the homogeneous differential equa-
tion; second, as voltages and currents change 
in the course of the transient responses, ideal 
voltage sources act as short circuits, and ideal 
current sources act as open circuits, as far as the 
changes are concerned.

 2. Setting independent sources to zero also ascer-
tains, in case of uncertainty, whether the circuit 
configuration is series or parallel and hence 
whether to use the expression for α or αp.

 3. The arbitrary constants are part of the tran-
sient response. However, they should be deter-
mined by applying initial conditions to the complete 
response.

 4. Since all voltages and currents in a given circuit 
are governed by the same homogeneous differ-
ential equation, all the responses have the same 
ω0, α, or αp.

The preferred procedure for analyzing a prototypi-
cal, second-order RLC circuit is not based on deriving 
the differential equation for a particular circuit variable, 
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FIGURE 12.24
Figure for Primal Exercise 12.21.
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FIGURE 12.25
Charging of a parallel GCL circuit.
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as this complicates the analysis unnecessarily. The gen-
eral procedure is as follows:

 1. Determine the initial values of the circuit variables 
of interest at t = 0− and t = 0+ as well as their final, 
steady-state values.

 2. Set independent source to zero in the circuit for 
t ≥ 0+ in order to ascertain whether the configura-
tion is series or parallel and to derive the transient 
response.

 3. Reduce the circuit to a prototypical series RLC or 
parallel GCL circuit, as appropriate. Effective values 
of circuit parameters may have to be derived, includ-
ing the effects of any dependent sources.

 4. Determine ω0, α, or αp, to ascertain the type of circuit 
damping, that is, whether the circuit is overdamped, 
underdamped, or critically damped.

 5. Decide on the circuit variable whose response is  to 
be derived first. It is generally more convenient 
to derive vC first in a series circuit and iL first in a 
parallel circuit.

 6. (a)    If the circuit is overdamped, any response of the 
circuit is of the form

 y t Ae Be Y ts t s t
F( ) = + + ³ +1 2 0,  (12.85)

  where y is the circuit variable of interest and YF 
is the final, steady-state value of y, and is either 
zero or a constant. s1 and s2 are  determined in 
accordance with Equation 12.7.

 (b) If the circuit is critically damped, any response is 
of the form

 y t e A Bt Y tt
F( ) = +( ) + ³- +w0 0,  (12.86)

  Note that ω0 is the same, whether the circuit is 
series or parallel.

 (c) If the circuit is underdamped, any response is of 
the form

 y t e A t B t Y tt
d d F( ) = +( ) + ³- +a w wcos sin , 0  

(12.87)

 7. The arbitrary constants A and B in Equations 
12.85 through 12.87 are determined from y(0+) and 

dy dt/( ) +0
.

 8. Once the response of the variable of interest is 
obtained, other circuit variables can be derived from 
the v–i relations of the circuit elements.

 9. Always check that all responses satisfy initial con-
ditions; final, steady-state conditions; and KCL or 
KVL, as may be appropriate.

The procedure is illustrated by the following exam-
ples and by problems at the end of the chapter.

Primal Exercise 12.22

The switch in Figure 12.26 is closed at t = 0 after being 
open for a long time. Determine whether the circuit 
responses are overdamped, underdamped, or criti-
cally damped, assuming that C is (a) 25 mF, (b) 4 mF, or 
(c) 1 mF.

Ans. (a) overdamped; (b) critically damped; (c) 
underdamped.

Example 12.3: Responses of Series RLC Circuit 
with Initial Energy Storage

The switch in Figure 12.27 is moved at t = 0 from posi-
tion ‘a’ to position ‘b’ after being in position ‘a’ for a 
long time. The switch shown is a make-before-break 
type of switch, which makes contact with terminal ‘b’ 
before breaking with terminal ‘a’. This ensures that the 
ideal current source is not open-circuited as the current 
is diverted from the RLC circuit to RD. It is required to 
determine (a) R for critical damping and (b) the circuit 
responses for t ≥ 0+.

Solution: 
At t  =  0−, after the switch has been in position ‘a’ for 
a long time, the inductor acts as a short  circuit under 
steady conditions and the capacitor as an open cir-
cuit (Figure  12.28a). It follows that IL0  =  0.05  A and 
VC0 = 0.05R V. For t ≥ 0+, the current source is diverted 
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to RD and isolated from the  circuit, which becomes as in 
Figure 12.28b.
 (a) For t  ≥  0+, the circuit is series RLC. w0 1= =/ LC   

1 0 5 2 10 106 3/ . ´ ´ =- rad/s. For critical  dam ping, 
α = R/2L = ω0 = 103 rad/s. Hence, R  =  2  × 
0.5 × 103 = 1000 Ω.

 (b) Since the circuit is critically damped, all the circuit 
responses are of the form of Equation 12.86, with 
final, steady-state values equal to zero, because all 
initially stored energy is eventually dissipated in the 
resistor. Since all circuit responses are required, it is 
convenient to derive the response for vC first. Hence,

 v t e A Bt tC
t( ) = +( ) ³- +w0 0,  (12.88)

Substituting vC(0+)  =  VC0  =  0.05  ×  1000  =  50  V 
gives A = 50 V. To obtain B, Equation 12.88 is dif-
ferentiated, the right-hand side multiplied by C and 
set equal to −0.05 at t = 0+; the minus sign is used 
because iL is in a direction of a voltage rise across C. 
The resulting equation is 2 × 10−6(−50 × 103 + B) = 
−0.04, which gives B = 25 × 103 V/s. Hence,

 v t e t tC
t( ) = + ´( ) ³- +10 33

50 25 10 0V, s 

or

 v t e t tC
t( ) = +( ) ³- +50 25 0V ms,  (12.89)

 

i t C
dv
dt

e t

e

L
C t

t

( ) = - = - ´ - + ´( )

+ ´ ´

é
ë

- -

-

2 10 10 50 25 10

25 10

6 3 10 3

10

3

3 33 ùû  

or

 i t e t tL
t( ) = +( ) ³- +103

0 05 50 0. A, s 

or

 i t e t tL
t( ) = +( ) ³- +50 1 0mA ms,  (12.90)

 v t i t i tR L L( ) = ( ) ( )V, where is in mA (12.91)

 
v t L

di
dt

e t eL
L t t( ) = = - +( ) + ´é

ë
ù
û

- -0 5 10 0 05 50 503 10 103 3
. .

 

or

 v t te tL
t( ) = - ´ ³- +25 10 03 103

V s,  

or

 v t te tL
t( ) = - ³- +25 0V, ms (12.92)

It can be readily verified that the expressions 
for the responses are the sum of the corresponding 
expressions in the two columns for critical damp-
ing in Table 12.2, bearing in mind that the relative 
positive polarity of vC is opposite that assumed in 
the table. The responses satisfy the initial condi-
tions, the final steady-state conditions, and KVL. 
Note that if t is in ms instead of s, the responses 
assume simpler forms.

Simulation: The circuit is entered as in Figure 12.29 with 
initial values as indicated, taking into account the polar-
ity markings on L and C to correspond to the assigned 
positive directions in Figure 12.28b. In the Simulation 
Settings, ‘Analysis type’ is ‘Time Domain (Transient),’ 
‘Run to time’ is 5m, ‘start saving data after’ is 0, and 
‘Maximum step size’ is 1u. After the simulation is run, 
the plots of Figure  12.30 are displayed. vC decreases 
monotonically as C discharges. iL also decreases mono-
tonically, but diL/dt = 0 at t = 0 because vL = 0 at t = 0. 
Since iL is decreasing, vL is always negative (−vL > 0). vL is 
bound to have a minimum (or −vL a maximum) because 
it starts at zero at t = 0 and ends at zero as t → ∞, but is 
not zero in between. The minimum of vL occurs at the 
point of inflection of iL.

Problem-Solving Tips

• It is safer to analyze second-order circuits using 
the standard units of amperes, volts, and seconds. 
Conversion to more convenient units can be left to 
the end.
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• It is often convenient and helpful to keep α, αp, ω0, 
ωd, s1, and s2 as symbols and to substitute numerical 
values at the end of the analysis or wherever neces-
sary in the course of the analysis. The same is some-
times true of the circuit parameters R, L, and C.

• When differentiating expressions containing arbi-
trary constants in order to apply initial conditions, 
ignore terms in t or sinω0t that are zero at t = 0.

Exercise 12.23

Verify that the responses of Example 12.3 satisfy the 
 corresponding entries in Table 12.2.

Exercise 12.24

Verify that the minimum of vL and the point of inflec-
tion of iL in Example 12.3 both occur at t  =  1  ms. Use 
the expressions with t in ms and ignore the multiplying 
coefficients.

Example 12.4: Forced Responses of Parallel 
GCL Circuit with Initial Energy Storage

The switch in Figure 12.31 is closed at t = 0 after being 
open for a long time. It is required to determine iL(t) and 
vL(t) for t ≥ 0+.

Solution:

In the steady state at t = 0−, the inductor acts as a short 
circuit and the capacitor as an open circuit, as shown in 
Figure 12.32a. Taking the lower node as reference, the 
voltage of the upper node ‘a’ is 30 V. The current flow-
ing downward in the 30 Ω resistor is therefore 1 A. From 
KCL, IL0 = 0.5 A, and VL0 = 0.

In the final steady state, as t → ∞, the inductor again 
acts as a short circuit and the capacitor as an open circuit, 
but with the 120 V source and the 60 Ω resistor added 
to the circuit, as in Figure 12.32b. Va is 30 V, so that the 
current through the 60 Ω resistor is (120–30)/60 = 1.5 A; 
iL(∞) = ILF = 2 A, and vL(∞) = VLF = 0.

When the independent sources are set to zero in 
the circuit for t  ≥  0+ and the 60 and 30  Ω resistors are 
combined in parallel into a 20  Ω resistor, the cir-
cuit reduces to the parallel circuit of Figure 12.32c. 

w0
61 1 2 9 50 10 300= = ( )´ ´ =-/ / /LC rad/s. From Equation 

12.84, ap = ´ ´ ´( ) =-1 2 20 50 10 5006/ rad/s. Since αp > ω0, 
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the circuit is overdamped. The roots of the characteristic 
equation are:

s1 500 100 25 9 100= - + - = - rad/s and s2 5 100= - ´ - 
100 25 9 900- = - rad/s.

Since the circuit is a parallel circuit, it is convenient to 
derive first the response for iL. The complete response 
for iL is of the form of Equation 12.85:

 i t Ae BeL
s t s t( ) = + +1 2 2 A (12.93)

The initial conditions are iL(0+)  =  0.5  A and vL(0+)  = 
L(diL/dt)0+  =  0, since the capacitor voltage is initially 
zero. The circuit at t = 0+ is shown in Figure 12.33. The 
condition that iL(0+) = 0.5 A gives

 A B+ = -1 5.  (12.94)

To obtain a second equation in A and B, Equation 
12.93 is differentiated and the right-hand side set equal 
to zero at t = 0+. The resulting equation is

 A B+ =9 0 (12.95)

Solving Equations 12.94 and 12.95 gives A = −1.6875 A 
and B = 0.1875 A. Hence,

 i t e e tL
t t( ) = - + + ³- - +1 6875 0 1875 2 0100 900. . A,  (12.96)

 
v t L

di
dt

e eL
L t t( ) = = -( )- -2

9
168 75 168 75100 900. . A

 

or

 v t e e tL
t t( ) = -( ) ³- - +37 5 0100 900. V,  (12.97)

iL and vL satisfy the initial conditions and the final 
steady-state conditions.

Simulation: The circuit is entered as in Figure 12.34 with 
initial values as indicated, taking into account the polar-
ity marking on L to correspond to the assigned positive 
direction of iL in Figure 12.31. In the Simulation Settings, 
‘Analysis type’ is ‘Time Domain (Transient),’ ‘Run to time’ 

is 50m, ‘Start saving data after’ is 0, and ‘Maximum 
step size’ is 1u. After the simulation is run, the plots of 
Figure  12.35 are displayed. iL increases monotonically 
from its initial value of 0.5 A to its final value of 2 A, with 
diL/dt = 0 at t = 0 because VL0 = 0 at t = 0. Since iL is increas-
ing, v is always positive. v is bound to have a maximum 
because it starts at zero at t = 0 and ends at zero as t → ∞, 
but is not zero in between. The maximum of vL occurs at 
the point of inflection of iL, as in Example 12.3.

Exercise 12.25

Verify vC = vL in Example 12.4 from the v–i relation of the 
capacitor.

Example 12.5: Forced Responses of Series RLC Circuit 
with Dependent Source and Initial Energy Storage

The switch in Figure 12.36 is closed at t = 0 after being 
open for a long time. It is required to determine the 
responses for t ≥ 0+, assuming an initial charge of 5 V on 
the capacitor.
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Solution:

For t ≥ 0+, the circuit is a series RLC circuit but with an 
effective resistance because of the resistive circuit that 
includes a dependent source. The initial values at t = 0− 
are i(0−) = 0, vL(0−) = 0, vC(0−) = 5 V, and vX(0−) = 0. At 
t = 0+, i and vC do not change, because the stored energy 
does not change at the instant of switching, so that 
i(0+) = 0, vC(0+) = 5 V, vX(0+) = 0, the dependent current 
source is zero, and the voltage drop across the two resis-
tors is zero. It follows that vL(0+) = 5 V in order to satisfy 
KVL. As t → ∞, i(∞) → 0, since the capacitor acts as an 
open circuit, vL(∞) → 0, since the inductor acts as a short 
circuit. vX(∞) = 0, the dependent current source is zero, 
and the voltage drop across the two resistors is zero. It 
follows that vC(∞) = 10 V to satisfy KVL.

The next step is to determine the effective series resis-
tance. The general procedure is to apply KVL, KCL, and 
Ohm’s law, as illustrated in Figure 12.37. The depen-
dent source current is 0.005vX = 0.005 × 100i = 0.5i. The 
current in the 40  Ω resistor is therefore 0.5i. Hence, 
vR = 100i + 40 × 0.5i = 120i, so that the effective series 
resistance is vR/i = 120 Ω.

Alternatively, the source absorption theorem can be 
applied in this case. The voltage across the 40 Ω resistor 
is 40(i − 0.005vx) = 40(0.01vx − 0.005vx) = 40 × 0.005vx. The 
dependent source is therefore equivalent to a resistance 
40 × 0.005vx/0.005vx = 40 Ω. The effective resistance is 
100  Ω in series with two 40  Ω resistances in parallel, 
which gives 120 Ω.

w 0
2 6 41 1 10 10 10= = ´ =- -/ /LC rad/s. α  =  R/2L  = 

120/(2 × 10−2) = 6 × 103 rad/s. As α < ω0, the circuit is under-

damped, and w w ad= - = - = ´0
2 2 3 310 100 36 8 10 rad/s. 

Since the circuit is a series circuit and all responses are 

required, it is convenient to derive first the response 
for vC. The complete response for vC is of the form of 
Equation 12.87:

 v t e A t B t tC
t

d d( ) = +( ) + ³- +a w wcos sin ,10 0  (12.98)

From the initial condition vC(0+) = 5 V, it follows that 
A = −5 V. To obtain B, Equation 12.98 is differentiated 
and the right-hand side set equal to 0 at t  =  0+, since 
i(0+)  =  0. The resulting equation, with only the cosine 
terms considered is

 
dv
dt

e t Be t X tC t
d d

t
d= + + ( )- -5a w w wa acos cos

 
(12.99)

where X(t) consists of sine terms and is zero at t = 0+. 
Equating the RHS to zero at t = 0+ gives B = −5α/ωd. It 
follows that
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(12.101)

 
v t L
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e t tL
d

t
d d d( ) = = - +( )-5

w
a w w wa sin cos

 

or

 
v t e t tL

t
d

d
d( ) = -æ

è
ç

ö

ø
÷

-5 a w a
w

wcos sin
 

(12.102)

Substituting numerical values and replacing 103t s 
by t ms,

 v t e t t tC
t( ) = - +( )( ) ³- +5 2 8 0 75 8 06 cos . sin V, ms 

(12.103)

 i t e t tt( ) = ³- +62 5 8 06. sin mA,  (12.104)

 v t e t t tL
t( ) = -( ) ³- +5 8 0 75 8 06 cos . sin V, ms (12.105)
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Simulation: The circuit is entered as in Figure 12.38 with 
initial values as indicated, taking into account the polar-
ity marking on C to correspond to the assigned positive 
direction of i in Figure 12.36. In the Simulation Settings, 
‘Analysis type’ is ‘Time Domain (Transient),’ ‘Run to 
time’ is 1m, ‘Start saving data after’ is 0, and ‘Maximum 
step size’ is 0.1u. After the simulation is run, the plots of 
Figure 12.39 are displayed. It is seen that the responses 
are only weakly oscillatory because the circuit is not 
heavily underdamped. i increases when the switch 
is closed, which increases the charge on the capacitor. 
As the capacitor voltage increases, the rate of increase of 
i decreases. Eventually, vC reaches a maximum, and i = 0 
at this instant. The capacitor then discharges slightly, 
and i goes negative. vL is positive for increasing i, is neg-
ative for decreasing i, and is zero when i has a maximum 
or a minimum.

Exercise 12.25

Verify that (a) vC in Example 12.5 is the same as that 
obtained from the v–i relation of the capacitor, (b) i is 
maximum when vL = 0 and at the point of inflection of 
the vC curve, and (c) the responses in Example 12.5 can 
be derived by superposition of the responses due to VSRC 
acting alone, and Vc0 acting alone.

Learning Checklist: What Should 
Be Learned from This Chapter

• The natural response of a  prototypical 
 second-order RLC circuit is governed by a 
 second-order homogeneous differential equa-

tion: 
d y
dt

dy
dt

y
2

2 0
22 0+ + =a w  where y is a voltage 

or a current, α = R/2L is the damping factor for 
the series circuit, and w0 1= / LC  is the resonant 
frequency. These values determine the nature of 
the roots s1 and s2 of the characteristic equation 
of the circuit: s s2

0
22 0+ + =a w , where s1 and s2 

depend only on the circuit parameters.
• All the circuit variables in a given circuit obey 

the same homogeneous differential equation. 
The same characteristic equation applies to all 
the circuit variables, which means that all these 
variables have the same s1, s2, α, and ω0 and, 
hence, the same form of the natural response.

• The natural responses of the second-
order, series circuit for t  ≥  0+ are of the 

form i t A e B e v t A e B ei
s t

i
s t

C C
s t

C
s t( ) = + ( ) = +1 2 1 2, , and  

v t A e B eL L
s t

L
s t( ) = +1 2  where the exponents are 

the same but the arbitrary constants are, in gen-
eral, different, and s1 ≠ s2.

• For given L and C, the nature of the roots s1 
and s2 depends on R:

 1. When R is large enough so that α  >  ω0, s1 
and s2 are negative real and distinct. The 
responses are said to be overdamped.

 2. When R is such that α = ω0, then s1 = s2 = −ω0. 
The responses are said to be critically damped.

 3. When R is small enough so that α  <  ω0, 
s1 and s2 are complex, the responses are 
damped sinusoids. The responses are said 
to be underdamped.

• The natural responses due to initial energy 
storage in both the inductor and capacitor can 
be obtained by superposition, that is, by add-
ing algebraically the responses due to energy 
storage in the inductor acting alone and in the 
capacitor acting alone.

• The responses of series RLC circuits and par-
allel GCL circuits are related by duality con-
siderations. The expression w0 1= / LC  is the 
same in both circuits, but for the parallel circuit, 

ap
p

p p p

G
C R C

= =
2

1
2

, where Rp = 1/Gp.

 1. Only when the series and parallel circuits are 
duals are the numerical values of α and αp 
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equal to one another. It is seen that, for given 
L and C, increasing the resistance R in the 
series  circuit increases α and the damping, 
whereas increasing the resistance Rp in the 
parallel circuit decreases αp and the damping.

• In the charging of a series RLC circuit or a paral-
lel GCL circuit:

 1. The overdamped response is the slowest of 
the responses to approach the steady-state 
value.

 2. The critically damped response is the fastest 
of the responses to approach the steady-state 
value without overshoot.

 3. The underdamped response is the fastest to 
reach the steady-state value, but overshoots 
this value and oscillates about it at a fre-
quency ωd before settling to the final value.

• In a second-order circuit, the transient response 
and circuit configuration, that is, whether series 
or parallel, can be determined after setting all 
independent sources to zero. This is because the 
transient response is determined by the homo-
geneous differential equation, which does not 
involve independent sources.

• The responses of a second-order LC circuit can 
be determined without having to derive the 
differential equation of the circuit by following 
a systematic procedure of general applicability:

 1. After ascertaining whether the configuration 
is series or parallel, the values of ω0, α, or αp, 
are derived to determine whether the circuit 
is overdamped, underdamped, or critically 
damped.

 2. If the responses of more than one circuit 
variable are required, it is convenient to 
derive vC first in a series circuit and iL first 
in a parallel circuit, since all other responses 
follow from the v–i relations of the circuit 
elements through successive differentiation.

 3. The general expressions for the response of 
any variable can be expressed in one of the 
following forms, for t ≥ 0+:

 Overdamped: y t Ae Be Ys t s t
F( ) = + +1 2
 

 Critically damped: y t e A Bt Yt
F( ) = +( ) +-w0
 

 Underdamped: cos siny t e A t B t Yt
d d F( ) = +( ) +-a w w  

 4. The arbitrary constants A and B are deter-
mined from y(0+) and dy dt/( ) +0

.

Problem-Solving Tips

 1. It is safer to analyze second-order circuits using 
the standard units of amperes, volts, and sec-
onds. Conversion to more convenient units can 
be left to the end.

 2. It is often convenient and helpful to keep α, αp, 
ω0, ωd, s1, and s2 as symbols and to substitute 
numerical values at the end of the analysis or 
wherever appropriate in the course of the anal-
ysis. The same is sometimes true of the circuit 
parameters R, L, and C.

 3. When differentiating expressions containing 
arbitrary constants in order to apply initial con-
ditions, ignore terms in t or sinω0t that are zero 
at t = 0.

 4. In a series RLC circuit, it is generally conve-
nient to derive the response vC first and to use 
i = CdvC/dt to find the second arbitrary constant.

 5. In a parallel GCL circuit, it is generally conve-
nient to derive the response iL first and to use 
v = LdiL/dt to find the second arbitrary constant.

 6. It is important to always check that all responses 
satisfy initial conditions, final, steady-state con-
ditions, and KCL or KVL, as may be appropriate.

Appendix 12A: More General 
Second-Order Circuits

The procedure described in Section 12.4 can be readily 
generalized to derive the natural and step responses of 
second-order circuits that are not reducible to the proto-
typical series RLC or parallel GCL. The procedure will be 
illustrated with reference to the circuit of Figure 12.40. 
It is assumed in this circuit that the switch is closed at 
t = 0, after being open for a long time, which means that 
no initial energy is stored in the circuit at t = 0−.

VSRC

+

–
L

t = 0

C

R1

R2

iL

FIGURE 12.40
A more general RLC Circuit.
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The general procedure is to set independent sources 
to zero and derive the homogeneous differential equa-
tion for a selected variable, for t ≥ 0+. The general solu-
tion of this equation is formulated, having two arbitrary 
constants and taking into account the final steady-state 
value of the selected variable. The values of these con-
stants are obtained from the values of this variable and 
its first derivative at t = 0+.

Suppose iL is the required variable. In order to derive 
the homogeneous differential equation satisfied by iL 
for t  ≥  0+, the independent source is set to zero, with 
the switch closed. The circuit becomes as shown in 
Figure 12.41. KCL at the upper node gives

 

v
R

i C
dv
dt

C
L

C

1
0+ + =

 
(12.106)

From KVL around the mesh on the right,

 
L
di
dt

R i vL
L C+ =2

 
(12.107)

Substituting for vC and dvC/dt from Equation 12.107 in 
Equation 12.106 and dividing by LC gives the homoge-
neous differential equation satisfied by iL as

 

d i
dt

R
L CR

di
dt

R R
LCR

iL L
L

2

2
2

1

1 2

1

1
0+ +æ

è
ç

ö

ø
÷ +

+æ

è
ç

ö

ø
÷ =

 
(12.108)

This can be put in standard form as

 
d i
dt

di
dt

iL L
L

2

2 0
22 0+ + =a w

 
(12.109)

where

 
a w= +æ

è
ç

ö

ø
÷ =

+æ

è
ç

ö

ø
÷

1
2

12

1
0
2 1 2

1

R
L CR

R R
LCR

and
 

(12.110)

Note that if R2 = 0, α and ω0 reduce to those for a paral-
lel GCL circuit.

Depending on the relative values of α and ω0, the com-
plete solution for iL is given by Equations 12.85 through 
12.87 as

 i t Ae Be IL
s t s t

LF( ) = + + >1 2
0, a w  (12.111)

or

 i t e A Bt IL
t

LF( ) = +( ) + =-w a w0
0,  (12.112)

or

 i t e A t B t IL
t

d d LF( ) = +( ) +-a w w a wcos sin , < 0 (12.113)

With zero initial energy storage, iL(0+) = iL(0−) = 0 and 
vC(0+) = vC(0−) = 0. To determine (diL/dt)0+, we note that 
with iL(0+) and vC(0+) both zero, the voltage across the 
inductor is zero, so that (diL/dt)0+  =  0. VSRC appears 
across R1 at t = 0+ and the current VSRC/R1 flows through 
C. The two initial conditions are used in Equation 12.111, 
12.112, or 12.113 appropriately to determine A and B. ILF 
is VSRC/(R1 + R2).

Problems

Apply ISDEPIC and verify solutions by PSpice simu lation 
whenever feasible

Parameters and Initial Values 
of Second-Order Circuits

P12.1 The switch in Figure P12.1 is opened at t  =  0. (a) 
Determine ω0 and α; (b) deduce the type of damping of 
the responses for t ≥ 0.

 Ans. (a) ω0 = 0.25 rad/s, αp = 0.025 rad/s; (b) underdamped.

P12.2 The switch in Figure P12.2 is closed at t = 0. Choose R 
so that the responses are critically damped for t ≥ 0+.

 Ans. 250 Ω.

L

C

R1

R2

iL

+

–

vC

FIGURE 12.41
Circuit of Figure 12.40 with independent source set to zero.
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–
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10 V

4 nF

R1 mH
+

–

t = 0

FIGURE P12.2 
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P12.3 The switch in Figure P12.3 is closed at t  =  0, with the 
capacitor initially charged to 10 V. (a) Determine ω0 and α; 
(b) deduce the type of damping of the responses for t ≥ 0.

 Ans. (a) ω0 = 1 Mrad/s = αp; (b) critically damped.

P12.4 Determine β in Figure P12.4 so that the response is 
critically damped by applying (i) the source absorption 
theorem and (ii) KVL and comparing coefficients with 
those of a prototypical series RLC circuit.

 Ans. 0.6.

P12.5 Derive the dual of the circuit of Figure P12.4 and 
determine β following the corresponding procedures. 
Compare the behavior of the dual circuits.

 Ans. Paralleled elements: ISRC, 0.8 mF, 125 nH, 100 S, 
and a CCCS of 0.6iG. The two circuits have the same ω0 
and α, so dual variables have the same expressions.

P12.6 Determine (a) the effective inductance and effective 
capacitance in Figure P12.6 by applying (i) the source 
absorption theorem and (ii) KVL and comparing coef-
ficients with those of a prototypical series RLC circuit, 
(b) ω0 and α; and (c) whether the circuit is overdamped, 
underdamped, or critically damped.

 Ans. (a) 40  mH, 0.25  μF; (b) ω0  =  10  krad/s, 
α = 1.25 krad/s, underdamped.

P12.7 Derive the dual of the circuit of Figure P12.6 and ana-
lyze in the same manner.

 Ans. Paralleled elements: ISRC, 40 mF, 0.25 μH, 100 S, 
and a CCCS of 3iC + 7iL.

P12.8 The capacitor in Figure P12.8 is charged to 10  V at 
the instant the switch is closed at t = 0. Determine the 
damping coefficient α of the circuit for t > 0+.

 Ans. 0.5 rad/s.

P12.9 Given that at t = 0−, iL = 0 and iR = 1 A in Figure P12.9, 

determine at t = 0+ (a) 
di
dt
L  and (b) 

di
dt
R .

 Ans. (a) −2.5 A/s; (b) −50 mA/s.

P12.10 The switch in Figure P12.10 is opened at t  =  0 after 
being closed for a long time. (a) Determine iL, vC, 
dvC/dt, and diL/dt just after the switch is opened. (b) Is 
the circuit reducible to a prototypical series LCR circuit 
or a parallel GCL circuit?

 Ans. (a) iL  =  1  mA, vC  =  6  V, dvC/dt  =  −1  kV/s, 
diL/dt = −5 A/s; (b) no.

P12.11 The switch in Figure P12.11 is opened at t  =  0 after 
being closed for a long time. Determine iC just after the 
switch is opened, given that VSRC = 1 V.

 Ans. 0.5 mA.

P12.12 Consider the circuit of Problem P12.2, reproduced in 
Figure P12.12. Determine vC, iL, dvC/dt, and diL/dt at 
t = 0+, assuming the capacitor and inductor are initially 
uncharged and R = 250 Ω.

 
Ans. vC = 0, iL = 0,

 

dv
dt
C = -107 V s/ ,

 

di
dt
L = 104 A s/ .

P12.13 The switch in Figure P12.13 is opened at t  =  0, after 
being closed for a long time. Determine dv/dt at t = 0+.

 Ans. −1 V/ms.
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P12.14 The switch in Figure P12.14 is closed at t = 0, with the 
1 F capacitor charged to 6 V, the inductor having a cur-
rent of 4  A, whereas the 2  F capacitor is uncharged. 
(a) Determine the energy dissipated in the 10 Ω resis-
tor from t  =  0 to infinity. (b) Is the circuit reducible 
to a prototypical series LCR circuit or a parallel GCL 
circuit?

 Ans. (a) 26 J; (b) no.

Natural Responses of Second-Order Circuits

Verify solutions with entries in Tables 12.2 through 12.4.

P12.15 The switch in Figure P12.15 is closed at t  =  0, after 
being open for a long time. Determine R, given that 
ω0 = 1 rad/s and the circuit is critically damped.

 Ans. 1 Ω.

P12.16 Given that i t e tt( ) = -( )-20 1 400400 mA in Figure P12.16, 
t is in s, determine L, R, vL(t), and vC(t), assum-
ing zero initial charge on the capacitor. Verify that 
vR + vL + vC = 0.

 Ans. L = 6.25 H, R = 5 kΩ, v t e t VL
t( ) = - -( )-50 2 400400 , 

v t teC
t( ) = ´ -2 104 400 V.

P12.17 v in Figure P12.17 is known to be of the form: 

v t Ae Btet t( ) = +- -500 500 , t is in s, with V0  =  8  V and 
IL0 = −10 mA. Determine (a) R, C, A, and B; and (b) iC(t) 
for t ≥ 0+.

 Ans. (a) R  =  1  kΩ, C  =  1  μF, A  =  8  V, B  =  6000  V/s; 
(b) i t e tC

t( ) = -( )-2 1 1500500 mA.

P12.18 The switch in Figure P12.18 is moved from position ‘a’ 
to position ‘b’ at t = 0 after being in position ‘a’ for a 
long time. Determine vC(t) and iL(t) for t ≥ 0+.

 
Ans. v t e eC

t t( ) = -
-æ

è
ç

ö
ø
÷

- -( ) - -( )1
4 6

5 2 6 5 2 6
kV,

 
i tL ( ) =

  
1

2 6
5 2 6 5 2 6

5 2 6 5 2 6
- +( ) + +( )æ

è
ç

ö
ø
÷

- -( ) - -( )e e
t t

A, t is 

in ms.

P12.19 Given vC = 0 and iL = −4 A at t = 0 in Figure P12.19. 
Determine vC(t) for t ≥ 0+.

 Ans. vC(t) = 10sin5t V.

P12.20 Given the charge on the capacitor in Figure P12.20 
is q(t)  =  cosω0t C. Determine the magnitude of the 
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inductor current when the energy stored in the capaci-
tor is one-third of its maximum value.

 Ans. 1 A.

P12.21 The LC circuit in Figure P12.21 is undergoing continu-
ous sinusoidal oscillations. At t = 2 s, the energy stored 
in the capacitor is 6 J and that stored in the inductor is 2 J. 
Determine the peak value of current i in the circuit.

 Ans. ip = =8 2 83. A.

P12.22 Given that v = 0, I10 = I20 = 2 A at t = 0 in Figure P12.22, 
determine the total instantaneous energy in the induc-
tors as a function of time.

 Ans. 8cos2t J.

P12.23 The switch in Figure P12.23 is opened at t  =  0 after 
being closed for a long time, Determine iR at t = 1 ms.

 Ans. 0.271 A.

P12.24 The switch in Figure P12.24 is opened at t  =  0 after 
being closed for a long time. Determine vO(t).

 Ans.  v e e etO
t t t( ) / // /= +( )é
ëê

+ -( ) ù
ûú

- -160 280 3 160 280 33 2 3 2 V 
t is in ms.

P12.25 The switch in Figure P12.25 is closed at t  =  0 after 
being open for a long time. Determine vL(t) and vC(t) 
for t ≥ 0+.

 Ans. v t e t tL
t( ) = - -( )-10 0 4 0 75 0 40 3. cos . . sin .  V, v tC ( ) = 

10 0 4 0 75 0 40 3e t tt- +( ). cos . . sin .   V, t is in μs.

P12.26 The switch in Figure P12.26 is moved to position 
‘b’ at t = 0 after being in position ‘a’ for a long time. 
Determine i(t) and v tO ( ) for t ≥ 0+.

 Ans. i t e tt( ) = -20 sin mA, v t e t tt
0 10( ) = -( )- cos sin V, 

t is in ms.
P12.27 The switch in Figure P12.27, is moved to position 

‘b’ at t  =  0 after being in position a for a long time. 
(a) Choose R so that the response is critically damped; 
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(b) determine the initial values vC(0+), iL(0+), and vL(0+); 
(c) determine vC(t) and iL(t) for t ≥ 0+.

 Ans. (a) 500  Ω; (b) iL(0+)  =  100  μA, vC(0+)  =  50  mV, 
vL(0+) = −50 mV; (c) v t eC

t( )= -50 0 2. mV , i t eL
t( )= -100 0 2. mA, 

t is in μs.

P12.28 The switch in Figure P12.28 is moved from position 
‘a’ to position ‘b’ at t = 0 after being in position ‘a’ for a 
long time. Determine vC(t) and iL(t) for t ≥ 0+.

 Ans. i t e t t v t eL
t

C
t( ) = +æ

è
ç

ö
ø
÷ ( ) =- -5 54 20

1
5

20cos sin ,A
   

6 20 19 75 20cos . sint t-( ) V, t is in s.

P12.29 The switch in Figure P12.29 is opened at t  =  0 after 
being closed for a long time. Determine vL(t) for t ≥ 0+.

 
Ans.

 
v t e tL

t( ) = - -40
3

0 5 30 5. sin . V, t is in ms.

P12.30 The switch in Figure P12.30 is closed at t = 0, with each 
of the capacitors charged to 10 V in the polarity indi-
cated and with no initial energy storage in the induc-
tor. Determine (a) R for critical damping; (b) v tO ( ) for 
t ≥ 0+.

 Ans. (a) 5 Ω; (b) v t t eO
t( ) = -( ) -10 1 V, t is in ms.

P12.31 The switch in Figure P12.31 is moved from position ‘a’ 
to position ‘b’ at t = 0 after being in position ‘a’ for a 
long time. Determine vC(t) and iL(t) for t ≥ 0+.

 
Ans. i t e eL

t t( ) = -
-æ

è
ç

ö
ø
÷

- -( ) - +( )12
3

1 3 2 1 3 2/ /
mA, v tC ( ) = 

12
3

1
3

2
1

3
2

1 3 2 1 3 2
- +
æ

è
çç

ö

ø
÷÷ + +

æ

è
çç

ö

ø
÷÷

æ

è
çç

ö

ø
÷÷

- -( ) - +( )e e
t t/ /

V ,
 

t is 

in μs.

P12.32 The switch in Figure P12.32 is moved to position ‘b’ 
at t = 0 after being in position ‘a’ for a long time. (a) 
Choose G so that the response is critically damped; 
(b) determine the initial values iL(0+), vC(0+), and iC(0+); 
(c) determine iL(t) and vC(t) for t ≥ 0+. Note that the cir-
cuit is the dual of that of problem P12.27.

 Ans. (a) 500  S; (b) vC(0+)  =  100  μV, iL(0+)  =  50  mA, 
iC(0+) = −50 mA; (c) i t eL

t( ) .= -50 0 2 mA, v t eC
t( ) .= -100 0 2 mV, 

t is in μs.

P12.33 The switch in Figure P12.33 is moved to position 
‘b’ at t = 0 after being in position ‘a’ for a long time. 
Determine v tO ( ) for t ≥ 0+.

 
Ans. v t

e
e eO

t
t t( ) / // /= - +( ) + -( )é

ëê
ù
ûú

-
-5

3
1 3 2 1 3 23 2 3 2 V,

 
t is in ms.
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P12.34 The switch in Figure P12.34 is opened at t  =  0 after 
being closed for a long time: (a) determine R for criti-
cal damping; using this value of R, determine (b) vC(t), 
t  ≥  0+, t in ms, and (c) the energy in μJ stored in the 
capacitor and inductor as functions of time.

 Ans. (a) 100  Ω; (b) V t eC
t( ) = -2 V; (c) w t V eC SRC

t( ) = -5 2 2 ,   
wL SRC

tt V e t t( ) = ³- +5 02 2 mJ ms, , .in

P12.35 The switch in Figure P12.35 is moved to position ‘b’ 
at t  =  0, with zero initial energy storage. Determine 
(a) r for critical damping and (b) v t( ), i tC ( ), and i tL ( ) 
for t ³ +0 .

 Ans. (a) ρ  =  0; (b) v(t)  =  100te−10t V, iC(t)  =  100(e−10t − 
10te−10t) mA, iL(t)  =  100 − 100(e−10t  +  10te−10t) mA, t is 
in ms.

P12.36 The switch in Figure P12.36 is moved at t = 0 from posi-
tion ‘a’ to position ‘b’ after being in position ‘a’ for a 
long time. Determine vO(t) for t ≥ 0+.

 Ans. v t e t t tO
t( ) = -( )-10 3 300 300100 cos sin ,V is in s.

P12.37 The switch in Figure P12.37 is closed at t = 0 after being 
open for a long time. Determine (a) iL(0−), iC(0−), iL(0+), 
and iC(0+); and (b) iL(t) for t  ≥  0+, assuming R  =  1  Ω, 
L = 1 H, and C = 1 F.

 Ans. (a) iL(0−) = 20 A, iC(0−) = 0, iL(0+) = 20 A, iC(0+) = −10 A; 

(b) i t e t tL
t( ) = + +
æ

è
ç

ö

ø
÷

æ

è
çç

ö

ø
÷÷

-10 1 0 5 3
1
3

0 5 30 5. cos . sin . .A

P12.38 Switch S1 in Figure P12.38 is moved at t = 0 from posi-
tion ‘a’ to position ‘b’ after being in position ‘a’ for a 
long time. Switch S2 is opened at t = 0.2 s. Determine 
iL(t), t ≥ 0+.

 Ans. i t e t i tL
t

L( ) , . ; ( )= £ £ =-2 0 0 210 A s  
0 271 8 0 2 0 75 8 0 2 0 26 0 2. cos ( . ) . sin ( . ) , ..e t t tt- -( ) +- - -( ) ³A s 

Forced Responses of Second-Order Circuits

P12.39 The current in a second-order circuit is governed by 

the differential equation 
d i
dt

di
dt

i t
2

2 2 4 12 0+ + = ³ +,
 

with i
di t
dt

0 0
0

+( ) = = æ
è
ç

ö
ø
÷

+

( )
. Determine i(t) for t ≥ 0+.

 Ans. 3 3 3 3 3- +( )-e t tt cos sin A.
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P12.40 The response of a series RLC circuit to a voltage that is sud-
denly applied at t = 0 is v t e eC

t t( )= - -- -20 10 101000 4000 V, 
i t e eL

t t( ) = +- -2 81000 4000 mA, t ≥ 0+. Determine C.

 Ans. 0.2 μF.

P12.41 The switch in Figure P12.41 is closed at t = 0, with zero 
initial energy storage in the circuit. Determine vC(t) 
and iL(t) for t ≥ 0+.

 Ans. v t e tC
t( ) = - +( )( )-10 1 1 0 10 1. . V, i t eL

t( ) = -( -50 2 0 1.
  

2 0 1+( )). t mA, t is in μs.

P12.42 The switch in Figure P12.42 is moved at t = 0 from posi-
tion ‘a’ to position ‘b’ after being in position ‘a’ for a 
long time, with the capacitor uncharged. Determine 
vL(t) for t ≥ 0+.

 Ans. v t e eL
t t( ) = - -- -2 840 160 V , t is in s.

P12.43 The switch in Figure P12.43 is closed at t = 0 after being 
open for a long time. Choose RX for critical damping, 
and determine vO(t) and vC(t) for t ≥ 0+.

 Ans. RX = 1.5 kΩ; v t teO
t( ) .= - -1 0 5 V , v t e teC

t t( )= - -- -1 V, 
t is in μs.

P12.44 The switch in Figure P12.44 is closed at t = 0 after being 
open for a long time. Determine iC(t) for t ≥ 0+.

 
Ans. i t e tC

t( ) = -8
3

34 sin A, t is in s.

P12.45 The switch in Figure P12.45 is closed at t  =  0 after 
being open for a long time. Determine iL(t) and iC(t) for 
t ≥ 0+.

 
Ans. i t e t tL

t( ) = - +æ
è
ç

ö
ø
÷ +

-8 16 6
14
3

6 16cos sin A;
 
i tC ( ) =  

 

- -50
3

68e tt sin A, t is in s.

P12.46 The switch in Figure P12.46 is moved at t  =  0 from 
position ‘a’ to position ‘b’ after being in position ‘a’ for 
a long time. Determine vC(t) and vL(t) for t ≥ 0+.

 Ans. v e etC
t t( )= - +- -36 16 208 18 V, v t e eL

t t( )= -- -16 368 18 V, 
t is in s.
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P12.47 Both switches in Figure P12.47 are closed at t = 0, with 
zero initial energy storage in the circuit. Determine 
vC(t) and iL(t) for t ≥ 0+.

 Ans. v e etC
t t( ) = - + +- -20 5 152 8 V, i e etL

t t( )= -( )- -25 2 8 mA, 
t is in ms.

P12.48 The switch in Figure P12.48 is moved at t = 0 from posi-
tion ‘a’ to position ‘b’ after being in position ‘a’ for a 
long time. Determine vC(t) and iL(t) for t ≥ 0+.

 Ans. v t e t e tC
t t( ) = + +- -20 22 5 4 30 43 3. sin cos V, i tL ( ) =  

- -15 43e tt sin A, t is in s.

P12.49 The switch in Figure P12.49 is moved at t  =  0 from 
position ‘a’ to position ‘b’ after being in position ‘a’ 
for a long time, with the capacitor initially uncharged. 
Determine vC(t) and iL(t) for t ≥ 0+.

 Ans. v t e teC
t t( ) = - -- -80 80 40010 10 V, i t eL

t( ) = +-2 10
  

20 10te t- A, t is in s.

P12.50 When the switch is opened at t = 0 in Figure P12.50, 
with no energy initially stored in the circuit, it is found 
that v(t) = 2te−2t V, t ≥ 0+ t is in s. Determine ISRC.

 Ans. 1 A.

P12.51 The switch in Figure P12.51 is opened at t  =  0 after 
being closed for a long time. Determine iL(t) and iC(t) 
for t ≥ 0+.

 Ans. i e tetL
t t( )= + +- -2 20 210 10 A, i e tetC

t t( )=- +- -2 2010 10 A,

t is in s.

P12.52 The switch in Figure P12.52 is moved at t  =  0 from 
position ‘a’ to position ‘b’ after being in position ‘a’ for 
a long time. Determine vC(t) and iL(t) for t ≥ 0+.

 Ans. v t e t tC
t( ) = - +( ) +-5 4 80 3 80 4060 cos sin V, i tL ( ) =  

25 8060e tt- sin mA, t is in ms.

P12.53 The switch in Figure P12.53 is moved at t  =  0 from 
position ‘a’ to position ‘b’ after being in position ‘a’ for 
a long time. Determine vC(t) and iL(t) for t ≥ 0+.

 Ans. v t te t( ) = -100 2 5. V, i t e teL
t t( ) = - - +- -100 2502 5 2 5. .

  
150 mA, t is in ms.
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P12.54 The switch in Figure P12.54 is closed at t = 0 after being 
opened for a long time. Determine vC(t) and iL(t) for 
t ≥ 0+.

 Ans. vC(t)  =  4e−30t(4cos40t  +  3sin40t) − 6  V, i tL ( ) =  
- -0 4 4030. sine tt A , t is in ms.

P12.55 Both switches in Figure P12.55 are moved at t  =  0 
after being in their initial positions for a long time. 
Determine vC(t) and iL(t) for t ≥ 0+.

 Ans. v t e t tC
t( ) = -( ) +-10 4 0 3 3 0 3 400 4. cos . sin . V, i tL ( ) =  

10 0 30 4e tt- . cos . A, t is in s.

P12.56 The switch in Figure P12.56 is moved at t  =  0 from 
position ‘a’ to position ‘b’ after being in position ‘a’ for 
a long time. Determine vC(t) and iL(t) for t ≥ 0+.

 Ans. v t e eC
t t( ) = + +- -9 109 V, i t e eL

t t( ) = + +- -1 5 1 5 39. . A, 
t is in s.

P12.57 The switch in Figure P12.57 is opened at t  =  0 after 
being closed for a long time. Determine vC(t) and iL(t) 
for t ≥ 0+.

 Ans. v t eC
t( ) = +-10 105 V, i t eL

t( ) = -5 5 A, t is in s.

Design Problems

P12.58 A parallel GCL circuit has Cp = 10 nF and Lp = 100 μH. 
Determine RP if the maximum percentage overshoot 
in the response iL is not to exceed 5%, given that the 
maximum percentage overshoot is 100e p d-( )a w p/  (Refer to 
Problem P12.62).

 Ans. 72.45 Ω.

P12.59 Given a coil of 0.5 H inductance and 50 Ω resistance 
connected to a 5  V supply, as in Figure P12.59. It is 
required to generate a voltage vO ≅ 2500 V upon open-
ing the switch at t = 0. Show that a value of C of 0.8 nF 
produces this voltage at the first maximum of an 
underdamped response across C.

P12.60 It is desired to generate a sequence of five pulses dur-
ing the interval 0 ≤  t ≤ 6 s using the circuit shown in 
Figure P12.60. D is a threshold device that generates 
an output pulse when its input voltage is 0.3  V and 
increasing, but not when decreasing. The second-order 
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circuit is required to generate across the 1 Ω resistor a 
decaying sinusoidal voltage after the switch is closed 
at t = 0, so as to produce the required number of pulses. 
Show that suitable values of L and C are L = 2.4 H and 
C = 18.8 mF. Verify with a PSpice simulation. Use the 
results of Problem P12.62.

Probing Further

P12.61 Deduce from Table 12.2 for the natural response due 
to  an initial current in the inductor that (a) for the 

overdamped response, i  =  0 at t t
s s

s s
=

( )
-

0
2 1

1 2

ln /
, and 

vL  =  0 at  t  =  2  t0, and (b) for the critically damped 
response, i = 0 at t = 1/ω0, and vL = 0 at t = 2/ω0. Thus, the 

first zero of vL occurs at a time that is twice that of 
the first zero of i.

P12.62 Consider the response vC given by Equation 12.75. 
Show that (a) the maxima of the overshoots occur when 

ωdt is an odd multiple of π, that is, at t n
d

max ,= +( )2 1
p
w  

n  =  0, 1, 2, etc., and that the minima of the under-
shoots occur when ωdt is an even multiple of π, that 

is, at t n
d

min = ( )2
p
w

, n = 1, 2, etc. (b) The values of the 

maxima are v V eC SRC
t

max
max= +( )-1 a  and the values of 

the minima are v V eC SRC
t

min
min= +( )-1 a . (c) The maxi-

mum overshoot beyond the steady-state value VSRC is 

V eSRC
d

-
a
w

p

 or 100e d
-
a
w

p
 as a percentage of the steady-state 

value.

P12.63 Three cases were encountered in this chapter in which 
a series, second-order circuit has first-order responses. 
(a) Show that in Example 12.1, where the response 
is overdamped, B  =  0 if I0  =  s1CVC0. (b) Show that 
in Problem P12.33, where the response is critically 
damped, B = 0 if I0 = ω0CVC0. (c) Show that in Problem 
P12.57, where the response is also critically damped 
but the final capacitor voltage is not zero, B  =  0 if 
I0 = ω0C(VC0 − VCF).

C
L+

–

t = 0

12 V D1

FIGURE P12.60 
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367

Objective and Overview

An operational amplifier, or op amp in short, is an elec-
tronic device that was commonly used in analog comput-
ers in the 1950s, before the advent of digital computers. 
Operational amplifiers are so called because they were 
at the heart of various building blocks that performed 
mathematical operations, such as addition, subtraction, 
differentiation, and integration. These building blocks 
were used to solve differential equations on analog com-
puters. Nowadays, op amps of high performance and 
low cost are widely available in integrated-circuit (IC) 
form, which makes them an important building block in 
a variety of signal-processing applications. In electric cir-
cuits, op amps are used in active filters. They are there-
fore introduced in this chapter before passive filters are 
discussed in Chapter 14 and active filters in Chapter 15.

This chapter begins with some basic considerations on 
op amps, including the definition and properties of ideal 
and almost-ideal op amps. The very important concept 
of feedback is then introduced as a prelude to discuss-
ing the two basic op amp configurations: inverting and 
noninverting. These configurations are then considered 
in detail, including some of their variants, such as the 
unity-gain follower, adder, ideal integrator, and differen-
tiator. The chapter ends with the analysis of the differ-
ence amplifier.

13.1  Basic Properties

Definition: An op amp is a three-terminal, voltage-operated 
device whose output voltage is directly proportional to the dif-
ference between the voltages applied to its two input terminals.

Figure 13.1 illustrates the symbol of an operational 
amplifier. One of the inputs is designated as a nonin-
verting input, denoted by the (+) sign, whereas the other 
input is designated as an inverting input, denoted by 
the (−) sign. According to the preceding definition, the 
output voltage vO is related as follows to the voltages vP 
and vN applied to the noninverting and inverting termi-
nals, respectively:

 v A v v AO v P N v= ( ) =– e (13.1)

Av is the voltage gain of the amplifier. The voltages 
vO, vP, and vN are referenced with respect to a common 

ground. The effective input to the op amp is the volt-
age difference (vP – vN), denoted by ε and referred to as 
the differential input to the amplifier. Because of the 
dependence of the output on the differential input, the 
op amp is an example of a differential amplifier.

It is seen from Equation 13.1 that the sign of vO is the 
same as that vP but is opposite that of vN, hence the des-
ignation of vP as a noninverting, or positive (P) input 
and vN as an inverting, or negative input (N).

Definition: An ideal op amp has the following properties:

 1. The output is an ideal voltage source of voltage vO 
given by

 v A v v AO v P N v= ( ) ®¥– , with  (13.2)

 2. Like an ideal voltage source, the amplifier has zero 
output resistance and can deliver any output voltage 
or current at any frequency.

 3. Both inputs behave as open circuits.

 4. The op amp is free from all imperfections, such as 
nonlinearities or any form of distortion of the output 
with respect to the input.

Just as in the case of ideal circuit elements, the ideal 
op amp is a very useful abstraction that can be used in 
initial designs and which is commonly invoked to illus-
trate some important circuit concepts. Many practical 
op amps approach the ideal in several respects, so the 
concept is not as farfetched as it may seem.

13.1.1  Almost-Ideal Op Amp

In order to gain some insight into the basic properties of 
op amps, consider, to begin with, an op amp that is ideal 

13
Ideal Operational Amplifier

vN

vP vO

+

– ––

+
+

+

– –

+
Av

FIGURE 13.1
Symbol of operational amplifier.
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except for a finite Av. An input vI is applied to the nonin-
verting input, with the inverting input grounded and a 
load resistance RL connected to the output, as illustrated 
in Figure 13.2a. According to Equation 13.1, with vN = 0 
and vP = vI = ε,

 v A v AO v I v= = e  (13.3)

With vO finite, a current iO = vO/RL flows through RL 
in accordance with Ohm’s law. According to the defini-
tion of an ideal op amp, the op amp inputs behave as 
open circuits, which means that the input current is zero 
(Figure 13.2a). If the op amp is enclosed by a surface S, 
then the current entering this surface is zero, whereas 
the current leaving it is iO ≠ 0, in apparent violation of 
KCL. Moreover, the power input to the op amp is zero, 
but the instantaneous power output is vOiO ≠ 0, in appar-
ent violation of conservation of power. Clearly, this can-
not be the case, so what is missing?

Fundamentally, the characterizing attribute of any 
amplifying device, including an op amp, is its ability to 
amplify power; that is, at any instant of time, the power out-
put of the device, due to a source applied to the input of the 
device, is larger than the power delivered by this source 
to the device. For this to happen, at least one external dc 
supply, referred to as a bias supply, must be connected to 
the device. When the current through this supply and the 
power delivered by it are taken into account, both KCL 
and conservation of energy are satisfied.

Op amps usually have two dc bias supplies, one that 
applies a positive voltage VCC

+  to the op amp, and the 
other applies a negative voltage VCC

- , as illustrated in 
Figure 13.2b. The magnitudes of these voltages are usu-
ally equal, but they need not be. The bias supplies are 
connected between specially provided pins of the IC op 
amp and ground. When these bias supplies are taken 
into account, then KCL gives at every instant

 i i iO CC CC+ =- +
 (13.4)

From conservation of power, the instantaneous power 
delivered to the load is equal to the instantaneous power 
delivered by the power supplies, that is,

 v i V i V iO O CC CC CC CC= ++ + - -
 (13.5)

If, for example, the input of the op amp is connected 
to a microphone and the output to a loudspeaker, then 
the audio-signal power delivered to the loudspeaker is 
derived from the bias supplies.

The next step is to consider the input–output charac-
teristic of an op amp, that is, the vO-ε relation, taking into 
account a finite Av and the presence of bias supplies. It 
follows from Equation 13.3 that this relation is a straight 
line passing through the origin and having a slope Av, 
assuming Av is constant. This is illustrated in Figure 
13.3a, from which it is seen that the line extends on both 
sides of the origin; that is, a positive input gives a positive 
output, whereas a negative input gives a negative output. 
If Av → ∞, the straight-line characteristic coincides with 
the vertical axis, since the ratio of vO to ε goes to infin-
ity. Theoretically, the straight-line characteristic having a 
finite Av extends to infinity in both directions. In practice, 
the output cannot become more positive than VCC

+ , or more 
negative than VCC

- , as illustrated by the horizontal dashed 
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FIGURE 13.3
Input–output characteristic of an almost-ideal op amp (a) and its 
symbol (b); (c) symbol of ideal op amp.
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lines in Figure 13.3a. The horizontal region where vO is 
ideally equal to VCC

+  is the region of positive saturation, since 
vO is clamped at VCC

+  in this region. The region of positive 
saturation extends from point ‘Q’, having e = +V ACC v/ , to 
more positive values of ε. Similarly, the horizontal region, 
where vO is ideally equal to VCC

- , is the region of negative 
saturation. It extends from point P having e = - -V ACC v/ , to 
more negative values of ε. The part of the characteristic 
between ‘P’ and ‘Q’ is the region of linear operation of the 
op amp, where vO is directly proportional to ε. Note that 
the vO-ε characteristic relates vO to ε under static condi-
tions, that is, a point on the plot is obtained by applying a 
dc differential input and observing the corresponding dc 
output under steady conditions.

In analyzing ideal op amp circuits, it is often con-
venient and instructive to assume a finite Av to begin 
with, and then let Av → ∞. It is also required sometimes 
to assume finite values of VCC

+  and VCC
- , rather than the 

infinite values assumed for an ideal op amp. To avoid 
confusion over terminology, we will adopt the following 
definition of an almost-ideal op amp:

Definition: In an almost-ideal op amp, either Av is a 
finite constant or the bias supplies, VCC

+  and VCC
- , have 

finite  values, or both. In all other respects, the almost-ideal 
op amp is ideal.

The OPAMP part in PSpice is an almost-ideal op 
amp having default values of Av = 106, VCC

+ = 15 V, and 
VCC

- = -15 V. However, these default values can be 
changed, if desired, in the Property Editor spreadsheet 
of the OPAMP part.

The symbol used in this book for an almost-ideal op 
amp is illustrated in Figure 13.3b, in which finite values 
of Av, VCC

+  and VCC
- , are indicated. In contrast, these sym-

bols are omitted from the symbol for an ideal op amp 
(Figure 13.3c). In both cases, the inputs are shown open 
circuited inside the symbol for emphasis.

It should be noted that in an almost-ideal op amp, and 
in accordance with Equation 13.1, vO depends only on 
the differential input ε = vP – vN, independently of the 
absolute values of vP and vN; that is, adding any positive 
or negative voltage to both vP or vN does not affect vO, as 
long as vP – vN remains the same.

13.1.2  Equivalent Circuit

Over the linear operating region, corresponding to region 
PQ of the input–output characteristic in Figure  13.3a, 
the almost-ideal op amp can be represented on the out-
put side by a VCVS of source voltage Avε, where ε is the 
differential input between the noninverting and invert-
ing inputs, as illustrated in Figure 13.4.

As explained in the preceding subsection, an ampli-
fying device, such as an op amp, delivers power in 

a circuit. It is therefore an active circuit element that is 
represented by an ideal source (Section 1.8). The source 
is a dependent source, since energy is derived from an 
electric source of energy, the dc bias supplies, rather 
than converted from a nonelectric source of energy, as is 
the case with independent sources (Section 2.6).
VCC

+  and VCC
-  do not appear in the linear equivalent 

circuit. The extent of the linear range does depend on 
VCC

+  and VCC
- , but within the linear operating range, over 

which the equivalent circuit is valid, vO depends only 
on Av and ε, and not on VCC

+  and VCC
- . In the saturation 

regions, the op amp output is represented by a battery 
of voltage VCC

+  in the positive saturation region and a bat-
tery of voltage VCC

-  in the negative saturation region.
The equivalent circuit can be useful in analyzing cir-

cuits involving almost-ideal op amps of finite Av. But 
when Av → ∞ and ε → 0, in an ideal op amp, the equiva-
lent circuit is no longer useful. Circuits involving ideal op 
amps are therefore analyzed using a different approach, 
as illustrated in the rest of the chapter.

Example 13.1: Simulation of Input–Output 
Characteristic of the Op Amp in PSpice

It is required to simulate the input–output characteristic 
of the op amp in PSpice.

Simulation: The circuit is entered as in Figure 13.5 using 
the part OPAMP from the ANALOG library, without 
changing the default values of Av = 106, VCC

+ = 15 V, and 
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+

FIGURE 13.4
VCVS equivalent circuit of almost-ideal op amp.
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VCC
- = -15 V, which are indicated in the figure. To run the 

simulation, select ‘DC Sweep’ under ‘Analysis type’ in 
the Simulation Settings dialog box. Under ‘Sweep vari-
able’ select ‘Voltage source’ and enter V1 in the ‘Name’ 
field. Under ‘Sweep type,’ select ‘Linear’ and enter 
30u for ‘Start value,’ −30u for ‘End value,’ and 0.1u for 
‘Increment.’ The input–output characteristic is displayed 
as in Figure 13.6. It is seen that positive saturation is at 
+15 V, starting at an input voltage of 15 V/106 = 15 μV 
and extending in the positive direction. The nega-
tive saturation starts at −15V starting at an input volt-
age of −15 V/106 = −15 μV and extends in the negative 
direction.

Primal Exercise 13.1

Given an almost-ideal op amp having Av = 104,  VCC
+ = 20 V, 

and VCC
- = -20 V, determine (a) the breakpoints of the lin-

ear operating region, and the regions of positive satura-
tion and of negative saturation and (b) the differential 
input voltage ε when the output voltage is 10 V; specify 
(c) the current inputs to the differential inputs under 
these conditions and (d) the source resistance at the out-
put of the op amp.

Ans. (a) Linear operating range is from −2 mV to +2 mV; 
the positive saturation region extends for ε ≥ 2 mV, and 
the negative saturation region extends for ε  ≤  −2  mV; 
(b) 1 mV; (c) 0 A; (d) 0 Ω.

13.2  Feedback

Feedback, as the word implies, refers to feeding part or 
all of the output of a device or system back to its input, 
as illustrated in Figure 13.7. The connection from the 

output back to the input is the feedback path, whereas 
the connection from input to output through the system 
is the forward path. The two paths together form the 
feedback loop. Feedback plays a critical role in modify-
ing the behavior of a circuit or system and is extensively 
employed in many types of systems, particularly elec-
tronic circuits and control systems.

Feedback is almost invariably present in op amp cir-
cuits. But since an op amp has two inputs, noninverting 
and inverting, feedback in op amp circuits could be to 
either of these inputs, exclusively or predominantly. In 
Figure 13.8a, the feedback path is from the output to the 
noninverting input of an almost-ideal op amp, whereas 
the inverting input is grounded, for simplicity. In the 
forward path, vO = Avε (Equation 13.1); from KVL on the 
input side, ε = vP – vN = vP, since vN = 0. The feedback 
connection makes vP = vO. If the output voltage vO of the 
op amp tends to increase for some reason, as indicated 
by the upward arrow next to vO at the extreme right 
of Figure 13.8b, vP and ε will also increase by the same 
amount as vO through the feedback path. The increase 
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in ε will increase vO by Av times the initial increase in vO, 
through the forward path. Thus, an initial change in vO 
in a given direction results in a change in vO in the same 
direction as the initial change. In other words, the feedback 
tends to reinforce the initial change. This type of feed-
back connection is described as positive feedback.

In Figure 13.8c, the feedback path is from the output 
to the inverting input, whereas the noninverting input 
is grounded for simplicity. In the forward path, vO = Avε 
as before; from KVL on the input side, ε = vP – vN = −vN, 
since vP = 0. The feedback connection makes vN = vO. If 
vO tends to increase, as indicated by the upward arrow 
next to vO at the extreme right of Figure 13.8d, vN will 
increase, but since ε = −vN, ε will increase in the negative 
direction through the feedback path, and vO will also 
increase in the negative direction through the forward 
path. Thus, an initial change in vO in a given direction 
results in a change in vO in the direction opposite that of 
the initial change. In other words, the initial change is 
opposed. This type of feedback connection is described 
as negative feedback.

The stipulation that vO tends to increase or decrease in 
the preceding argument should be justified. In practice, 
small changes in voltage or current always occur in any 
circuit, without any change in the applied inputs, because 
of “noise” due to random fluctuations in the motion of cur-
rent carriers in any conductor (Section 2.1). The op amp 
output is therefore subject to small fluctuations due to 
noise in the op amp itself, as well as noise in the bias sup-
plies. The input of the op amp is also subject to noise and to 
pickup of extraneous signals or interference from the sur-
roundings through electric or magnetic coupling. It may be 
noted that whereas noise is always present in real circuits, 
it is absent in simulations, unless deliberately introduced.

The presence of positive or negative feedback has a 
decisive effect on the behavior of the op amp circuit. 
Consider, to begin with, the negative feedback circuit 
of Figure 13.8c but with an input voltage VI applied 
between the noninverting input and ground as in 
Figure 13.9a. The output and input of the op amp are 
related in the steady state by the vO-ε characteristic of 

the op amp. From KVL at the input, VI = ε + vN = ε + vO, 
or vO = −ε + VI. As a plot of vO vs. ε, this is the equation 
of a line of slope −1 and intercept VI on both axes as in 
Figure 13.9b. The operating point is the point of intersec-
tion ‘P’ of this line with the vO-ε characteristic of the op 
amp, since the two relations involving vO and ε are satis-
fied at this point. ‘P’, whose coordinates are denoted as 
ε0 and VO0, is the only point of intersection between the 
two plots in this case. It is a stable operating point, or a 
point of stable equilibrium, in the sense that any tendency 
for the input or output to change from their values at ‘P’ 
produces a countereffect that restores these values to ε0 
and vO0. For example, suppose that vO tends to increase 
from VO0 by +ΔvO. This will also increase vN by +ΔvO 
because of the direct connection between input and out-
put through the feedback path. However, an increase 
in vN causes an equal decrease in ε, because ε + vN = VI, 
which is constant. The change +ΔvO thus produces a 
change Δε = −ΔvO. This change at the input in the nega-
tive direction will produce a change of −AvΔvO at the 
output of the op amp that is in a direction opposite that 
of the initial +ΔvO. This means that vO will move back 
toward its initial value VO0. As vO so moves, ΔvO → 0, 
which restores vO and ε to their original values at ‘P’, 
and no further change occurs. Similar considerations 
apply if the initial change in vO is −ΔvO instead of +ΔvO. 
‘P’ is therefore a stable operating point. Moreover, if VI 
is varied over an appropriate range, the negative feedback 
connection allows a stable operating point anywhere in the 
linear region of the vO-ε characteristic of the op amp.

Consider next the positive feedback circuit in 
Figure 13.8a, but with an input voltage VI applied 
between the inverting input and ground, as in 
Figure 13.10a. The output and input of the op amp are 
related in the steady state by the vO-ε characteristic of the 
op amp, as always. From KVL at the input, vP = ε + VI, 
or vO = ε + VI. As a plot of vO vs. ε, this is the equation 
of a line of slope +1 and intercept of magnitude VI on 
both axes (Figure 13.10b). There are now three points of 

–

+

Av

V +
CC

V–
CC

vP

vN

–

+

vO

(a)

vO

Slope = Av

V +
CC

V–
CC

VO0

0

(b)

+

–

+VI

+

– Slope = –1

VI

P
VI

FIGURE 13.9
Stable operating point with negative feedback. (a) Op amp with  negative 
feedback and (b) graphical construction for the operating point.

–

+

Av

vP

vN

(a)

–

+

vO

–

+

Slope = Av

V+
CC

V+
CC

V –
CC

V –
CC

(b)

Slope = +1

VI

P1

P2

P3

+

–
VI

vO

FIGURE 13.10
Unstable and stable operating points with positive feedback. (a) Op 
amp with positive feedback and (b) graphical construction for the 
operating point.



372 Circuit Analysis with PSpice: A Simplified Approach

intersection at which the values of ε and vO satisfy both 
the equation of the line and the vO-ε characteristic of the 
op amp. We will argue that ‘P1’ is an unstable operating 
point if Av > 1 in Figure 13.10, as is almost invariably the case. 
Thus, if vO tends to increase by +ΔvO, vP also increases by 
+ΔvO because of the direct connection between input and 
output through the feedback path. However, an increase 
in vP causes an equal increase in ε, because ε + VI = vP. An 
increase +ΔvO in ε at the input of the op amp will pro-
duce a change of +AvΔvO at the output of the op amp. 
This new value of output is in turn fed back to the input 
and results in a new output (Av)2ΔvO, and so on. Here, 
we have to distinguish two cases: (1) Av  <  1, in which 
case the successive changes at the output and input of 
the op amp get progressively smaller, eventually revert-
ing to their original values at ‘P1’. This means that ‘P1’ is a 
stable operating point (Exercise 13.2). (2) Av > 1, in which 
case the successive changes at the output and input of the 
op amp get progressively larger. vO and ε will increase 
very rapidly until they reach the intersection point ‘P2’ 
in the positive saturation region. ‘P2’ is a stable operat-
ing point: vO does not change because of positive satura-
tion; any tendency for ε to change cannot be sustained 
because ε must remain constant to satisfy KVL at the 
input. Similarly, if initially vO tends to decrease by ΔvO 
from its value at ‘P1’, vO and ε will decrease very rapidly 
until they reach the intersection point ‘P3’ in the nega-
tive saturation region. ‘P3‘ is also a stable operating point 
because vO must remain constant. It is seen that with pos-
itive feedback and Av > 1, two stable states are possible, 
corresponding to intersection points ‘P2’ and ‘P3’ that are 
not within the linear operating region of the op amp. The 
op amp can be used in this case as a switch, where the 
two saturation states correspond to the two stable states 
of the switch: open or closed. Although switching can 
occur without positive feedback, by applied small posi-
tive and negative values of ε, positive feedback increases 
the switching speed and enhances performance.

Note that in Figure 13.10, the gain around the feed-
back loop is Av × 1 = Av, where the “1” for the feedback 
path is due to the fact that all of vO is applied to the 
noninverting input (vP = vO). In the general case, where 
only a fraction of the output is fed back to the input, 
the preceding argument applies to the gain around the 
feedback loop, rather than to the amplifier gain Av alone. 
Thus, if Av = 2 and only a quarter, say, of the output is 
applied to the noninverting input (vP = 0.25vO), the loop 
gain is 2 × 0.25 = 0.5. A change of ΔvO in the output is fed 
back as a change of 0.5ΔvO. The positive feedback config-
uration is stable in this case, despite the fact that Av = 2.

The use of negative feedback in amplifying-type op 
amp circuits is, in contrast to switching-type op amp 
circuits, imperative for two reasons: (1) it allows stable 
operation in the linear region of the vO-ε characteristic of 
the op amp, and (2) It confers some desirable properties 

on the op amp circuit, as explained later. Hence, the 
 following concept applies:

Concept: Nonswitching op amp circuits invariably employ 
negative feedback, which necessitates some circuit connection 
between the output and the inverting input of the op amp.

The negative feedback circuit connection between 
the output and the inverting input could be a direct 
connection, as in the case of the unity-gain amplifier 
(Figure 13.18), or the connection could be through a sin-
gle circuit element or a combination of circuit elements.

It must not be assumed, however, that negative feed-
back systems are always stable. The preceding dis-
cussion assumes no delays, or phase shift, around the 
feedback loop. If the phase shift around the feedback 
loop is 180°, the feedback changes sign and becomes 
effectively positive. If the loop gain under these condi-
tions exceeds unity, the negative feedback system will 
be unstable.

There are two basic op amp configurations that employ 
negative feedback, namely, the noninverting and the 
inverting configurations. In the noninverting configura-
tion, the feedback signal is in series with the input signal, 
whereas in the inverting configuration, the feedback sig-
nal is effectively in shunt with the input signal. These con-
figurations are discussed in the following two sections.

Exercise 13.2

Plot the vO-ε characteristic of the op amp, with Av < 1, 
and the line relating vO and ε in accordance with KVL at 
the input with positive feedback (Figure 13.10a). Argue 
that the point of intersection is a stable operating point. 
What if Av = 1?

Ans. If Av < 1, the change in output is not sufficient to 
sustain the change in input. If Av = 1, the two lines coin-
cide over the linear range of the op amp characteristic. 
Theoretically, this is neutral equilibrium. In practice, Av 
cannot be exactly 1.

Exercise 13.3

An argument similar to that used with positive feedback 
(Figure 13.10) is sometimes applied to negative feedback 
(Figure 13.9), namely, that if vO changes by ΔvO, ε changes 
by −ΔvO, and vO changes by −AvΔvO, then by +(Av)2ΔvO, 
−(Av)3ΔvO, and so on, which seemingly makes ‘P’ in 
Figure 13.9 unstable. What is wrong with this argument?

Ans. If vO changes by −AvΔvO, then vO moves to the 
other side of ‘P’, through zero. But as it approaches ‘P’, 
ΔvO → 0. When ΔvO = 0, there is no tendency for vO to 
move in the opposite direction, and vO will stop at ‘P’.
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13.3  Noninverting Configuration

Figure 13.11 illustrates an almost-ideal op amp con-
nected in the noninverting configuration. The input vI is 
applied directly to the noninverting terminal, whereas 
the inverting terminal is connected to a voltage divider 
across the op amp output. This means that not all of vO, 
but a fraction of it, is fed back to the inverting input. 
That is, vN = βvO, where β is the feedback factor. Because 
the inverting input, by definition of an ideal op amp, 
does not draw any current; it follows from simple volt-
age division that
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It is desired to derive the relation between the output 
voltage vO and the input voltage vI. The governing equa-
tions are (1) the vO-ε characteristic of the op amp over 
the linear range, represented by the equivalent circuit, 
and (2) KVL at the input:

 v A A v v v vO v v P N P N= = ( ) = +e e– and  (13.7)

with vP  =  vI and vN  =  βvO. Note that according to 
Equation 13.7, vN subtracts from vP to give ε. This is char-
acteristic of a series connection in which voltages add 
algebraically (Section 2.9). Substituting for vP and vN, in 
terms of vI and vO, eliminating ε, and simplifying,

 

v
v

A
A

O

I

v

v
=

+1 b  
(13.8)

With Av and β positive numbers, the sign of vO is the 
same as that of vI, which gives the noninverting configu-
ration its name. The noninversion is basically because 
the input is applied to the noninverting input.

Normally, βAv ≫ 1, so that
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If, for example, Rr = 1 kΩ, Rf = 4 kΩ, then β = 1/5. If Av = 105, 
which is typical for a general-purpose, low-frequency 
op amp, then vO/vI = 105/(1 + (105)/5) = 4.99975 ≅ 1/β. 
It is seen from Equation 13.9 that the voltage gain vO/vI 
cannot be less than unity.

It may be wondered at this stage, and quite legiti-
mately, as to the wisdom of starting with an op amp of 
high voltage gain, such as 105, and ending with an ampli-
fier circuit having a much smaller voltage gain, say, 5 or 
100. Are we throwing away voltage gain for nothing? If a 
certain value of gain is required for a given application, 
why not design the op amp for this value of gain and get 
done with it? For example, a stable and precise value of 
voltage gain of 1.125 is required in digital thermometers, 
so why not design op amps for this application having 
Av = 1.125? The answer is that the gain Av of the op amp 
cannot be precisely defined, because of manufacturing 
tolerances, that is, inevitable variations in the properties 
of components during the manufacturing process. These 
variations can be extremely difficult and costly to con-
trol to a high degree of precision. Moreover, the value of 
Av is subject to variations during normal use of the op 
amp, due to various factors such as (1) changes in inter-
nal components because of environmental effects, such 
as temperature and humidity, or due to “aging,” which 
is some variation in the properties of these components 
with time, because of some long-term physical or chemi-
cal changes, or (2) variations in bias voltages, as when bat-
teries begin to run down. When an op amp of very large 
Av is connected as in Figure 13.11, or in other negative 
feedback configurations as will be demonstrated later, 
the gain is no longer determined by Av but by resistance 
values, as in Equation 13.9. Discrete-component resistors 
can be accurate to 0.01% and highly stable. IC resistors 
have a larger tolerance, typically between 5% and 20%, 
but the ratio of resistances, as in Equation 13.9, is at least 
an order of magnitude more precise than the values of 
individual resistances in the same integrated circuit. 
Consequently, when precision amplification is required, 
it is highly advantageous to trade off the high gain of an 
op amp for a precise and stable value of amplification.

The preceding discussion underscores a concept that is 
of great practical importance, utilizing negative feedback:

Concept: By employing negative feedback, op amp circuits 
can be designed to trade off the high voltage gain of the op amp 
for some desirable characteristics of the circuit.

High gain in IC op amps is quite inexpensive and can 
be advantageously traded off, not only for precision and 
stability of voltage gain, as illustrated by the noninverting 
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configuration, but for other desirable characteristics such 
as reduced distortion, wider bandwidth, increased input 
impedance, or reduced output resistance.

For an ideal op amp, Av → ∞, and the voltage gain in 
Equation 13.9 is then
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Equation 13.10 can be derived directly by applying a 
very important concept that greatly facilitates the analy-
sis of ideal op amp circuits. Recall that in this case the 
equivalent op amp circuit is not applicable, because 
Av ®¥.

In Figure 13.11, ε = vO/Av, as is true, by definition, of all 
op amp circuits (Equation 13.1). If Av ®¥, then ε → 0 for 
finite vO. A zero differential input ε implies a virtual short 
circuit between the noninverting and inverting terminals 
of the op amp; that is, these two terminals are at the same 
voltage, without being physically connected together. 
This virtual short circuit is indicated by the dotted connec-
tion between the two input terminals in Figure 13.12. It is 
seen that one can immediately write vI = vN, with vN = βvO. 
Eliminating vN gives vO = vI/β, as in Equation 13.10.

This concept can be readily generalized as follows:

Concept: In a negative feedback connection employing 
an ideal op amp (Av → ∞), the differential input is vanish-
ingly small for any finite output, so that the two inputs of the 
op amp are at the same voltage and can be considered to be 
virtually short-circuited to one another.

It should be emphasized that the virtual short circuit 
is not a physical connection between the inverting and 
noninverting terminals. Although these terminals are 
maintained at the same voltage by the negative feed-
back, no current flows through the virtual short circuit. 
Resistors that are effectively in parallel because of a vir-
tual short circuit have the same voltage across them as when 
they are physically in parallel. However, because a vir-
tual short circuit does not pass any current, the distribu-
tion of currents in the rest of the circuit is different in the two 

cases, which means that the circuits behave differently 
altogether. The distribution of currents in the case of a 
virtual short circuit is illustrated in Example 13.9.

With Av → ∞, the output can be considered as an ideal, 
independent voltage source of voltage vO, in accordance 
with the substitution theorem.

Example 13.2: Noninverting Configuration

It is required to determine VO and IO in Figure 13.13, 
assuming an ideal op amp.

Solution:

With the virtual short circuit between the noninverting 
and inverting terminals, VN = VP = 6 V. From voltage divi-
sion, VN = VO(2/3). It follows that VO = (3/2)VN = 9 V. 
Alternatively, it can be argued that since VN appears 
across the 2 kΩ resistor, I2 = 6/2 = 3 mA. I2 flows through 
the 1 kΩ resistor, producing a voltage drop of 3 V across 
this resistor. It follows that VO = 3 + 6 = 9 V. Note that 
as with an ideal voltage source, VO is independent of IO 
and hence does not depend on whatever is connected to 
the output of the ideal op amp.

From KVL around the mesh at the output of the 
op amp, the current in the upper 2 kΩ resistor is I1 = 
(9 – 5)/2 = 2  mA. It  follows from KCL at the output 
node that IO = 2 + 3 = 5 mA.

Simulation: The circuit is entered as in Figure 13.14 
using the part OPAMP from the ANALOG library, 
without changing the default values of Av, VCC

+ , and VCC
- . 

The 1u resistor added at the output of the op amp is 
simply to have PSpice display the output current of the 
op amp. To run the simulation, select ‘Bias Point’ under 
‘Analysis type’ in the Simulation Settings dialog box. 
After the simulation is run, pressing the V and I but-
tons displays the values shown in Figure 13.15. Note 
that the 9 V output is less than the default VCC

+  of 15 V, 
which confirms that the op amp operates in the linear 
region of its vO-ε characteristic.
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Problem-Solving Tips

• In solving problems involving ideal op amps, 
always make use of the virtual short circuit 
between the two inputs.

• In solving problems involving almost-ideal op 
amps, always check that the op amp is oper-
ating in the linear region of its input–output 
characteristic.

Primal Exercise 13.4

Draw the circuit diagram of an amplifier having a gain 
of +4, using an ideal op amp and a 1 kΩ resistor con-
nected to common ground.

Ans. The circuit is as shown in Figure 13.15.

Primal Exercise 13.5

Determine VO in Figure 13.16 using the concept of the 
virtual short circuit between the input terminals of the 
op amp.

Ans. 4 V.

Primal Exercise 13.6

Repeat Primal Exercise 13.5 with the 1  mA source 
replaced by a 5 kΩ resistor

Ans. 6 V.

Primal Exercise 13.7

Determine VO in Figure 13.17

Ans. 3 V.

13.3.1  Unity-Gain Amplifier

An important special case of the noninverting configu-
ration is the unity-gain amplifier, in which Rf  =  0, so 
that the output is directly connected to the inverting 
input (Figure 13.18). Rr across the ideal voltage source 
output of the op amp becomes redundant and is omit-
ted. Rf = 0 makes β = 1, so that Equation 13.8 becomes
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In terms of the virtual short circuit in the case of an 
ideal amplifier, vSRC = vP = vN = vO, so that vO/vSRC = 1. The 
unity-gain amplifier is also known as a voltage follower, 
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since  the output voltage follows the input voltage 
because even in the case of an almost-ideal op amp, 
vO  =  vN  ≅  vP. A special symbol is sometimes used for 
a unity-gain amplifier consisting of a triangle marked 
with ‘×1’, as in Figure 13.19b.

The unity-gain amplifier is extremely useful for isolat-
ing a source from a load, as is desirable in many cases. 
Consider, for example, a linear-output voltage source 
connected to a load resistance (Figure 13.19a). From volt-
age division,
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It is seen that because of Rsrc, variations in RL affect 
the load voltage vO. Moreover, if RL is comparable to 
or considerably smaller than Rsrc, then vO is signifi-
cantly less than vSRC and the power delivered to the 
load is also significantly reduced. For example, if 
VSRC = 6 V, Rsrc = 1.1 kΩ, and RL = 100 Ω, then vO is only 
(0.1/1.2) × 6 = 0.5 V, and the power delivered to the load 
is (0.5)2/100 ≡ 2.5 mW. Most of vSRC appears across Rsrc, 
and most of the power supplied by the source is dis-
sipated in Rsrc. A unity-gain amplifier can be used as in 
Figure 13.19b to isolate the source from the load. No 
current is drawn from the voltage source, so that this 

source is now ideally terminated by an open circuit. 
Variations in RL do not affect the voltage at the source 
terminals, which remains at vSRC. The output voltage of 
the unity-gain amplifier is vSRC, which is applied to RL, 
so vO = 6 V using the same numerical values. The power 
delivered to the load is (6)2/100  ≡  360  mW, assuming 
the op amp can handle this power. Another advantage 
is that if the load is an impedance ZL instead of RL, then 
vO is frequency dependent in Figure 13.19a, but not in 
Figure 13.19b. The op amp output in the latter case is 
virtually an ideal voltage source that maintains vSRC irre-
spective of the output current.

Example 13.3: Unity-Gain Amplifier

It is required to determine VO in Figure 13.20a, assuming 
an ideal op amp.

Solution:

Let the current in the upper branch be IX, as in 
Figure  13.20b. Because of the virtual short circuit, 
VP = VN, so that VO = VN = VP . This means that there is 
no voltage drop between the output terminal and the 
noninverting terminal. From KVL, −IX×1 + 10 = 0, which 
gives IX = 10/1 = 10 mA. Because of the open circuit at 
the op amp input terminals, IX flows in the 2 kΩ resistor. 
It follows that VP = 2 × 10 = 20 V and VO = VP = 20 V.

Simulation: The circuit is entered as in Figure 13.21 
using the part OPAMP from the ANALOG library. To 
maintain operation in the linear region of the input– 
output characteristic, VCC

+  is changed to 25 V from its 
default value of 15 V. There is no need to change Av nor 
VCC

- , which only changes the level of the negative satu-
ration region. To run the simulation, select ‘Bias Point’ 
under ‘Analysis type’ in the Simulation Settings dialog 
box. After the simulation is run, pressing the V and I 
buttons displays the values shown in Figure 13.21.
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FIGURE 13.19
A load RL connected directly to a linear-output voltage source (a) and through an isolating, unity-gain amplifier (b).
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Exercise 13.8

Assume that the op amp in Figure 13.20 is almost-ideal, 
having a voltage gain Av. Determine VO as a function of 
Av and verify that VO is 20 V as Av → ∞.

Ans. V A
O

v
=

+
20

1 3/
V.

The following example illustrates the analysis of the 
noninverting configuration using a signal-flow  diagram. 
Such diagrams can serve as useful aids in investigating 
the behavior of feedback systems.

★Example 13.4: Signal-Flow Diagram 
for Noninverting Configuration

It is required to analyze the noninverting configuration 
using a signal-flow diagram.

Analysis:

 1. The variables of interest are identified and sur-
rounded by circles. In the case of the noninverting 

configuration of Figure 13.11, the variables of 
interest are vI. vP, vN, vO, and ε, shown encircled in 
Figure 13.22a.

 2. The circles are joined by lines with arrows pointing 
in the direction of signal flow.

 3. In the noninverting configuration, the signal flow 
is from vI (which equals vP), via ε, to vO in the for-
ward path and then through vN and back to ε in the 
feedback path.

 4. The lines joining the encircled variables are labeled 
with multiplying factors in accordance with the rela-
tionship between the variables in the direction of sig-
nal flow. Thus, the line joining vI to vP is labeled with 
1, since vP = vI × 1, and the line joining ε to vO is labeled 
with Av because vO = ε × Av. The relation ε = vP – vN is 
represented by a label of 1 on the line joining vP to ε 
and by a label of −1 on the line joining vN to ε.

The following should be noted:

 1. The convergence of two or more lines on an 
encircled variable signifies weighted addition or 
 subtraction of the encircled variables of origin of 
the convergent lines.

–

+

–+

–

+

VO

1 k

2 k

10 V

(a)

–

–

+

VO

1 k

2 k

10 V

(b)

VP

VN

–

+

IX

IX

+

FIGURE 13.20
Figure for Example 13.3.

10 Vdc

VPOS = +25 V
VNEG = –15 V

+

–

OUT

1k

2k

0

20.00 V

10.00 mA

+ –

20.00 V

10.00 V

10.00 mA

FIGURE 13.21
Figure for Example 13.3.

vI vP vO

vN

1 1

–1

–

Av

(a)

vI vO

1 Av

(b)

FIGURE 13.22
Figure for Example 13.4.



378 Circuit Analysis with PSpice: A Simplified Approach

 2. The sign of the feedback is that of the product of the 
labels around the feedback loop. In Figure 13.22a, 
the feedback is from ε to vO and back through vN 
to ε. The product of the labels around the loop is 
(−1)  ×  Av, which has a negative sign denoting a 
negative feedback.

 3. The product of the labels in a signal path is the 
gain along the path. Thus, 1 × Av = Av is the gain in 
the forward path, or the forward gain, from vI to vO, 
whereas (−1) × Av × β = −βAv is the gain around the 
feedback loop, or the loop gain.

Evidently, the signal-flow diagram provides a graphi-
cal representation of the relations between the variables 
involved. The question therefore arises as to whether it 
is possible to derive directly from the diagram the rela-
tion between any two variables. Indeed, this is possible, 
using some well-defined rules. It   suffices  for  our pur-
poses to use the following simple rule:

Rule: The value of a given variable equals the value of another 
variable upstream along the signal path, multiplied by the for-
ward gain between these variables and divided by (1 – loop 
gain) of any feedback loop encountered anywhere along the 
path between the two variables, as long as the variables in the 
loop do not have additional inputs.

  (13.13)

In Figure 13.22a, for example, the forward gain from vI 
to vO is 1 × Av = Av , and the loop gain around the feedback 
loop is −βAv. The variables in the loop, ε, vO, and vN do 
not have inputs additional to those under  consideration. 
Hence, according to Rule 13.13, vO/vI  =  Av/(1  +  βAv), 
which is the same as Equation 13.8.

It is seen that signal-flow diagrams can be very conve-
nient in that they can be derived directly from the circuit 
diagram and allow a simple formulation of the relations 
between the variables involved, without having to write 
and solve equations. Intermediate variables that are not 
of immediate interest can be omitted from the signal 
flow diagram, with the lines appropriately relabeled. 
For example, vP can be omitted from Figure 13.22a, and 
the line from vI to ε labeled 1 × 1 = 1. Similarly, vN can be 
omitted, and the line from vO to ε labeled (−1) × β = −β 
(Figure 13.22b). This simplifies the diagram without los-
ing significant information.

Primal Exercise 13.9

Determine VO in Figure 13.23.

Ans. 15 V.

13.4  Inverting Configuration

The basic inverting configuration is shown in Figure 
13.24. The noninverting input is connected to common 
ground, and negative feedback is provided by the resis-
tance Rf between the output terminal and the inverting 
terminal. The circuit will first be analyzed assuming an 
ideal op amp. As explained in connection with Figure 
13.12, a virtual short circuit exists between the two 
input terminals of an ideal op amp in the presence of 
negative feedback. Because the noninverting terminal is 
grounded, the virtual short circuit becomes in this case 
a virtual ground at the inverting terminal. This is indi-
cated by the dashed ground symbol at the inverting ter-
minal in Figure 13.24.

The virtual ground is a most important feature of 
the inverting configuration, as will become clear in 
the next section. The virtual ground has two critical 
implications:

 1. The inverting terminal is effectively at a ground 
voltage of zero. This means that the input current 
ir is determined entirely by the circuit on the input 
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–
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FIGURE 13.23
Figure for Primal Exercise 13.9.
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FIGURE 13.24
Inverting configuration using ideal op amp.
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side of the op amp, independently of the circuit 
connected to the output of the op amp. Thus,

 
i

v
R

r
I

r
=

 
(13.14)

 2. Because of the open circuit at the inverting 
terminal, ir flows through Rf irrespective of Rf. 
Recall from the definition of an ideal cur-
rent source that if a resistor is connected to an 
ideal current source, the current in the resis-
tor is determined by the source irrespective of 
the resistance value. Since ir is forced to flow 
through Rf irrespective of Rf, then Rf sees an 
ideal current source ir.

Since the voltage at the inverting terminal is zero,

 v R iO f r= -  (13.15)

Eliminating ir between the two preceding equations,
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f

r
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(13.16)

It is seen that the sign of vO is opposite that of vI, which 
gives the inverting configuration its name. The inversion 
is basically because the input is applied to the inverting 
input, albeit through a circuit element Rr in this case.

We will next analyze the inverting configuration 
assuming an almost-ideal op amp. Because the nonin-
verting terminal is grounded, it is convenient to define 
εn = −ε (Figure 13.25), so that vO = −Avεn for the op amp. 
Since εn is a function of vI and vO, it is instructive to 
derive the vO–vI relation by superposition, rather than 
KVL and KCL (Exercise 13.20), as this provides better 
insight into the behavior of the circuit. To do so, vI is 
applied alone with vO set to zero (Figure 13.26a), then vO 
is applied alone, with vI set to zero (Figure 13.26b).

vO should not be set to zero by short-circuiting the 
output of the op amp, as this would short-circuit an 
ideal voltage source, leading to an infinite current. But 
we can imagine that the op amp is modified to have 
Av = 0 (Figure 13.26a), which gives vO = 0, so that the 
output is effectively grounded. It follows from voltage 
division that
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r f
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R R

v1 =
+  

(13.17)

To apply vO with vI set to zero, it is best to disconnect 
the op amp output and apply a voltage source vO as 
in Figure 13.26b, where vO = –εn2Av. This would avoid 
connecting the ideal voltage source vO in parallel with 
the voltage source εn2Av at the output of the op amp 
although theoretically, the two sources have the same 
voltage. It follows from Figure 13.26b, with vI = 0, that
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(13.18)

Applying superposition,
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Equation 13.19 can be rearranged to give
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Inverting configuration using op amp of finite gain.
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where β = Rr/(Rr + Rf), as for the noninverting configura-
tion (Equation 13.6). If Av → ∞, Equation 13.20 becomes
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(13.21)

as in Equation 13.16. It should be noted that even in the 
case of an almost-ideal op amp, the inverting configu-
ration is, for most practical purposes, a virtual ground. 
Even if Av is relatively low at 104, and vO  =  10  V, say, 
then εn = −10/104 ≡ –1 mV. It is seen that the difference 
between the noninverting and inverting configurations, 
in terms of feedback, is that in the noninverting configu-
ration, the feedback signal is effectively in series with 
the applied input and subtracts from it, so that ε = vI – vN 
(Figure 13.11). Thus, the sign in the feedback path is 
negative, and the sign in the forward path is positive 
(vO  =  εAv), so that the sign of the product around the 
feedback loop is negative, as it should be for a nega-
tive feedback system. In the inverting configuration, 
on the other hand, the feedback signal is effectively in 
shunt with the input, through Rf and Rr and adds to it 
(Figure 13.26 and Equation 13.19, where εn = εn1 + εn2). 
The sign in the feedback path is positive, but the sign 
in the forward path is negative (vO = −εnAv), so that the 
sign of the product around the feedback loop is again 
negative, as it should be for a negative feedback system.

If Rf  =  Rr, then vO  =  −vI; the inverting configuration 
becomes a unity-gain inverter.

Equation 13.16 can be readily generalized to the sinu-
soidal steady state, where Rr and Rf are replaced by Zr 
and Zf, respectively, and all voltages and currents are 
considered as phasors (Figure 13.27). Because of the 
virtual ground at the inverting input of the op amp, 
Ir = VI/Zr and flows through Zf, resulting in VO = −ZfIr. 
Eliminating Ir gives
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Exercise 13.10

Derive Equation 13.20 using the governing equations: 
vI – εn = Rrir, εn – vO = Rfir, and vO = −Avεn, eliminating ir, 
and εn between these three equations.

Example 13.5: Inverting Configuration

It is required to determine vO and iO in Figure 13.28, 
assuming an ideal op amp.

Solution:

Because of the virtual ground (Figure 13.29), the cur-
rent through the 15 kΩ resistor is zero, which makes 
the 30 kΩ resistor effectively in parallel with the 
20 kΩ resistor, since they have the same voltage across 
them. The parallel resistance is (30) × (20)/50 = 12 kΩ. 
Rr  =  (8  +  12)  =  20 kΩ, and the input current is 
6/20 = 0.3 mA. By current division, the current in the 
30 kΩ resistor is 0.3  ×  (20/50)  =  0.12  mA. This cur-
rent flows through the 100 kΩ resistor and produces 
a voltage drop of (100)  ×  0.12  =  12  V. It follows that 
vO = −12 V.

The currents in the 50 and 20 kΩ connected to the 
 output of the op amp are 0.24 and 0.6 mA, respectively, 
so that −iO = 0.12 + 0.24 + 0.6 = 0.96 mA.

Simulation: The circuit is entered as in Figure 13.30 
using the part OPAMP from the ANALOG library, 
without changing the default values. As in Figure 
13.14, the 1u resistors are added in order to have PSpice 
display the currents. To run the simulation, select ‘Bias 
Point’ under ‘Analysis type’ in the Simulation Settings 
dialog box. After the simulation is run, pressing the 
V and I buttons displays the values shown in Figure 
13.30. It is seen that, except for the voltage at the 
inverting terminal and the current through the 15 kΩ 
resistor, which are effectively zero, the indicated cur-
rents and voltages are the same as those assuming an 

ideal op amp. Note that en = -
- º12
10

12 mV.
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Problem-Solving Tips

• A combination of circuit elements connected across 
the voltage source output of an op amp does not 
affect the output voltage of the op amp but affects 
its output current.

• No current flows through a passive circuit  element, 
or a combination of such elements, connected 
across a virtual short circuit at the op amp inputs.

Primal Exercise 13.11

Draw the circuit diagram of an amplifier having a gain of 
−2 and input resistance of 10 kΩ, using an ideal op amp.

Ans. The circuit is as shown in Figure 13.31.

Primal Exercise 13.12

Determine VO in Figure 13.32 by two methods: (1) 
applying the concept of a virtual short circuit between 
the two input terminals and (2) applying one battery at 
a time and using superposition. Note that when the 4 V 
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battery is set to zero, the circuit is an inverting amplifier, 
whereas when the 6 V battery is set to zero, the circuit is 
a noninverting amplifier.

Ans. VO = 0.

Primal Exercise 13.13

Determine VO in Figure 13.33.

Ans. −10 V.

Primal Exercise 13.14

Determine VO in Figure 13.34.

Ans. −2 V.

★Example 13.6: Signal-Flow Diagram 
for Inverting Configuration

It is required to analyze the inverting configuration 
using a signal-flow diagram.

Analysis: The signal-flow diagram can be derived 
directly from Figure 3.25. The main variables of 

interest are vI, εn, and vO (Figure 13.35). For the op 
amp, vO = −Avεn. If vO = 0, it follows from Figure 13.26a 
that εn1  =  RfvI/(Rr  +  Rf). When vI  =  0, it follows from 
Figure 13.26b that εn2 = RrvO/(Rr + Rf) = βvO. The loop 
gain is βAv, the same as in the noninverting configura-
tion (Figure 13.22b), but the negative sign is now asso-
ciated with the forward path rather than the feedback 
path, as in the inverting configuration. Applying Rule 
13.13 gives
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which is the same as Equation 13.20.

13.5  Applications of the Inverting 
Configuration

13.5.1  Current-Source-to-Voltage-Source Converter

The circuit of Figure 13.36 converts a nonideal current 
source of source resistance Rsrc, connected to the input 
of an op amp in the inverting configuration, to an ideal 
voltage source at the output. Because of the virtual 
ground, no current flows in Rsrc. The current source is 
ideally terminated with a short circuit, so that all of iSRC 
flows toward the inverting input and through Rf, result-
ing in an ideal voltage source output of vO = −RfiSRC.
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Ideal Operational Amplifier 383

Primal Exercise 13.15

Determine iO in Figure 13.37 (Note that the circuit at the 
output is a two-essential-node circuit).
Ans. 2.5 mA.

13.5.2  Ideal Integrator

The feedback resistor Rf is replaced by a capacitor Cf in 
Figure 13.38; ir remains equal to vI/R, because of the vir-
tual ground, and flows through Cf. The resulting output 
voltage is
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(13.24)

If vO(0) = 0, vO is −1/RrCf times the time integral of vI. 
Ideally, the circuit acts as a perfect, or ideal, integrator 
with a gain −1/RrCf.

In the frequency domain, the ratio of the output 
voltage to the input voltage of the ideal integrator is 
obtained from Equation 13.22 by substituting Zr  =  Rr 
and Zr = 1/jωCf:
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Primal Exercise 13.16

Determine Rr in the ideal integrator for an integrator 
gain of −1, assuming Cf = 1 μF.

Ans. 1 MΩ.

13.5.3  Ideal Differentiator

It is evident from Figure 13.38 that if Cf is replaced by an 
inductor, the circuit becomes a differentiator. However, 

the use of inductors is avoided in practice as much 
as possible in favor of capacitors for several reasons: 
(1)  inductors are bulky and expensive compared to 
capacitors, (2) practical capacitors are generally closer 
to the ideal than practical inductors, and (3) capacitors 
of relatively small capacitance can be incorporated in 
integrated circuits, whereas this is much less practical 
with inductors. Differentiation can be obtained by inter-
changing the resistor and capacitor in Figure 13.38, as 
illustrated in Figure 13.39.

Because of the virtual ground, ir = CrdvI/dt; ir flowing 
through Rf produces a voltage output given by
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Ideally, the circuit acts as a perfect, or ideal, differentia-
tor with a gain of −RfCr.

In the frequency domain, the ratio of the output 
voltage to the input voltage of the ideal differen-
tiator is obtained from Equation 13.22 by substituting 
Zr = −1/jωCr and Zf = Rf:
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Primal Exercise 13.17

Assume that the triangular vi(t) of Figure 13.40, start-
ing  at t  =  0, is applied to the ideal differentiator 
of  Figure  13.39, having Cr  =  0.1  μF and Rf  =  10 kΩ. 
Sketch vO(t).
Ans. vO(t) is shown in Figure 13.41.

13.5.4  Adder

The virtual ground can act as a summing point, lead-
ing to an adding circuit, as illustrated in Figure 13.42 for 
three inputs. Because of the virtual ground, ir1 = vI1/Rr1, 
ir2  =  vI2/Rr2, and ir3  =  vI3/Rr3. The current ir flowing 
toward the inverting terminal is the sum of the three cur-
rents, ir = ir1 + ir2 + ir3, and flows through Rf. The output is 

vO = −Rfir = −Rf(ir1 + ir2 + ir3). Substituting for the currents 
in terms of the voltage inputs,
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In other words, the output is the weighted sum of the 
inputs, with sign inversion. If all the input resistances 
are equal to Rr,
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The output voltage is now the sum of the input volt-
ages multiplied by the gain −Rf/Rr. An important fea-
ture of this adding circuit is that the virtual ground 
prevents interaction between the input circuits, thereby 
effectively isolating them from one another. A change in 
vI1 or Rr1, for example, affects only ir1 and has no effect on 
the other input circuits.

If subtraction of some inputs is required, these inputs can 
be inverted before being applied to the adder. Alternatively, 
a difference amplifier (Section 13.6) can be used.

Primal Exercise 13.18

Determine VO in Figure 13.43.

Ans. −10 V.

Example 13.7: Noninverting Integrator

It is required to analyze the circuit of the noninverting 
integrator of Figure 13.44.

Analysis: The circuit is noteworthy in several respects: 
(1) the integrated output is not inverted, (2) the value of 
Cf can be magnified by a multiplying factor, and (3) the 
inverting input of the integrator is a virtual ground, 
rather than the noninverting input. This is because the op 
amp on the right is in the inverting configuration, having 
an input vO and an output vO2 = −(Rb/Ra)vO (Figure 13.45). 
Due to this inversion in the feedback path, the forward 
path through the op amp should be noninverting, so as 
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to have a negative feedback loop. The inverting terminal 
of the integrator op amp should therefore be grounded. 
For a finite vO, the voltage at the noninverting input ter-
minal of the op amp is vanishingly small, which means 
that this terminal is a virtual ground (Figure 13.45).

It is seen from Figure 13.45 that vO2 = −(Rb/Ra)vO and 
that ir = vI/Rr; ir flowing through Cf produces a voltage 

drop
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across Cf, assuming Cf is ini-

tially uncharged. This voltage drop is −vO2, which gives
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Cf is thus multiplied by Rb/Ra, the magnitude of the 
gain of the inverting amplifier, and vO is not inverted 
with respect to vI.

Simulation: Suppose that Rr = 100 kΩ, Cf = 1 μF, Rb = 10 kΩ, 
and Ra = 1 kΩ. The circuit is entered as in Figure 13.46 
using the part OPAMP from the ANALOG library, 
 without changing the default values. The source VPWL 

having the parameters indicated is a biphasic pulse vI, as 
in Figure 13.47. To run the simulation, select ‘Time Domain 
(Transient)’ under ‘Analysis type,’ 2 s for ‘Run to time,’ 0 for 
‘Start saving data after,’ and 1m for ‘Maximum step size.’ 
After the simulation is run, the input voltage and output 
voltage are displayed as in Figure 13.47. From Equation 
13.30, the integrator gain is 1/(105 × 10−6 × (10/1)) = 1. The 
integral of the biphasic input pulse of 1 V amplitude and 
1  s duration of each phase is a triangular waveform of 
1 V peak, as in Figure 13.47. Note that the output of the 
inverting amplifier of gain −10 is a triangular waveform 
of −10 V peak, so that the op amp operates in the linear 
region of its characteristic. Note also that the results of 
using the almost-ideal op amp of PSpice are not signifi-
cantly different from those assuming an ideal op amp.

Primal Exercise 13.19

Determine VO in Figure 13.48.

Ans. 1 V.
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13.6  Difference Amplifier

The basic circuit of the difference amplifier is shown 
in Figure 13.49. The input vP at the noninverting input 
is simply the output of a voltage divider: vP = RdvSRC1/
(Rc  +  Rd). The current flowing through Ra toward the 
inverting terminal is (vSRC2 – vN)/Ra, and the current 
flowing through Rb away from the inverting terminal 
is (vN – vO)/Rb. From KCL, these currents are equal. 
Moreover, vP = vN because of the virtual short circuit at 
the op amp inputs. Eliminating vP and vN between these 
equations and rearranging gives
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If 
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= = , Equation 13.31 reduces to

 v k v vO SRC SRC= ( )1 2–  (13.32)

The circuit can therefore be used for directly subtract-
ing one signal from another.

The difference amplifier can be considered as a combi-
nation of the inverting and noninverting configurations. 
Accordingly, Equation 13.31 can be derived by superpo-
sition of vSRC1 and vSRC2 (Problem P13.42). Alternatively, 
Equation 13.31 can be derived by applying superposi-
tion of vSRC2 and vO, as in Figure 13.26, to derive vN, and 
then substituting vP = RdvSRC1/(Rc + Rd) for vN.

Example 13.8: Instrumentation Amplifier

It is required to analyze the circuit of Figure 13.50 repre-
senting an instrumentation amplifier (IA).

Analysis: The amplifier consists of two stages, the first 
stage having two op amps in a noninverting configu-
ration. The outputs of these op amps are combined so 
as to provide a differential output that is applied to a 
difference amplifier in the second stage. Since the input 
sources are applied to noninverting inputs, the input 
impedance is high. Moreover, as is shown in what 
 follows, the overall gain is determined by the value 
of a single resistance R1. The output vO depends on 
the  difference (vSRC1 – vSRC2) between the inputs. This 
is advantageous, as outside interference that adds the 
same voltage to vSRC1 and vSRC2 is canceled out. For best 
performance, the resistors having the same subscript 
number should be closely matched in value.

The differential gain of the first stage can be very sim-
ply derived by noting that, because the inputs behave 
as open circuits, vP1 = vSRC1 and vP2 = vSRC2 (Figure 13.51). 
Because of the virtual short circuit at the inputs of an 
ideal op amp, vN1  =  vP1  =  vSRC1 and vN2  =  vP2  =  vSRC2. 
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This means that the voltage (vN1 – vN2) across R1 equals 
the differential input voltage (vSRC1 – vSRC2), so i1 = (vSRC1 – 
vSRC2)/R1. This same current flows in the two resistances 
R2. Hence,
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The differential gain of the first stage is therefore
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In order to obtain the overall gain, this differential 
gain has to be multiplied by that of the difference ampli-
fier (Equation 13.32). Identifying k, vSRC1, and vSRC2 in 
Equation 13.32, with their counterparts R4/R3, vO1, and 
vO2, respectively, in Figure 13.50, it follows that
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Multiplying Equations 13.34 and 13.35 gives
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It is seen that the gain can be varied by varying a sin-
gle resistance R1 that does not have be to be matched 
to any other resistance. Because of its many attractive 
features, the IA is available in IC form.

Simulation: Suppose that R1  =  2 kΩ and all other 
 resistances are 1 kΩ. From Equation 13.36, the voltage 
gain vO/(vSRC1 – vSRC2)  =  2. The circuit is entered as in 

Figure 13.52 using the part OPAMP from the ANALOG 
library, without changing the default values. The VPWL 
sources, having the parameters indicated, are triangular 
waveforms (Figure 13.53). To run the simulation, select 
‘Time Domain (Transient)’ under ‘Analysis type,’ 2s for 
‘Run to time,’ 0 for ‘Start saving data after,’ and 1m for 
‘Maximum step size.’ After the simulation is run, the 
input voltage and output voltage are displayed as in 
Figure 13.53, where vSRC1 and vSRC2 are triangular wave-
forms of amplitudes 3 and 2.5 V, respectively. The out-
put voltage is a triangular waveform of amplitude 1 V.

Primal Exercise 13.20

Determine IS in Figure 13.54.

Ans. −4 mA.
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★Example 13.9: Current Distribution 
with Virtual Short Circuit

The objective of this example is to clarify the differ-
ence between having resistors physically in parallel and 
having them effectively in parallel through a virtual 
short-circuit, using the circuit of Figure 13.55.

Analysis: Since the op amp is assumed ideal, a virtual 
short circuit exists between the inverting and nonin-
verting inputs (Figure 13.56). From voltage division, 
VP  =  6  ×  2/3  =  4  V, so that VN  =  VP  =  4  V. Note that 
the 4 and 1 kΩ resistors are effectively in parallel: they 
have the same 2 V across them, resulting in currents of 
0.5 and 2 mA through these resistors. However, when 
applying voltage division, the 1 kΩ resistor is consid-
ered to be in series with the 2 kΩ resistor, since no cur-
rent flows through the virtual short circuit. The 0.5 mA 
current through the 4 kΩ resistor flows through the 3 kΩ 
resistor, producing a voltage drop of 1.5 V. It follows that 
VO = VN – 1.5 = 2.5 V.

What exactly is the difference between having the 
1 kΩ and 4 kΩ resistors effectively in parallel through a 
virtual short circuit and having them actually in paral-
lel through a physical short circuit, as in Figure 13.57? 

It is clear that the circuit is now a different circuit alto-
gether. Since the inverting and noninverting inputs are 
connected together, the differential input is zero, so 
that VO = 0. With VO = 0, the 3 and 2 kΩ resistors are 
in parallel, having a parallel resistance of 3 × 2/5 = 1.2 
kΩ. The parallel resistance of the 4 and 1 kΩ resistors is 
4 × 1/5 = 0.8 kΩ. By voltage division, the voltage of the 
common op amp inputs is 6 × 1.2/(1.2 + 0.8) = 3.6 V. The 
currents in the circuit are shown in Figure 13.57. With 
VO = 0, the current in the 3 kΩ resistor is 1.2 mA.

In comparing Figures 13.56 and 13.57, the following 
should be noted:

 1. The voltage across the 4 and 1 kΩ resistors is the 
same 2  V in Figure 13.56 and the same 2.4  V in 
Figure 13.57, the corresponding currents in the two 
resistors being determined by Ohm’s law in each 
case. In this respect, a physical parallel connection 
and an effective parallel connection behave in the 
same manner in that they have the same voltage 
across them.
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 2. However, because a virtual short circuit does not pass 
current, unlike a physical short circuit, the distribu-
tion of currents in the rest of the circuit is different in the 
two cases. This means that the overall circuits are dif-
ferent in the two cases, resulting, in general, in dif-
ferent voltages and currents in each case. As noted 
earlier, the current in the 1 kΩ resistor in Figure 13.56 
flows through the 2 kΩ resistor, and the current in 
the 4 kΩ resistor flows through the 3 kΩ resistor.

It is of interest in this connection to trace the flow of the 
0.5 mA through the 3 kΩ resistor in Figure 13.56, into the 
output of the op amp, and back to the 6 V battery. This 
is illustrated in Figure 13.58, which shows the two VCC 
supplies with their common connection grounded. It fol-
lows from applying KCL to surface S1 that I ICC CC

+ -+ =0 5.  
or I ICC CC

- +- = 0 5. . When the op amp output current is 
zero, I ICC CC

+ -= . It follows from KCL at the ground of the 
VCC supplies or from applying KCL to surface S2 that 
the 0.5 mA current flows from the ground connections 
of the VCC supplies back to the ground connection of the 
6 V battery. The 0.5 mA current adds to the 2 mA cur-
rent through the 2 kΩ resistor to give 2.5 mA through 
the battery.

13.7  Solving Problems on Operational 
Amplifiers

The ISDEPIC approach presented in Section 2.10 can be 
adapted to solving problems on op amps. The steps are 
as follows:

Step 1—Initialize: a. Mark on the circuit diagram all given 
values of circuit parameters, currents and volt-
ages, as well as the unknowns to be determined. 

Mark the differential input ε in the case of almost-
ideal op amps, and indicate virtual short circuits 
and virtual grounds in the case of ideal op amps. 
Mark op amp input currents and  currents in 
 virtual short circuits as zero, by means of an ‘x’.

 b.  If the solution requires that a given value of 
current or voltage be satisfied, assume this 
value from the very beginning.

Step 2—Simplify: Try and reduce the circuit to a 
 simpler form, if possible.

Step 3—Deduce: Determine any values of current 
or voltage that follow from immediate, direct 
application of Ohm’s law, KCL, KVL, without 
introducing any additional unknowns. Look for 
the immediate consequences of voltage division 
or current division, as these are encountered 
often in op amp circuits. Pay particular attention 
to implications of virtual short circuits and vir-
tual grounds in the case of ideal op amps. If this 
step does not provide the solution, go to Step 4. 
Steps 2 and 3 can sometimes be alternated.

Step 4—Explore: Consider the nodes and meshes in the 
circuit to see if KCL or KVL can be satisfied by 
assignment of a single unknown current or volt-
age AND if this unknown can then be directly 
determined from KCL or KVL. It is generally 
convenient to select as this single unknown, the 
output voltage of an op amp, or the nonzero 
voltage at the inputs of an ideal op amp that 
is not in the inverting configuration. Once this 
unknown is determined, other required vari-
ables can be derived from KCL, KVL, or Ohm’s 
law. It is helpful in implementing this step to 
bear in mind the following:

 a. The nodes that should be examined are par-
ticularly those at op amp inputs and virtual 
grounds. KCL at op amp output terminals is 
generally not helpful to begin with because 
the output current is not known.

 b. Make use of the output–input relations for 
inverting and noninverting configurations 
based on ideal op amps.

 c. Make use of the vO-ε characteristic (equivalent 
circuit) in the case of almost-ideal op amps.

 d. Avoid introducing additional unknowns 
unnecessarily.

Steps 5 and 6—Plan and Implement are usually 
unnecessary.

Step 7—Check your calculations and results. PSpice 
simulations are very helpful.

The preceding steps are illustrated by Example 13.10.
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Example 13.10: Two-Stage Amplifier

It is required to determine VO in Figure 13.59.

Solution: The implementation of the steps outlined is 
illustrated in Figure 13.60.

Step 1—Initialize: The circuit parameters and the required 
voltage VO are indicated. The zero input currents are 
indicated by an ‘x’ at the inputs of the op amps. The vir-
tual short circuit at the inputs of the first op amp, and the 
virtual ground at the inverting input of the second op 
amp are indicated and also marked with x to emphasize 
that no currents flow in these virtual connections.

Step 2—Simplify: The circuit is in a simple enough form.

Step 3—Deduce: Because of the virtual ground, the 3 kΩ 
and 6 kΩ resistors connected to the noninverting input 
of the first op amp are effectively in parallel, the parallel 
resistance being 2 kΩ. This parallel resistance, in series 
with the 1 kΩ resistance connected at the input of first 
op amp, is across the 9 V source. The current in the 1 kΩ 
resistor is therefore 3  mA. From current division, the 

currents in the 3 and 6 kΩ resistors are 2  mA and 1 mA, 
respectively. The voltage at the noninverting input of the 
first op amp is from Ohm’s law or voltage division 6 V. 
Because of the virtual short circuit, this is the voltage at 
the inverting input of the first op amp and at the output 
of this op amp, by virtue of the unity-gain follower con-
nection. The current in the 6 kΩ resistor connected to the 
inverting input of the second op amp is therefore 1 mA.

The total current entering the node at the inverting input 
of the second op amp is 1 mA + 2 mA = 3 mA. This current 
flows through the 3 kΩ resistor, producing a voltage drop 
of (3) × 3 = 9 V. Because of the virtual ground, VO = −9 V.

Simulation: The circuit is entered as in Figure 13.61 using 
the part OPAMP from the ANALOG library, without 
changing the default values. To run the simulation, select 
Bias Point under ‘Analysis type’ in the Simulation Settings 
dialog box. After the simulation is run, pressing the V and I 
buttons displays the values shown in Figure 13.61. It is 
seen that, except for the 9 μV voltage at the inverting ter-
minal of the second op amp, the indicated currents and 
voltages are the same as those assuming an ideal op amp.
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★Example 13.11: Simulation of Response 
of Practical Op Amp

This example has two objectives: (1) to compare the 
results of simulating a difference amplifier using 
the PSpice part of a popular, general-purpose op amp, 
the uA741, in order to show that the analytical results 
based on ideal op amps give the same results in this case 
and (2) examine the effects of tolerances of resistance 
values. These  tolerances are deviations from nominal 
values due to inevitable variations in the materials and 
processes used in manufacturing the components. The 
tolerance, specified by the manufacturer, is expressed 
as a percentage of the nominal value. For example, the 
actual resistance of a 1 kΩ resistor of 2% tolerance can be 
anywhere in the range of 980–1020 Ω. Commonly used 
resistors have tolerances of 5% or 10%, but resistors of 
0.1%, 0.25%, 0.5%, 1%, 2%, and 20% are available. The 
smaller the tolerance, the more expensive the resistor is.

Simulation: The circuit is entered as in Figure 13.62 
using the uA741 part from the EVAL library. The only 

additions made to the part, as entered, are the bias 
supplies of ±15  V between pins 4 and 7 and ground. 
The output voltage can be readily calculated assuming 
an ideal op amp. The noninverting terminal (pin 3) is 
at 5  V. Because of the virtual short circuit, the invert-
ing terminal (pin 2) is also at 5 V. The current flowing 
through the 10 kΩ resistor toward the inverting termi-
nal is (6 – 5)/10 = 0.1 mA. This current flows through 
the 10 kΩ feedback resistor, producing a voltage drop 
of 1  V from inverting input to output. It follows that 
VO = 4 V.

To run the simulation, with full sensitivity analy-
sis, select ‘Bias Point’ under ‘Analysis type’ in the 
Simulation Settings dialog box, check the ‘Perform 
Sensitivity analysis’ box under ‘Output File Options,’ 
and enter V(U1:OUT) in the ‘Output variable(s)’ field. 
After the simulation is run, pressing the V and I buttons 
displays the values shown in Figure 13.62. Note that the 
simulated output voltage of 4.000 V agrees with the cal-
culated value of 4 V to within three significant figures 
beyond the decimal point. Note also that the input cur-
rents of the op amp are not zero, but 81.59 and 81.91 nA. 
These are input bias currents of the op amp. Moreover, 
the voltages of the input terminals are 4.999 and 5.000 V. 
This difference is the algebraic sum of ε, the differen-
tial input voltage, and an inherent voltage difference 
referred to as the input offset voltage of the op amp.

It must be emphasized that deviations from the ideal 
can have a drastic effect on some types of op amp cir-
cuits. For example, the aforementioned input bias cur-
rents and offset voltage are themselves integrated by 
the capacitor of an ideal integrator, thereby driving the 
op amp to saturation after a long enough period, even 
with zero input. For this reason, the capacitor in a practi-
cal integrator is usually short-circuited by an electronic 
switch until the start of integration.

The results of the sensitivity analysis are tabulated in 
the output file for all component and parameter values, 
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including those of the op amp. The following entries 
for the values of the sources and resistors have been 
selected from the table:

Element 
Name Element Value

Element 
Sensitivity 
(Volts/Unit)

Normalized 
Sensitivity 

(Volts/Percent)

R_R1 1.000E+04 −5.000E−04 −5.000E−02
R_R2 1.000E+04 4.999E−04 4.999E−02
R_R3 1.000E+04 1.001E−04 1.001E−02
R_R4 1.000E+04 −9.997E−05 −9.997E−03
V_V1 1.000E+01 1.000E+00 1.000E−01
V_V2 6.000E+00 −1.000E+00 −6.000E−02
V_V3 1.500E+01 −3.598E−05 −5.397E−06
V_V4 1.500E+01 3.598E−05 5.397E−06

Considering R1, for example, the third column indi-
cates that an increase of 1 Ω in R1 decreases (because of 
the minus sign) VO by 5.000  ×  10−4  V, conversely if R1 
deceases. The fourth column indicates that an increase 
of 1% in R1 decreases VO by 5.000 × 10−2 V. Similar inter-
pretations apply to the other rows.

To examine the effect of the 2% tolerance, this toler-
ance is entered, as a percentage, in the Property Editor 
Spreadsheet of each of the four resistors, in the respec-
tive row or column. Select ‘DC Sweep’ under ‘Analysis 
type.’ With the ‘Primary Sweep’ box checked and 
‘Voltage source’ selected as the ‘Sweep Variable,’ enter 
the name of the voltage source, V1 or V2, in the ‘Name’ 
field. Under ‘Sweep type,’ with ‘Linear’ selected and 
assuming V1 was chosen as the voltage source, enter 
10 for ‘Start value,’ also 10 for ‘End Value’ and 1 for 
‘Increment.’ Check the ‘Monte Carlo/Worst Case’ box 
under ‘Options,’ which automatically opens a new 
window. Select ‘Worst Case/Sensitivity’ and enter 
V(U1:OUT) in the ‘Output variable’ field. Press the 
‘More Settings’ button, choose the ‘the maximum value 
(MAX)’ from the pull-down menu in the ‘Find’ field, 
and select ‘Hi’ under ‘Worst-Case direction.’ Press the 
‘OK’ buttons and run the simulation. In the ‘Available 
Sections’ window, press the ‘All’ button and then the 
‘OK’ button. The output file shows the results of a lim-
ited sensitivity analysis for the four resistors, indicat-
ing a maximum output voltage of 4.235 V, or 105.88% 
of nominal, for worst-case combination of tolerances.

To find the minimum voltage for the worst-case combi-
nation of tolerances, the preceding procedure is repeated, 
except that after pressing ‘More Settings’ button, choose 
‘the minimum value (MIN)’ from the pull-down menu 
in the ‘Find’ field, and select ‘Low’ under ‘Worst-Case 
direction.’ After running the simulation, the output file 
shows a minimum output voltage of 3.7548 V, or 93.877% 
of nominal, for worst-case combination of tolerances.

Learning Checklist: What Should 
Be Learned from This Chapter

• An op amp is a three-terminal, voltage- operated 
device whose output voltage is directly pro-
portional to the difference between the volt-
ages applied to its two input terminals: vO  = 
Av(vP – vN) = Avε, where Av is the voltage gain of 
the amplifier and ε is the differential input.

• An ideal op amp has the following properties:
 1. The output is an ideal voltage source of 

 voltage vO given by

 v A v v AO v P N v= - ®¥( ), with  

 2. Like an ideal voltage source, the amplifier 
has  zero output resistance and can deliver 
any  output voltage or current, at any 
frequency.

 3. Both inputs behave as open circuits.
 4. The op amp is free from all imperfections, 

such as nonlinearities or any form of distor-
tion of the output with respect to the input.

• An op amp, like any amplifying device, fun-
damentally amplifies power. Some external 
dc bias supply is needed to provide the dif-
ference between the output power and the 
input power. Power is conserved and KCL is 
satisfied when the bias supplies are taken into 
account.

• If Av is assumed finite and the bias supplies 
are taken into consideration, the input–output 
characteristic of the op amp can be divided 
into three regions: (1) a linear region of slope 
Av centered at the origin; (2) a positive satu-
ration region, where the output is clamped at 
VCC

+  and which extends from an input V ACC v
+ /  to 

more positive inputs; and (3) a negative satu-
ration region, where the output is clamped at 
VCC

-  and which extends from - -V ACC v/  to more 
negative inputs.

• In an almost-ideal op amp, either Av is a finite 
constant or the bias supplies, VCC

+  and VCC
- , have 

finite values or both. In all other respects the 
almost-ideal op amp is ideal.

• Over the linear operating range, an almost-ideal 
op amp can be represented by an ideal VCVS of 
voltage Avε.

• In a feedback system, part or all of the output is 
fed back to the input so as to modify the behav-
ior of the system in some way. The feedback 
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is positive if a change in the output in a given 
direction results in a change in the output in the 
same direction, which tends to reinforce the ini-
tial change. The feedback is negative if a change 
in the output in a given direction results in a 
change in the output in the opposite direction, 
that is, the initial change is opposed.

• Positive feedback in an op amp circuit having a 
loop gain of more than 1 results in stable opera-
tion in the positive and negative saturation 
regions only. The op amp behaves in this case 
like a switch.

• Negative feedback allows stable operation 
anywhere in the linear region of the op amp 
characteristic.

• Nonswitching op amp circuits invariably 
employ negative feedback, which necessitates 
some circuit connection between the output and 
the inverting input of the op amp. The negative 
feedback allows trading off the high gain of the 
op amp for some desirable characteristics of 
the circuit, such as a precise and stable ampli-
fication that depends on resistance ratios only, 
irrespective of variations in Av and other circuit 
parameters.

• In a negative feedback connection employ-
ing an ideal op amp (Av → ∞), the differential 
input is vanishingly small for any finite output, 
so that the two inputs of the op amp are at the 
same voltage and can be considered to be virtu-
ally short-circuited to one another.

• In the noninverting configuration using an ideal 

op amp, v
v

R
R

O

I

f

r
= +1 , where Rf is the resistance of 

the feedback voltage divider that is connected 
directly to the output of the op amp.

• The unity-gain amplifier is a special case of the 
noninverting configuration. It can be advan-
tageously used to isolate a nonideal voltage 
source from a load, so that the load sees an 
ideal voltage source output whose value is 
equal to the open-circuit voltage of the noni-
deal source.

• In the inverting configuration using an ideal 
op amp, v

v
R
R

O

I

f

r
= - , where Rf is the feedback 

 resistance connected between the output of the 
op amp and the inverting input. This relation 

is generalized to V
V
O

I
= -

Z
Z

f

r

 in phasor notation.

• The virtual short circuit between the noninverting 
and inverting terminals of the op amp becomes 
a virtual ground at the inverting terminal in 

the inverting configuration. The virtual ground 
effectively isolates the circuit on the input side 
of the op amp from the circuit connected to the 
output of the op amp, while forcing the input 
current to flow through the output circuit.

• The virtual ground is an important feature of the 
inverting configuration that allows a number of 
useful applications such as a current-source-to-
voltage-source converter, an ideal integrator, an 
ideal differentiator, and an adder.

• A difference amplifier is essentially a combina-
tion of the inverting and noninverting configu-
rations. It can be combined with a noninverting 
input stage to form a high-performance IA.

• The ISDEPIC approach can be advantageously 
adapted to solving problems on op amps.

Problem-Solving Tips

 1. In solving problems involving ideal op amps, 
always make use of the virtual short circuit 
between the two inputs.

 2. In solving problems involving almost-ideal 
op amps, always check that the op amp is oper-
ating in the linear region of its input–output 
characteristic.

 3. A combination of circuit elements connected 
across the voltage source output of an op amp 
does not affect the output voltage of the op amp 
but affects its output current.

 4. No current flows through a passive circuit 
 element, or a combination of such elements, 
connected across a virtual short circuit at the 
op amp inputs.

Problems

Apply ISDEPIC and verify solutions by PSpice simulation, 
whenever feasible.

Single-Op Amp Circuits

P13.1 Determine VO in Figure P13.1.

 Ans. 8 V.

P13.2 Determine iL in Figure P13.2. Note that iL is indepen-
dent of RL, so that RL sees a current source of value iL.

 Ans. 1 mA.

P13.3  Determine iL in Figure P13.3.

 Ans. −15 mA.

P13.4  Determine Rin in Figure P13.4.

 Ans. 10 kΩ.
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P13.5  Determine IO in Figure P13.5 assuming VSRC = 2 V.

 Ans. 20/3 mA.

P13.6  Determine the range of VSRC in the preceding problem 
that will maintain operation in the linear region of the 
input–output characteristic of the op amp.

 Ans. −2 V ≤ VSRC ≤ 3 V.

P13.7 Determine IO in Figure P13.7.

 Ans. −1.2 mA.

P13.8 Determine VO in Figure P13.8.

 Ans. 14 V.

P13.9 Given that v1(t)  =  cosωt V in Figure P13.9 and 
v2(t)  =  sinωt V, determine R so that vO(t)  = 
−cos(π/16)cos(ωt – π/16) V.

 Ans. cot(π/16) Ω.

P13.10  The circuit of Figure P13.10 uses matched resistor pairs 
G1, G2, and G3 to provide the average of the applied 
inputs. Show that v a v a v a vO = - + +( )1 1 2 2 3 3 , where 

a
G

G G G
kk

k=
+ +

=
1 2 3

1 2 3, , , or , and a a a1 2 3 1+ + = .
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P13.11 An amplifier in the inverting configuration has 
Rr  =  10 kΩ, Rf  =  40 kΩ, and bias supplies of ±12  V. 
Sketch the amplifier output if the input is the wave-
form shown in Figure P13.11.

 Ans. Output is −4  ×  vI, for −3  V  ≤  vI  ≤  +3  V, and is 
clipped at ±12 V for |vI| ≥ 3 V.

P13.12 If vi(t) = 4sin100t V in the amplifier of Problem P13.11, 
determine the time intervals in which the amplifier is 
in positive and negative saturation.

 Ans. Negative saturation from 8.48 to 22.9 ms and pos-
itive saturation from 39.9 to 54.4 ms, during the first 
period.

P13.13 Show that in Figure P13.13
 
v R

R
R

i R iO
f

SRC f SRC= +
æ

è
ç

ö

ø
÷ -2

1
2 11 .

 
P13.14 Determine R > 0 in Figure P13.14 so that the op amp 

just reaches saturation.

 Ans. 28 kΩ.

P13.15 Determine vO in Figure P13.15 if v t tSRC ( ) = 4 100cos ,p V  
t ³ 0. 

 Ans. 9cos100πt V.

P13.16 Determine VO in Figure P13.16.

 Ans. −4 V.

P13.17 Determine VO in Figure P13.17.

 Ans. 6 V.
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P13.18 Show that in Figure P13.18, vO = 
1

1
R R

R
Rc d

b

a+
+

æ

è
ç

ö

ø
÷  ́

R v R vd SRC c SRC1 2+( ). Note that this circuit is a noninvert-
ing adder. However, changes in one input circuit affect 
the current in the other circuit.

P13.19 Determine in Figure P13.19 (a) Ia, (b) Ib, and (c) VO.

 Ans. (a) −0.1 mA; (b) 0.1 mA; (c) 8.03 V.

P13.20 Show that if vSRC3 is added to the  difference amplifier 
of Figure 13.49, as in Figure P13.20, the output voltage 

vO is given by vO = - +
+

+
+

R
R

v
R

R R
R R
R

vb

a
SRC

d

c d

a b

a
SRC2 1  

R
R R

R R
R

vc

c d

a b

a
SRC

+
+

3.

P13.21  Figure P13.21 illustrates a circuit that may be used 
with a strain gauge bridge, where the resistance of one 
of the elements of the bridge changes by a fraction α. 

Show that v
R
R R R

VO
o o

DC=
+( ) +( ) +

a
a1 1 1/

. Note that 

if 
R
R
o � 1 and a� 1, then v

R
R

VO
o

DC=
a
2

, and that the 

bridge output can be effectively doubled if Ro in the 
upper left arm of the bridge also varies as Ro(1 + α).

P13.22 Determine Rin in Figure P13.22.

 Ans. 5 kΩ.

P13.23 Determine Rin in Figure P13.23.

 Ans. 0.

P13.24 Show that in Figure P13.24, iL = (v2 – v1)/R2. Note that 
the load sees a current source whose value is deter-
mined by the differential input (v2 – v1).
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P13.25 Determine iO in Figure P13.25.

 Ans. 235/3 mA.

P13.26 Determine in Figure P13.26 (a) VO and (b) power deliv-
ered or absorbed by each source.

 Ans. (a) –1.5 V; (b) power delivered by the current source 
is zero, power delivered by voltage source is 3 mW.

P13.27 Determine VO in Figure P13.27.

 Ans. 1.5 V.

P13.28 Determine VO in Figure P13.28.
 Ans. 23 V.

P13.29 Determine VO in Figure P13.29.

 Ans. –72/37 V.

P13.30 Determine TEC looking into terminals ‘ab’ in Figure 
P13.30.

 Ans. VTh = Vab = 3 V, RTh = 4/7 Ω.

P13.31 Show that in Figure P13.31, 
v
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Note that this circuit is that of a difference amplifier 
having variable gain.
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P13.32 Show that in Figure P13.32, 
v

v v
R
R

R
R

O

1 2

2

1

21
2-

= +
æ

è
ç

ö

ø
÷

var
. 

Note that this circuit is that of a difference amplifier 
having variable gain.

P13.33 Determine vO(t) in Figure P13.33, assuming vSRC(t)  = 
5cos100t V, ≥ 0.

 Ans. –cos(100t – 36.9°) V.

P13.34 Determine vO(t) and iO(t) in Figure P13.34, assuming 
vSRC(t) = sin1000t V, t ≥ 0.

 Ans. (a) vO(t)  =  sin(1000t  +  90°) V; (b) i tO ( ) = 
2 1000 135cos + °( )mA.
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P13.35 Determine vO(t) in Figure P13.35 if v tSRC ( ) = 

10 2 10 04cos ,t tV ³ .

 Ans. 20cos(104t + 98.1°) V.

P13.36 Determine vO(t) in Figure P13.36 if vSRC1(t) = sin103t V 
and vSRC2 = cos103t V, t ≥ 0.

 Ans. v t tO ( ) = + °( )2
2

10 1353cos V.

P13.37 The switch in Figure P13.37 is closed at t  =  0, with 
VC0 = 20 V at t = 0. Determine t at which the op amp 
just reaches negative saturation.

 Ans. 4 ms.

P13.38 The switch in Figure P13.38 is closed at t = 0, with the 
capacitor having an initial voltage VC0 = 5 V. Determine 

the time at which vO reaches a steady value that does 
not change with time.

 Ans. 200 ms.

P13.39 The switch in Figure P13.39 is closed at t = 0, with the 
capacitor initially uncharged. Determine vO, given that 
vSRC(t) = 10cos100t V, t ≥ 0.

 Ans. −(100t + 20sin100t) V.

P13.40 The switch in Figure P13.40 is closed at t = 0, with the 
inductor initially uncharged. Determine vO, given that 
vSRC(t) = 5sin100t V.

 Ans. −2.5cos100t V.

P13.41 The circuit of Figure P13.41 provides double integra-
tion using a single op amp. Use phasor analysis to 

show that 
V
V

o

src
= -

( )
1

2wt
, where t = RC.
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P13.42 Derive Equation 13.31 in two ways: (i) superposition 
of vSRC2 applied alone, with vSRC1 set to zero, and vSRC1 
applied alone with vSRC2 set to zero and (ii) superposi-
tion of vSRC2 and vO to obtain vN and then substituting 
vP in terms of vSRC1 for vN.

Multi–Op Amp Circuits

P13.43 Determine VO in Figure P13.43.

 Ans. −12 V.

P13.44 Determine VO in Figure P13.44.

 Ans. +22.5 V.

P13.45 Determine VO in Figure P13.45.

 Ans. −4.8 V.

P13.46 Determine VO in Figure P13.46.

 Ans. 6 V.

P13.47 Determine VO in Figure P13.47.

 Ans. 18 V.

P13.48 Determine VO in Figure P13.48.

 Ans. 24 V.

P13.49 Determine VO in Figure P13.49.

 Ans. 5.5 V.
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P13.50 Determine VO in Figure P13.50.

 Ans. 0.

P13.51 Determine VO in Figure P13.51.

 Ans. −6 V.

P13.52 Determine VO in Figure P13.52.
 Ans. −1.5 V.

P13.53 Determine IO in Figure P13.53.
 Ans. 2.25 mA.
P13.54 Determine VO1 and IO in Figure P13.54.
 Ans. 1.36 V, −2.96 mA.
P13.55 Determine VO1 and VO2 in Figure P13.55.
 Ans. VO1 = 15.85 V, VO2 = 13.6 V.

P13.56 Show that vO in Figure P13.56 is given by 
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P13.57 Determine vO/vSRC in Figure P13.57.
 Ans. 8.
P13.58 Determine (a) R in Figure P13.58 so that IS = 0 and (b) 

maximum and minimum VSRC for operation in the 
linear region.

 Ans. 70 kΩ, ±1.5 V.
P13.59 Determine vO in Figure P13.59 in terms of v1 and v2.
 Ans. vO = 4v1 – 6v2.
P13.60 Determine VO in Figure P13.60.
 Ans. 12.5 V.
P13.61 Determine VO in Figure P13.61.
 Ans. −20 V.

P13.62 Determine VO in Figure P13.62.
 Ans. 3 V.
P13.63 Determine VO in Figure P13.63.
 Ans. 10 V.
P13.64 Show that Cin = C/α in Figure P13.64, where α is the 

fraction of Rp that appears between nodes ‘a’ and ‘b’.
P13.65 Show that in Figure P13.65, Zin  =  R2/Z. This means 

that if Z is an ideal capacitor, then Z  =  1/jωC, and 
Zin  =  jωCR2. This means that an ideal inductor hav-
ing L  =  ωCR2 appears across the input terminals. 
Conversely, if Z is an ideal inductor having Z =  jωL, 
then Zin  =  R2/jωL  =  1/j(ωL/R2), which represents an 
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ideal capacitor having C = L/R2. This type of circuit is 
known as a gyrator.

P13.66 Show that in Figure P13.66, Zin = R2/Z, as in Problem 
P13.65.

Design Problems

P13.67 Design an inverting adder, similar to the circuit of 
Figure 13.42, whose output is vO = −(4v1 + 2v2 – v3 + 5v4), 
where all inputs are in the range ±1  V. The current 
drawn from each source should not exceed  100  μA. 
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Specify the minimum magnitude of the bias supplies 
so as to avoid op amp saturation.

 Ans. R1 = 12.5 kΩ, R2 = 25 kΩ, R3 = 50 kΩ, R4 = 10 kΩ, 
Rf = 50 kΩ; 12 V.

P13.68 Design a difference amplifier whose output is vO  = 
5(v1 – v2), such that each source sees an input resistance 
of at least 20 kΩ.

 Ans. Ra = Rc = 20 kΩ, and Rb = Rd = 100 kΩ.

P13.69 Design a noninverting adder, similar to the circuit of 
Problem P13.18, whose output is vO = 3v1 + v2 + 2v3, 
using resistors in the range 10–100 kΩ.

 Ans. R1 = 20 kΩ, R2 = 60 kΩ, R3 = 60 kΩ, Rf = 50 kΩ, and 
Rr = 10 kΩ.

P13.70 Design a circuit, similar to that of Figure P13.24 that 
converts a 10 V source of 1 kΩ source resistance to a 
1  mA ideal current source using only two resistance 
values.

 Ans. 1 and 10 kΩ resistors.

P13.71 Design an averaging circuit, similar to that of Figure 
P13.10, whose output is vO = −(0.2v1  +  0.3v2  +  0.5v3) 
using resistors in the range 10–60 kΩ.

 Ans. R1 = 60 kΩ, R2 = 40 kΩ, R3 = 24 kΩ.

P13.72 Design a precision amplifier to amplify inputs in the 
range of ±3 V, with a gain of 5% ± 1% using resistors of 
10 and 40 kΩ. Select the largest suitable resistor toler-
ances required from the standard tolerances of 0.25%, 
0.5%, 1%, and 2%.

 Ans. 0.5% tolerance.

P13.73 The circuit of Figure P13.73 uses an R-2R ladder 
(Problem P5.32) to implement a 4 bit digital-to-analog 
converter (DAC). The 4 bit word can be expressed as 
(b3b2b1b0), where each of the bits ‘b’ can be 1 or 0. When 
a given bit is zero, the corresponding transistor switch 
of the same number subscript is in the left position, 
whereas when the bit is 1, the switch is in the right 

position. Show that V V
R
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Design a DAC using a 5 V Vref, with R = 10 kΩ that will 
give a maximum |VO| = 12 V.

 Ans. Rf = 3.375 kΩ.

P13.74 Consider the equations: a x a y A1 2+ =  and b x b y B1 2+ = . 

Express these as
 
x

a
A

a
a
y= -

1

1

2

1  
and

 
y

b
B

b
b
x= -

1

1

2

1
. 

Verify that the circuit of Figure P13.74 can be used to 
solve these equations. Design a circuit for solving the 
equations 2 5 20x y+ =  and 5 2 21x y- = . Verify your cir-
cuit with PSpice simulation.

P13.75 Verify that the circuit of Figure P13.75, with RC  =  1, 
can be used to solve the first-order differential equa-

tion: 
dy
dt

y f t+ = ( )1
t

, t ≥ 0, with given initial value y(0+). 

Design a circuit for solving the differential equation: 
dy
dt

y
t t+ = ³

2
10 2 0sin , , with y(0+) = 1 V.

Probing Further

P13.76 Consider the inverting configuration using an op 
amp that is ideal except for finite Av and a finite dif-
ferential input resistance Rid between the inverting 
and noninverting inputs of the op amp. Show that 
v
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P13.77 Consider the inverting configuration connected to a 
load RL and using an op amp that is ideal except for 
finite Av and a finite output  resistance Ro. Show that 
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(Hint: Apply the substitution theorem and 
 superposition.)

P13.78 The circuit of Figure P13.78 is the basic circuit of a 
charge amplifier that may be used with a piezoelec-
tric transducer. This consists of a special type of crys-
tal, such as barium titanate, which, when subjected to 
a force between two opposite faces of the crystal, gen-
erates a voltage between these surfaces. Electrically, 
the crystal can be represented by the dashed rectan-
gle, with vsrc, Csrc , and Rsrc  representing, respectively, 
the voltage generated, and the capacitance and resis-
tance appearing between the crystal faces.

  A change in either vsrc or Csrc  changes the charge 
on Csrc . This charge is transmitted to C, thereby 
causing a change in the output voltage. Show that 

D D Dv
C
C

v
C
C

vO
src

SRC
src

SRC= - - .

P13.79 Derive a circuit using two integrators, along the same 
lines as in Problem P13.75, to solve the second-order 

differential equation: 
d y
dt

a
dy
dt

by f t
2

2 + + = ( ), t ≥ 0, with 
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407

Objective and Overview

A frequency-selective circuit or filter is a circuit intended 
to provide an output that varies with frequency in a 
desired manner. Frequency-selective circuits are an 
important class of electric circuits that are extensively 
used in communications, control, and signal processing 
systems. Understanding the frequency response of such 
circuits is basic to designing frequency selective circuits 
that behave in a desired manner.

The study of frequency response is important for 
another reason. Energy storage elements are present in 
all but the simplest physical systems, whether electrical 
or nonelectrical in nature. These energy storage elements 
make the response frequency dependent. In particu-
lar, the response of practically all physical systems is 
reduced at high frequencies because of inherent physical 
processes that can be represented by shunt capacitance in 
the equivalent electric circuit. The responses of some sys-
tems show pronounced peaks, or resonance, at particular 
frequencies, which can have a major impact on system 
performance. The frequency response is therefore rel-
evant to understanding the behavior of physical systems 
and for taking measures to improve their performance.

This chapter is concerned with the basic frequency 
responses of first-order and second-order circuits, with 
emphasis on understanding the fundamental concepts and 
physical interpretations behind these responses. The chap-
ter begins with some basic assumptions in filter analysis, 
followed by presenting the responses of ideal filters. First-
order filters are then discussed and Bode plots are intro-
duced as a very useful tool for describing the frequency 
response. The four types of second-order responses are all 
analyzed in detail in terms of a series RLC circuit. Duality 
is invoked in deriving the responses to parallel first-order 
and second-order circuits. The chapter ends by examining 
some general features of frequency responses.

14.1  Analysis of Filters

The passive filters considered in this chapter consist, in 
general, of resistors, capacitors, inductors, and depen-
dent sources. Independent source excitation is only 
present at the input terminals and the output is taken at 
a designated pair of terminals.

The following assumptions are made in the basic 
 analysis of filters:

 1. The input to the filter is a sinusoidal function of 
time having a fixed amplitude and phase angle, 
but a frequency that can be varied over a range 
that may extend from zero (dc) to a virtually 
infinite value.

 2. The input is assumed to have been applied for 
a long time, so that the filter output is derived 
under sinusoidal, steady-state conditions.

It follows from these assumptions that phasor methods 
(Chapter 8) provide an appropriate tool for analyzing fil-
ters. The filter is represented in the frequency domain, 
and all currents and voltages are designated as phasors. 
The object of the analysis is to determine how the out-
put of the filter varies in amplitude and phase as the fre-
quency of the input is varied over a specified range, while 
keeping the amplitude and phase of the input constant.

Because variation with frequency is of primary inter-
est, it is customary to represent phasor voltage and 
currents in a filter as functions of jω. This is illustrated 
in Figure  14.1, where the filter input and output are 
denoted as VI(jω) and VO(jω), respectively, bearing in 
mind that the filter input or output could be current 
rather than voltage. The frequency response of the filter 
is generally expressed as the ratio of the output voltage 
or current to the input voltage or current and is referred 
to as the transfer function, H(jω), of the filter. Although 
the transfer function has a special meaning that will 
be elaborated in Section 22.3, in connection with the 
Laplace transform, we will, for present purposes, define 
the transfer function H(jω) in the frequency domain as 
follows:

Definition: The transfer function H(jω) in the frequency 
domain is the ratio of the phasor of the designated output to 
the phasor of a single input applied to the filter.

14
Frequency Responses
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FIGURE 14.1
Filter input and output.
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Thus, for the filter of Figure 14.1,
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(14.1)

The frequency response of the filter is therefore 
expressed in terms of the magnitude |H(jω)| of the trans-
fer function and its phase angle θ. It should be emphasized 
that the transfer function expressed by Equation 14.1 is 
derived under two conditions: (1) the filter does not have 
any independent sources other than at the input and (2) 
the filter is in a sinusoidal steady state, which implies that 
any initial conditions in the circuit have died out.

14.2  Ideal Frequency Responses

Frequency selectivity arises because of the presence of 
energy storage elements, which could be capacitors or 
inductors. As explained in Section 8.4, these energy stor-
age elements, by virtue of their reactance, make the volt-
ages and currents in a circuit depend on frequency. It is 
this frequency dependence that underlies the frequency 
selectivity of filters, as will be demonstrated in the fol-
lowing sections.

There are four basic frequency responses of filters, 
as illustrated in Figure 14.2a through d, in terms of 
|H(jω)| for the ideal cases. Figure 14.2a is the response 
of an ideal low-pass filter. As its name implies, all fre-
quencies between 0 (dc) and a cutoff frequency ωcl are 
passed through the filter without attenuation, that is, 
with |H(jω)| = 1, which makes the magnitude of the 
output equal to that of the input. This range of frequen-
cies from zero to ωcl is the passband. At frequencies 
above ωcl, the output is zero, that is, |H(jω)| = 0. These 
frequencies constitute the stopband.

Figure 14.2b is that of an ideal high-pass filter. 
|H(jω)| = 0 over the stopband, from dc up to a cut-off 

frequency ωch, but |H(jω)| = 1 in the passband, for fre-
quencies greater than ωch. The response of Figure 14.2c 
is that of an ideal bandpass filter. The passband, hav-
ing |H(jω)| = 1, is for frequencies in the range ωcl to ωch, 
whereas the stopband, having |H(jω)| = 0, extends over 
the lower and higher frequencies outside this range. 
Finally, the response of Figure 14.2d is that of an ideal 
bandstop filter. The stopband, having |H(jω)| = 0, is for 
frequencies in the range ωcl to ωch, whereas the passband, 
having |H(jω)| = 1, extends over the lower and higher 
frequencies outside this range. It should be emphasized 
that the responses in Figure 14.2a through d are ideal 
and cannot be physically realized. However, they can be 
closely approached by various filter designs.

The four types of filter responses illustrated in 
Figure  14.2 are interrelated. For example, if a low-pass 
response of cutoff frequency ωcl is subtracted from unity, 
a high-pass response of the same cutoff frequency is 
obtained and conversely (Figure 14.3a). Similarly, if a 
bandpass response is subtracted from unity, a bandstop 
response of the same cutoff frequencies is obtained and 
conversely (Figure 14.3b). In this sense, the low-pass 
response is the complement of the high-pass response 
with respect to unity and conversely, as will be dem-
onstrated later for a first-order circuit. Similarly, the 
bandpass response is the complement of the bandstop 
response with respect to unity and conversely, as will be 
demonstrated later for a second-order circuit.
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FIGURE 14.2
Ideal frequency responses. (a) Lowpass, (b) highpass, (c) bandpass, 
and (d) bandstop.
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FIGURE 14.3
Interrelations between ideal frequency responses having the cutoff 
frequencies indicated. (a) Low pass or high pass response subtracted 
from unity, (b) bandpass or bandstop response subtracted from unity, 
(c) low pass and high pass response multiplied together, (d) low pass 
and high pass response added together, (e) low pass response sub-
tracted from another low pass response, and (f) high pass response 
subtracted from another high pass response.
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Consider next a low-pass response of cutoff frequency 
ωcl and a high-pass response of cutoff frequency ωch, 
with ωch < ωcl (Figure 14.3c). If these two responses are 
multiplied together, the result is a bandpass response 
having a passband from ωch to ωcl. This follows from the 
fact that for ω < ωch, the zero response of the high-pass 
filter when multiplied by the unity response of the low-
pass filter gives a zero response. Similarly, for ω > ωcl, 
the zero response of the low-pass filter when multiplied 
by the unity response of the high-pass filter gives a zero 
response. But for ωch < ω < ωcl, both responses are unity, 
and their product is unity.

If a low-pass response of cutoff frequency ωcl is added 
to a high-pass response of cutoff frequency ωch, with 
ωcl < ωch, the resulting response is bandstop having a 
stopband from ωcl to ωch (Figure 14.3d). This is because 
the response is zero in the range ωcl < ω < ωch, where 
both responses are zero. Outside this range, one of the 
responses is unity, so their sum is unity.

Finally, a bandpass response results from subtract-
ing a low-pass response of cutoff frequency ωc1 from 
another low-pass response of cutoff frequency ωc2 > ωc1 
(Figure  14.3e). Similarly, a bandpass response results 
from subtracting a high-pass response of cutoff fre-
quency ωc2 from another high-pass response of cutoff 
frequency ωc1 < ωc2 (Figure 14.3f).

The interrelation between the various frequency 
responses will be illustrated and utilized in this and the 
following chapter.

14.3  First-Order Responses

Prototypical first-order filters consist of a single resis-
tor and a single energy storage element, which could be 
a capacitor or an inductor. They are referred to as first 
order because their responses obey a first-order, linear, 
ordinary differential equation with constant coefficients, 
as discussed in Chapter 11.

A prototypical, first-order, series capacitive filter is 
illustrated in Figure 14.4a in the frequency domain, 
where the input voltage VI(jω) is the source voltage 
VSRC(jω) and the output voltage VO(jω) is the voltage 
VC(jω) across the capacitor. From voltage division,
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Assume that VSRC(jω) remains constant as its fre-
quency is varied. When ω = 0, the capacitor acts as 
an open circuit in the steady state, no current flows, 
VC(jω)  = VSRC(jω), and HC(jω) = 1. As the frequency 
increases, |VC(jω)| decreases continuously, in accor-
dance with Equation 14.3. When w ®¥, the reactance 
of the capacitor approaches zero, that is, the capaci-
tor acts as a short circuit, VC(jω) → 0, and HC(jω) → 0. 
As discussed in Section 14.2, the response is low pass, 
since high- frequency signals are attenuated, whereas 
low-frequency signals are transmitted with little 
attenuation.

If the output is taken across the resistor, as illustrated 
in Figure 14.4b for the same circuit but redrawn, then
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When ω = 0, no current flows, and VR(jω) = 0. As the 
frequency increases, V jR w( )  increases continuously. 
When w ®¥, the reactance of C approaches zero, and 
V j V jR SRCw w( ) ® ( ). The response is now high pass, 
since low-frequency signals are attenuated, whereas 
high- frequency signals are transmitted with little 
attenuation.

Similar responses are obtained from an RL circuit 
(Figure 14.5). Following the same procedure as in the 
case of the capacitive circuit, it is seen that
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FIGURE 14.4
RC low-pass filter (a) and high-pass filter (b).
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The response across the resistor is now low pass, since 
at ω = 0 the inductor acts as a short circuit, VR(jω) = 
VSRC(jω), and HR(jω) = 1. As ω → ∞, the inductor acts as 
an open circuit, VR(jω) → 0, and HR(jω) → 0.

If the response is taken across the inductor,
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The response across the inductor is high pass. At ω = 0, 
the inductor acts as a short circuit so that VL(jω) = 0, and 
HL(jω) = 0. As w ®¥, the inductor acts as an open cir-
cuit, VL(jω) → VSRC(jω), and HL(jω) → 1.

Since the basic first-order circuits of Figures 14.4 and 
14.5 consist of two circuit elements, only two outputs 
are possible from each circuit, one output being low 
pass, the other high pass. This is a general property of 
first-order filters:

Concept: The frequency response of a first-order filter is 
either low pass or high pass, the variation of the response with 
frequency being due to the frequency-dependent reactance of 
energy storage elements.

There are no first-order bandpass or bandstop 
responses, as these responses require two transitions 
between a passband and a stopband. This cannot be 
achieved by a single energy storage element, as will be 
clarified later.

14.3.1  Parallel First-Order Filters

The parallel circuit duals of the first-order series circuits 
of Figures 14.4 and 14.5 are shown in Figure 14.6.

In Figure 14.6a and at ω = 0, the inductor acts as a 
short circuit, and ILp(jω) = ISRC(jω). As ω → ∞, the induc-
tor acts as an open circuit, and IGp(jω) = ISRC(jω). It is to 
be expected, therefore, that the response ILp(jω) is low 
pass and the response IGp(jω) is high pass. The analyti-
cal expressions can be derived from current division or 
from duality. The circuit of Figure 14.6a is the dual of 
that of Figure 14.4, the dual of VC(jω) being ILp(jω) and 
the dual of VR(jω) being IGp(jω). Replacing C by Lp and R 
by Gp in Equation 14.2,
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Equation 14.4 becomes
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It is seen that the response HLp(jω) is low pass and the 
response HGp(jω) is high pass, as argued previously for a 
first-order circuit.

In Figure 14.6b and at ω = 0, the capacitor acts as an 
open circuit, and IGp(jω) = ISRC(jω). As ω → ∞, the capaci-
tor acts as a short circuit, and ICp(jω) = ISRC(jω). It is to 
be expected, therefore, that the response IGp(jω) is low 
pass and the response ICp(jω) is high pass. The analyti-
cal expressions can be derived from current division or 
from duality. The circuit of Figure 14.6b is the dual of 
that of Figure 14.5, the dual of VL(jω) being ICp(jω) and 
the dual of VR(jω) being IGp(jω). Replacing L by Cp and R 
by Gp in Equation 14.6,
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FIGURE 14.6
First-order, parallel RL filter (a) and RC filter (b).
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Equation 14.8 becomes
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It is seen that the response HGp(jω) is low pass and the 
response HCp(jω) is high pass, as argued previously for a 
first-order circuit.

It will be noted that in all the first-order responses 
considered, where the response across one element 
is low pass, the response across the other element is 
high pass, with these two responses being complemen-
tary with respect to the applied source. In Figure 14.4, 

for  example, 
V j

V j

V j

V j
C

SRC

R

SRC

w
w

w
w

( )
( )

+
( )
( )

= 1. Similar consider-

ations apply to the inductive filter of Figure 14.5 and to 
the parallel circuits of Figure 14.6. This is in accordance 
with what was mentioned in Section 14.2 about the low-
pass and high-pass responses being the complement of 
one another. In a first-order circuit, the sum of the low-
pass and high-pass voltage or current responses is equal 
to the applied source excitation. The low-pass and high-
pass responses are therefore the complement of one 
another with respect to the applied source excitation.

Although it is straightforward to plot the magnitudes 
and phase angles of the aforementioned responses as 
a function of w , it is more useful and convenient, for 
reasons that will become clear later, to use logarithmic 
rather than linear plots. These plots are known as Bode 
plots after Hendrik W. Bode, the engineer who intro-
duced them. We will therefore digress a little to discuss 
Bode plots.

Primal Exercise 14.1

Draw the circuit of simple first-order RL filter having the 

transfer function 
1

2 1 2+( )jw/
, where ω is in rad/s, using 

a 1 H inductor.
Ans. The circuit is shown in Figure 14.7.

14.4  Bode Plots

Consider by way of illustration the function  y axn= . 
Taking logarithms to base 10 of both sides: 
log log log10 10 10y a n x= + . The plot of log10y vs. log10x is 
a line of slope n. The coefficient ‘a’ shifts the line vertically, 
without affecting its slope. If y x= 0 1 2. , for example, and x 
assumes the values x1 = 10, x2 = 100, and x3 = 1000, log10x 
of these values of x are 1, 2, and 3, respectively. The cor-
responding values of y are y1 = 10, y2 = 1000, and y3 = 105; 
log10y of these values of y are 1, 3, and 5, respectively. The 
equation of the line is log10y = log100.1 + 2log10x = −1 + 
2log10x. This line, plotted in Figure 14.8, has a slope of 2, 
which is the power of x. The line log10y = 2log10x is shifted 
downward by 1 because of the 0.1 multiplier.

It should be noted that equal spacing along a logarith-
mic axis is equivalent to equal ratios of the variable involved. 
Considering the horizontal axis for example, the inter-
cepts of ‘P1’, ‘P2’, and ‘P3’ on this axis are log10x1  = 1, 
log10x2 = 2, and log10x3 = 3, respectively. These are equally 
spaced along the logarithmic axis, that is,

 log log log log10 2 10 1 10 3 10 2 1x x x x- -= =  

corresponding to
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x

x
x

2
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3
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100
10
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That is, the equal spacing along the logarithmic hori-
zontal axis is equivalent to equal ratios of the x variable, 
similarly for the vertical axis and the y variable.
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FIGURE 14.7
Figure for Primal Exercise 14.3.

log10y

log10x

log10y = log100.1 + 2log10x

4

3

2

0 1 2 3

P3

P2

P1

5

4
1

FIGURE 14.8
Logarithmic plot of y = 0.1x2.
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Figure 14.9 illustrates an alternative but a more conve-
nient way of plotting log10 of variables. In Figure  14.8, 
the axes are labeled as log10x or log10y and are scaled 
linearly in terms of log10x or log10y. In contrast, the 
axes in Figure 14.9 are labeled as x or y but are scaled 
 logarithmically as log10x or log10y. Thus, the markings 
on the x-axis are x values of 1, 10, 102, 103, etc. But the 
markings are equidistant along the x-axis, correspond-
ing to a logarithmic scaling on this axis. Each interval 
between successive powers of ten is also scaled logarith-
mically. Thus, the interval 1–10 is shown expanded in 
Figure 14.9. If the length of this interval is denoted as 
‘mn’, the marked value of 2, for example, is scaled as 
log102 = 0.30 and is placed at a distance of 0.30 × ‘mn’ to 
the right of ‘m’. Similarly, the marked value of 5 is scaled 
as log105 = 0.70 and is placed at a distance of 0.70 × ‘mn’ 
to the right of ‘m’. Clearly, this is a more convenient way 
of plotting logarithmic values, because the values of the 
variables are entered directly, without the need to take 
their logarithms. ‘P2’, for example, is entered as (100, 
1000) in Figure 14.9, rather than (log10100, log101000) 
in Figure 14.8. The plot is, of course, the same straight 
line log10y = log100.1 + 2log10x in both cases. The slope of 
the line in Figure 14.9 is (log10105 – log10103)/(log10103 – 
log10102) = log10100/log1010 = 2, as in Figure 14.8.

In Bode magnitude plots, the horizontal axis is labeled 
in terms of ω but is scaled logarithmically as log10ω. 
However, the vertical axis is labeled and scaled linearly 
as 20log10|H(jω)|, so the plot is still log–log. In gen-
eral, the expression 20log10B, where B  is the magnitude 

of a transfer function in terms of voltage or current, 
denotes the dB value of B, where dB is the abbreviation 
of  decibel. This representation originated in the early 
days of telephony for specifying power loss in cascaded 
circuits, in which the overall power loss is the product 
of the ratios of the power outputs to the power inputs 
of the individual circuits. Using logarithms was con-
venient because (1) it meant that the logarithms of the 
power ratios of the individual circuits could be added 
to obtain the logarithm of the overall power loss of the 
cascaded circuits and (2) it allowed specifying a large 
range of power loss or gain as a much smaller range of 
the logarithm of these values. The decibel was defined 
as 10log10A, where A is a power ratio. Since the power 
ratio for a given resistor is proportional to the square 
of the ratio of voltage or current, 20log10 is used with 
the ratios of voltages and currents. Thus, voltage ratios 
of 103, 104, and 105 are expressed as 60 dB, 80 dB, and 
100  dB, respectively. The advantages of using Bode 
plots for describing the responses of frequency- selective 
 circuits will become clear from future discussions.

Primal Exercise 14.2

Scale and mark the x-axis and y-axis logarithmically as 
in Figure 14.9, over a suitable range, plot the function 
y = 0.2x1.5 by locating points on the line, and verify that 
the slope of the line is 1.5.

Primal Exercise 14.3

(a) Convert the following voltage ratios to dB: (i) 4, (ii) 1/4, 
(iii) 40; (b) convert the following dB values to voltage 
ratios: (i) 2 dB, (ii) −4 dB, (iii) 6 dB.
Ans. (a) (i) 12.04 dB, (ii) −12.04 dB, (iii) 32.04 dB; (b) (i) 
1.259, (ii) 0.6310, (iii) 1.995.

14.4.1  Low-Pass Response

H(jω) for the first-order low-pass response can be 
expressed in normalized form by replacing the time con-
stants RC and L/R by 1/ωcl in all the low-pass transfer 
functions derived so far. All these transfer functions take 
the form
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where
ωcl = 1/CR for the series RC circuit
ωcl = R/L for the series RL circuit
ωcl = 1/LpGp for the parallel GL circuit
ωcl = Gp/Cp for the parallel GC circuit
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Alternative logarithmic plot of y = 0.1x2.
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The magnitude of the response is
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It is desired to plot the magnitude of the response as 
dB vs. log10ω. A convenient feature of Bode plots is that 
they can be approximated by straight-line asymptotes 
for limiting values of ω. To illustrate this feature, con-
sider first the very low values of ω, for which w w/ cl � 1. 
Equation 14.15 reduces to

 H jw w( ) = ®1 0, as  (14.16)

In terms of dB, taking log10 of both sides of Equation 
14.16 and multiplying by 20, 20log10|H(jω)| = 
20log10(1)  = 0  dB, which is the equation of the low- 
frequency asymptote, as ω → 0. It is, in fact, the hori-
zontal axis or 0 dB line (Figure 14.10a).

For large values of ω, for which w w/ cl � 1, Equation 
14.15 reduces to
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In terms of dB, taking log10 of both sides of 
Equation 14.17 and multiplying by 20,

 20 20 2010 10 10log log log ,H j clw w w w( ) = - ®¥as  
(14.18)

This is the equation of a straight line of the form 
y = a − bx, where y is 20log10|H(jω)|, x is log10ω, and 
a and b are constants. To draw this high-frequency 
asymptote, it is sufficient to identify a point on the line 
and its slope. It  is seen that when ω = ωcl, Equation 
14.18 gives

 20 20 20 010 10 10log log logH j cl cl clw w w( ) = - = dB 
(14.19)

This means that the high-frequency asymptote passes 
through the point (ωcl, 0 dB). In other words, the high-
frequency asymptote intersects the horizontal axis, that 
is, the 0 dB line, at ω = ωcl, as indicated by point ‘P1’ in 
Figure 14.10a.

To determine the slope of the line, the usual procedure 
can be followed by identifying the two points (x1, y1) and 
(x2, y2) on the line, the slope being (y2 − y1)/(x2 − x1). We 
have already identified one point P1(x1, y1) as (ωcl, 0 dB). 
To identify a second point ‘P2’, consider ω  =  10ωcl. 
Substituting this in Equation 14.18,

 

20 10 20 20 10

20 10 20

10 10 10

10

log log log

log

H j cl cl clw w w( ) = -

= - = - dB  (14.20)

It is seen that (y2 − y1) = −20 − 0 = −20 dB. As for 
(x2 − x1), note that in moving from ‘P1’ to ‘P2’, the fre-
quency is increased from ωcl to 10ωcl. In frequency 
terms, multiplying the frequency by 10 is described 
as moving up a decade of frequency, whereas dividing 
the frequency by 10 is moving down a decade of fre-
quency. The slope of the high-frequency asymptote can 
therefore be specified as −20 dB/decade, as indicated 
in Figure 14.10a.

We have thus far identified the low-frequency and 
high-frequency asymptotes of the Bode magnitude plot 
of the first-order, low-pass response, but have not yet 
identified any points on the plot itself. A salient point on 
this plot is obtained by substituting ω = ωcl in Equation 
14.15. This gives

 
H j H jcl clw w( ) = ( ) = - @ -1

2
20 3 0103 310and log . dB

 
(14.21)

–3

–20

0

(a)

Low-frequency asymptote

High-frequency
asymptote

Slope =
–20 dB/decade

P1

P2

Q

–45d

0d

–90d
(b)

cl

0.1 cl

0.1 cl

cl 10 cl

10 cl

20log10|H(j  )|, dB

H(j   )

FIGURE 14.10
Bode magnitude plot (a) and Bode phase plot (b) of a first-order, 
 low-pass response.
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A point on the Bode magnitude plot is therefore ‘Q’ 
having coordinates (ωcl, −3 dB), as in Figure 14.10a. 
Because of this, wcl  is referred to as the 3 dB cutoff 
frequency. A synonymous term is the half-power fre-
quency, because if we imagine the input to be of con-
stant amplitude but variable frequency and the output 
to be across a fixed resistor R, then at very low frequen-
cies the output voltage may be VO rms, and the average 
power dissipated in R is P V RO= 2/ . At ω = ωcl, the output 
voltage drops to VO/ 2 rms, and the power becomes 
P/2; hence, the half-power designation. Because ωcl 
is the intersection of the two asymptotes, it is also the 
corner frequency. However, it should be noted that 
whereas the half-power  frequency is, by definition, the 
same as the 3 dB cutoff frequency, the corner frequency 
is not always the same as the 3 dB cutoff frequency, as 
will be clarified later.

With the asymptotes and the 3 dB cutoff point defined, 
the low-pass Bode magnitude plot of Figure 14.10a can 
be sketched with reasonable accuracy. The accuracy 
can be improved by noting the following: (1) The −3 dB 
at ω = ωcl represents the maximum deviation of the 
plot from the asymptotes; (2) at a frequency of 0.5ωcl, 
20 20 1 1 25 0 969 110 10log log / . .H jw( ) = ( ) = - @ - dB, that 
is, 1 dB below the low-frequency asymptote; and (3) 
at a frequency of 2ωcl, 20log10|H(jω)| is approximately 
1  dB below the high-frequency asymptote (Exercise 
14.8). Changing the frequency by a factor of 2 is 
described as moving through an octave of frequency.

As for the Bode phase plot, it follows from 
Equation 14.14 that the phase angle of H(jω) is that of 
the numerator, which is zero, minus that of the denomi-
nator, which is arctan of the ratio of the imaginary part 
to the real part. Thus,

 Ð ( ) = - ( )-H j clw w wtan /1
 (14.22)

When w w= Ð ( ) =0 0, H j . At w w w= Ð ( ) = - °cl H j, 45 , 
and as w ®¥, Ð ( )® - °H jw 90  (Figure 14.10b). At very 
low frequencies, Ð ( ) = - ( ) @ --H j cl clw w w w wtan / /1 .

14.4.2  High-Pass Response

H(jω) for the first-order high-pass response may be 
expressed in normalized form by replacing the time con-
stants RC, L/R, LpGp, and Cp/Gp by 1/ωch in all the high-
pass transfer functions derived so far. All these transfer 
functions take the form
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Note that although ωcl and ωch are given by the same 
expression, they refer to two different responses, one 
low pass, the other high pass (Example 14.1). It follows 
from Equation 14.23 that the magnitude and phase of 
the high-pass response can be expressed as
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and
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In a manner exactly analogous to the low-pass 
response, the high-frequency asymptote is obtained by 
letting w ®¥ in Equation 14.24. This gives |H(jω)| = 1 
and 20log101 = 0 so that the high-frequency asymptote 
on the logarithmic plot is the horizontal axis or 0 dB line. 
As ω  → 0, |H(jω)| → ω/ωch. On the logarithmic plot, 
the low-frequency asymptote is therefore a line whose 
equation is

 20 20 20 010 10 10log log log ,H j chw w w w( ) = - + ®  
(14.26)

Following an argument similar to that used for the 
low-pass response, it is seen that the low-frequency 
asymptote is a line of slope of +20 dB/decade that inter-
sects the horizontal axis, that is, the 0 dB line, at ω = ωch 
(Figure 14.11a). This is also the 3 dB cutoff frequency or 
the half-power frequency. It is also the corner frequency 
in this case.

It follows from Equations 14.23 and 14.25 that the 
Bode phase plot of the high-pass response is that of 
the low-pass response shifted upward by 90°, because 
of the jω term in the numerator of the transfer function 
(Figure 14.11b).

The following should be noted concerning first-order 
responses and the 3 dB cutoff frequencies:

 1. In all the preceding first-order transfer func-
tions, the reciprocals of the 3 dB cutoff frequen-
cies are the same as the time constants defined 
in Chapter 11 for the corresponding circuits. 
Fundamentally, this is due to the relationship 
between circuit responses in the time domain 
and in the frequency domain, as exemplified by 
the Laplace transform (Chapter 21).

 2. It was pointed out in Section 11.5, that the 
time constant could be derived from the resis-
tance seen by the energy storage element 
when independent sources are set to zero. 



Frequency Responses 415

This resistance is in fact RTh of TEC seen by 
the energy storage element. The same applies 
to finding the resistance involved in the 3 dB 
cutoff frequency.

 3. The 3 dB cutoff frequency can also be deter-
mined from the transfer function in two other 
ways:

 a. From the transfer functions in standard form 
in terms of jω. In this form the denominator 
is (1 + jω term), where the jω term is jω/ωcl 
for a low-pass response and is ωch/jω for a 
high-pass response. It is seen that ωcl is the 
denominator of the term whose numerator 
is jω, and ωch is the numerator of the term 
whose denominator is jω.

 b. From the magnitude of the normalized, stan-
dard form of the transfer function by setting 
this magnitude equal to 1 2/  and solving 
for ω. Note that the 3 dB cutoff frequency 
is defined as 3 dB below the maximum value 
of 20log10|H(jω)| in the passband. In the 
normalized form, the maximum value of 
|H(jω)| is unity so that the maximum value 
of magnitude of 20log10|H(jω)| is 0 dB. If 
the transfer function is multiplied by a scalar 
K so that H j K clw w w( ) = +/ ( / )1 2  in the case 
of the low-pass response, for example, then 
the maximum value of |H(jω)| in the pass-
band is K, and the value of this magnitude 
at the 3 dB cutoff frequency is K/ 2  and not 
1 2/ .

 4. The high-pass response (Equations 14.23) can be 
derived from the low-pass response (Equation 
14.14) by interchanging jω and ωc, where ωc is 
the corresponding 3 dB cutoff frequency. This 
is a general principle that will be illustrated in 
other cases as well.

It is clear from the preceding discussion that first-
order responses can only have one cutoff frequency, 
ωcl or ωch. On the other hand, bandpass and bandstop 
responses require two cutoff frequencies, as illustrated 
in Figure 14.2c and d, because there are two transitions 
between the passband and the stopband, with each tran-
sition involving a cutoff frequency. Hence, there are no 
first-order bandpass and bandstop filters.

Primal Exercise 14.4

Consider the RC circuit of Figure 14.4. Express, in terms 
of the time constant tC, the transfer function when the 
output is taken across (a) C or (b) across R; (c) determine 
the 3 dB cutoff frequency when R = 100 Ω and C = 5 μF.

Ans. (a) 
1

1+ j Cwt
; (b) 

j
j

C

C

wt
wt1+

; (c) 2 krad/s.

Primal Exercise 14.5

Consider the circuit that is the dual of that of Primal 
Exercise 14.1. (a) Determine the values of Lp, Gp, and the 
3 dB cutoff frequency. Express, in terms of the time con-
stant τL, the transfer function when the output is taken 
as the current through (b) Lp, or (c) Gp;

Ans. (a) 5 μH, 100 S, 2 krad/s; (b) 
1

1+ j Lwt
; (c) 

j
j

L

L

wt
wt1+

.

Primal Exercise 14.6

Consider that the high-frequency asymptote of Figure 
14.10a, in the form H(jω) = ωcl/jω, is extended to lower 
and higher frequencies. Determine the dB value at 
(a) ω = 0.1ωcl and (b) 100ωcl. Do the same for the low- 
frequency asymptote of Figure 14.11a, in the form 

(a)
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Low-frequency
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20 dB/decade

(b)

45d
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20log10|H(j )|, dB

0.1 ch 0.1 ch

FIGURE 14.11
Bode magnitude plot (a) and Bode phase plot (b) of a first-order, high-pass response.
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H(jω) = jω/ωch, at (a) ω = 0.01ωcl and (b) 10ωcl. Interpret 
all these results in terms of the slopes of the asymptotes 
and decade changes of frequency.
Ans. High-frequency asymptote: (a) 20 dB; (b) −40 dB. 
Low-frequency asymptote: (a) −40 dB; (b) 20 dB.

Exercise 14.7

Show that a slope of 20 dB/decade is equivalent to 
6 dB/octave.

Exercise 14.8

Show that (a) in a low-pass Bode magnitude plot, 
the response an octave higher than ωcl is 1 dB below 
the  high-frequency asymptote, and (b) in a high-pass 
Bode magnitude plot, the response an octave lower than 
ωcl is 1 dB below the low-frequency asymptote.

Example 14.1: First-Order Responses

Given R = 1 kΩ and C = 0.5 μF in Figure 14.4. Determine 
L in Figure 14.5 for a corner frequency that is 10 times 
that of the RC filter, assuming a resistance of 2 kΩ. 
Obtain by simulation both the low-pass and the high-
pass responses of the RL filter.

Solution:

ωC = 1/RC = 1/(103 × 0.5 × 10−6) = 1000/0.5 = 2 krad/s. 
ωL = 20 krad/s = R/L. Hence, L = (2 kΩ)/(20 krad/s) = 
0.1 H.

Simulation: The circuit is entered as in Figure 14.12, 
using the source VAC of default magnitude 1 V. The 
resistor is entered as part ‘r’ from the ANALOG_P 
library. This resistor has its terminals marked 1 and 2 
to facilitate plotting the responses. To run the simula-
tion, select ‘AC Sweep/Noise’ for ‘Analysis type’ in the 
Simulation Settings dialog box. Under ‘AC Sweep Type’, 

select ‘Logarithmic’ and enter 100 for ‘Start Frequency’, 
100k for ‘End Frequency’, and 1000 for ‘Points/Decade’. 
After the simulation is run, select in the SCHEMATIC1 
page Trace/Add Trace and then DB() from the right 
window and V(L1:1) or V1(L1) from the left win-
dow so that the entry in Trace expression appears as 
DB(V(L1:1)). The high-pass plot is displayed. To dis-
play the low-pass response and after selecting DB() 
as for the high-pass response, enter V(R1:1) − V(L1:1) 
or V1(R1) − V1(L1) inside the DB parentheses so that 
the entry in Trace expression appears as DB(V(R1:1) − 
V(L1:1)). The two plots appear as in Figure 14.13. To 
have a more expanded display along the vertical axis, 
select Plot/Axis Settings/Y-Axis/User Defined, and 
enter ‘−30’ to  ‘0’. The vertical scale now extends from 
−30 dB to 0.

To display the low-frequency asymptote of the high-
pass response, select Trace/Add Trace and enter in 
the Trace Expression field the RHS of Equation 14.26 
as - ( ) + ( )20 20 10* *LOG10 3183.1 FrequencyLOG  where 
fch = (20 krad/s)/2π = 3183.1 Hz. Note that LOG10() 
can be entered from the right window and ‘Frequency’ 
from the left window. ‘Frequency’ as entered is in 
Hz. To display the high-frequency asymptote of the 
low-pass response, the entry is 20*LOG10(3183.1) − 
20*LOG10(Frequency), which is the negative of the 
low-frequency asymptote.

The 3 dB cutoff frequency can be read using the cur-
sor search command. Click first on the Toggle cursor 
icon and then on the Cursor Search icon. In the Search 
Command window enter sle(max-3.01), as explained in 
Appendix C. The values 3.1801K and 3.1860K are dis-
played in the cursor window for the high-pass and low-
pass responses, respectively. Alternatively, select Trace/
Evaluate Measurement, then Cutoff_Highpass_3dB(1), 
and enter V(L1:1) in place of ‘1’. In the Measurement 
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Results window, 3.18743k is displayed. Similarly, 
choosing Cutoff_Highpass_3dB(V(R1:1) − V(L1:1)) dis-
plays 3.17869k in the Measurement Results window.

The following should be noted: (1) fc is the same for 
both responses, since it is L/(2πR) in the same circuit; 
(2) the two responses are symmetrical on a logarithmic 
scale with respect to a line through f = fc, because ω/ωcl 
(or f/fcl) in the low-pass response is replaced by its recip-
rocal ωcl/ω (or fcl/f) in the high-pass response; and (3) 
both asymptotes intersect the 0 dB line at f = fc. This is 
because the equations of the asymptotes are f/fc and fc/f. 
The two asymptotes intersect where f/fc = fc/f or f = fc. At 
this frequency, either ratio is unity, which corresponds 
to 0 dB.

Primal Exercise 14.9

Determine the maximum |IO(jω)| in Figure 14.14 
and specify the frequency at which it occurs, assum-
ing |ISRC(jω)| = 5 mA, all resistances are 4 kΩ, and all 
 capacitances are 100 nF.
Ans. 1 mA at ω = 0.

14.5  Second-Order Bandpass Response

As defined in Section 12.2, second-order LTI circuits 
are so called because their responses obey a second-
order, linear, ordinary differential equation with con-
stant coefficients. These circuits are of two general 
types: (1)  circuits that are reducible to a series or a 
parallel combination of a resistor, an inductor, and a 
capacitor or (2) circuits that have resistors in combi-
nation with two capacitors or two inductors, where 
these energy storage elements cannot be combined 
into a single capacitor or inductor, as in Figure 11.21, 
for example.

In contrast to first-order frequency responses, which, 
as discussed in Section 14.3, are either low pass or high 
pass, second-order frequency responses can be any of 
the four basic types mentioned in Section 14.2. These 
responses will be discussed using the prototypical series 
RLC circuit illustrated in Figure 14.15. The sinusoidal 
source VSRC(jω) is assumed to be of constant magnitude 

and phase angle, but of variable frequency. The current 
in the circuit and the voltages across the circuit elements 
are phasors.

The impedance seen by the source is the impedance of 
the three elements in series

 Z R j L j C R jX R j L C= + + = + = + -( )w w w w1 1/ /  (14.27)

where the combined reactance X is (ωL − 1/ωC). The 
current is
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A striking feature of the combined reactance X in 
Equation 14.28 is that at some frequency, the capacitive 
and inductive reactances are equal in magnitude but 
opposite in sign so that their sum X = ωL − 1/ωC = 0. 
The frequency ω0 at which this occurs is given by

 
w

w
w w0

0
0
2

0
1

1
1

L
C

LC
LC

= = =or or
 

(14.29)

Thus, at the frequency ω0, the series combination of L and 
C acts as a short circuit (X = 0), and Z = R, as illustrated in 
the impedance diagram of Figure 14.16a. At a frequency 
ω < ω0, ωL < 1/ωC so that the net reactance X is capaci-
tive, with Z R X R z= + > Ð <2 2 0, and  (Figure 14.16b). 
At a frequency ω > ω0, ωL > 1/ωC so that the net reac-
tance X is inductive, with Z R X R z= + > Ð >2 2 0, and  
(Figure 14.16c). It is seen that at ω = ω0, Z has a mini-
mum value of R and is purely resistive. With a constant 
magnitude and phase angle of VSCR(jω), it follows from 
Equation 14.28 that at ω = ω0, the current I(jω0) will be 
a maximum and in phase with VSCR(jω0). At frequencies 
that are below or above ω0, |I(jω)| is reduced, with I(jω) 
leading VSCR(jω) at frequencies below ω0, since the net 
reactance is capacitive, and with I(jω) lagging VSCR(jω) at 
frequencies above ω0, when the net reactance is inductive.

Having examined qualitatively the behavior of the 
series RLC circuit of Figure 14.1, the next step is to 
investigate this behavior quantitatively. We will start by 
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considering the output voltage VR(jω) across the resistor. 
It  follows from Ohm’s law and Equation 14.1 or from 
voltage division that
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HBP(jω) can be expressed in a more basic, standard 
form, using a quantity Q that is defined for the series 
RLC  circuit as
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(14.31)

Q is a dimensionless quality factor. Fundamentally, 
it depends on the ratio of the peak energy stored in L or 
C to the average energy dissipated in R during a cycle 
(Problem P14.67). For a given L and C, the smaller R, the 
larger Q is and conversely.

Substituting CR = 1/ω0Q (Equation 14.31) and 
LC = 1 0

2/w  (Equation 14.29) in Equation 14.30,
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Multiplying the numerator and denominator by 
ω0Q/jω and simplifying,
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It follows that
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and

 Ð ( ) = - -( )-H j QBP w w w w wtan / /1
0 0  (14.35)

The Bode magnitude and phase plots are shown in 
Figure 14.17a and b for Q = 10 and Q = 5.

It is seen from Equation 14.34 that when ω = ω0, 
|HBP(jω0)| has its maximum value of unity so that 
20log10|HBP(jω)| = 0 dB, irrespective of Q. This is 
because the combination of L and C acts as a short cir-
cuit at this frequency so that VSRC(jω0) appears across R. 
|HBP(jω)| decreases on either side of ω0. At ω = 0, no 
current flows, because C acts as an open circuit, so 
VR(jω) = 0. Similarly, as ω → ∞, L acts as an open circuit, 
so VR(jω) → 0. The frequency response is limited to a 
range of frequencies and is therefore of the bandpass 
type (Figure 14.2c).

Note from Equation 14.34 that because of the term 
(ω/ω0 − ω0/ω)2 in the denominator, |HBP(jω)| at ω/ω0 = k 
has the same as at ω/ω0 = 1/k. On a logarithmic scale, 
ω = kω0 and ω = ω0/k are equidistant, on either side of ω0, 
since log10kω0 = log10ω0 + log10k and log10ω0/k = log10ω0 − 
log10k. This means that 20log10|HBP(jω)| is symmetrical 
about the vertical line through ω = ω0, as in Figure 14.17a. 
Moreover, it follows from Equation 14.34 that as ω → 0,
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so that that the low-frequency asymptote of the Bode 
magnitude plot has a slope of +20 dB/decade, as for a 
first-order high-pass response. As ω → ∞,
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which means that the high-frequency asymptote of the 
Bode magnitude plot has a slope of −20 dB/decade, as 
for a first-order low-pass response. This is because as 
ω → 0, ωL → 0 so that the circuit reduces to a high-pass 
RC circuit. Similarly, as ω → ∞, 1/ωC → 0 so that the cir-
cuit reduces to a low-pass RL circuit. Equating the RHS’s 
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FIGURE 14.16
Impedance of series RLC circuit at resonance (a), at a frequency below (b), and at a frequency above (c), the resonant frequency.
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of Equations 14.36 and 14.37 gives ω = ω0 as the point of 
intersection of the two asymptotes.

The phase angle is zero at ω = ω0, since the reactances 
cancel out and VR(jω0) = VSRC(jω0). When ω < ω0, the 
capacitive reactance predominates (Figure 14.16b) so 
that the current, and hence VR(jω), leads VSRC(jω). As 
ω → 0, tan∠HBP(jω) → +∞, and ∠HBP(jω) → 90°, as for an 
ideal capacitor. When ω > ω0, the inductive reactance pre-
dominates (Figure 14.16c) so that the current, and hence 
VR(jω), lags VSRC(jω). As ω → ∞, tan∠HBP(jω) → −∞, and 
∠HBP(jω) → −90°, as for an ideal inductor.

At the half-power frequencies ωc1 and ωc2, 
H jBP cw 1 2 1 2, /( ) = , by definition. Substituting this in 
Equation 14.34 squaring both sides and cross multiply-
ing gives
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Solving for wc and retaining only the positive roots,
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The 3 dB bandwidth (BW) is defined as ωc2 − ωc1. It 
follows from Equation 14.39 that
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For a given ω0, the larger the Q, the narrower the BW 
is, that is, the sharper the peak of the bandpass response 

is, as in Figure 14.17a. If the BW does not exceed 10% 
of the center frequency, corresponding to a Q of at 
least 10, the bandpass response is usually described as 
narrowband.

The pronounced peaking of the frequency response at 
some frequency ω0 is described as resonance, ω0 being 
the resonant frequency. As illustrated earlier, reso-
nance results in a bandpass response that allows selec-
tion of a relatively narrowband of frequencies out of a 
wide range of frequencies that may be present. Because 
of this, a resonant circuit is also referred to as a tuned 
 circuit. More elaborate, near-ideal bandpass responses 
are used in radio, television, and communication receiv-
ers to select or tune to particular stations or channels. 
Dynamical systems, in general, exhibit resonance, which 
could be quite pronounced if Q is high. A structure, such 
as a bridge, may resonate at some frequency. If excited at 
this frequency, the amplitude of vibration may be large 
enough to cause failure of the bridge.

Recall that the damping factor was defined in Equation 
12.4, as α = R/2L for the series circuit. Comparing this to 
the definition of Q as ω0L/R (Equation 14.31), it is seen 
that
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The smaller the R, the lesser is the damping, the smaller 
is the α, and the larger is the Q. For a critically damped 
circuit, α = ω0 so that Q = 0.5. Q < 0.5 for an overdamped 
circuit and Q > 0.5 for an underdamped circuit.

Example 14.2 illustrates a bandpass response of a 
 second-order circuit involving two capacitors. It  exem-
plifies some important concepts that are discussed after 
the example.
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FIGURE 14.17
Bode magnitude plot (a) and Bode phase plot (b) of a second-order, bandpass response for two values of Q.
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Primal Exercise 14.10

Consider the circuit of Figure 14.15, with L = 0.1 H, C = 
4 nF, and R = 1 kΩ. Determine (a) BW (as R/L), (b) ω0, 
(c) Q (as ω0/BW), and (d) ωc1 and ωc2 (from BW and 
w w wc c1 2 0= ).

Ans. (a) 10 krad/s; (b) 50 krad/s; (c) 5; (d) ωc2 = 55.25 
krad/s, ωc1 = 45.25 krad/s.

Primal Exercise 14.11

A second-order bandpass filter has a maximum response 
at 10 kHz and a lower 3 dB cutoff frequency of 7.5 kHz. 
Determine the 3 dB BW.
Ans. 5.83 kHz.

Exercise 14.12

Interpret the relation w w wc c1 2 0=  on the basis that ωc1 
and ωc2 are symmetrically located with respect to ω0 
when the frequency axis is logarithmic.
Ans. Symmetry with respect to ω0 on a logarithmic fre-
quency scale requires that ωc2/ω0 = ω0/ωc1.

Example 14.2: Second-Order Bandpass RC Circuit

It is required to derive the transfer function HBP(jω) = 
VO(jω)/VSRC(jω) and determine Q in Figure 14.18.

Solution:

HBP(jω) will be derived using voltage division. Since
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Multiplying V1(jω)/VSRC(jω) by VO(jω)/V1(jω) gives
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Dividing the numerator and denominator by jωCR 
and taking 3 outside the denominator, Equation 14.42 
can be expressed as
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where ω0 = 1/CR. Equation 14.43 is of exactly the same 
form as Equation 14.33, but with a multiplying factor of 
1/3. This scalar multiplier does not affect the type of fre-
quency response, which is therefore bandpass. At ω = ω0, 
HBP(jω) has its maximum value of 1/3. Comparing the 
denominators of Equations 14.33 and 14.43, it follows 
that Q = 1/3.

Simulation: The circuit is entered as in Figure 14.19, 
assuming C = 1 μF and R = 1000/2π = 159.155 Ω, so 
that ω0 = 1/RC = 2π/(103 × 10−6) = 2π × 103 rad/s ≡ 
1 kHz. The details of the simulation are as previ-
ously explained in Example 14.1. Simulation Settings 
include a start frequency of 10 Hz, an end frequency 
of 100 kHz, and 1000 points/decade. After the simula-
tion is run, select DB(V(R2:1)). |HBP(jω)| is displayed 
as in Figure 14.20. The maximum value at ω0 = 1 kHz is 
20log10(1/3) = −9.54 dB.

The low-frequency asymptote, as ω → 0, is |HBP(jω)| = 
(1/3)3ω/ω0 = ω/ω0, and the high-frequency asymptote, 
as ω → ∞, is |HBP(jω)| = (1/3)3ω0/ω = ω0/ω. The two 
asymptotes intersect at ω = ω0, at the 0 dB line.

To display the low-frequency asymptote, select 
Trace/Add Trace and enter 20*LOG10(Frequency)-
20*LOG10(1000) in the Trace expression field. To 
display the high-frequency asymptote, the entry is 
−20*LOG10(Frequency) + 20*LOG10(1000).

ω0, ωc1, and ωc2 can be read using the cursor. Click 
first on the Toggle cursor icon and then on the Cursor 
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Max icon. ω0 is read in the Cursor Window as 1.0000K. 
With  the cursor at ω0, enter the search command 
sle(max-3). Cursor 1 moves to ωc2 and its value is dis-
played in the Cursor Window as 3.2963K. Repeat the 
same command but with Cursor 2 selected in the Search 
Command window. Cursor 2 moves to ωc1 and its value 
is displayed in the Cursor Window as 303.374. The dif-
ference Y1-Y2 is displayed as 2.9929K. This gives a Q of 
ω0/BW = 1/2.9929, which is nominally 1/3.

The Bode phase plot (Figure 14.21) is obtained by 
selecting Trace/add Trace and then P() from the right 
window and V(R1:1) from the left window.

It will be noted that the first RC circuit whose output 
is V1(jω) in Figure 14.18 is a first-order low-pass filter, 
whereas the second RC circuit whose output is VO(jω) 
is a first-order high-pass filter, with both filters having 
the same values of R and C. The two filters are cascaded 
by having the output of the low-pass filter applied as 
the input to the high-pass filter so that the transfer func-
tions V1(jω)/VSRC(jω) and VO(jω)/V1(jω) are multiplied 

by one another in order to derive the overall response 
(Equation 14.42). As explained in connection with Figure 
14.3c, multiplication of a low-pass response and a high-
pass response results in a bandpass response. Note that 
multiplication of the magnitudes of transfer functions is 
equivalent to adding them on the Bode magnitude plots.

A relevant question is, how would Q change if the two 
cascaded first-order filters are isolated from one another? 
In Figure 14.18, the high-pass filter ‘loads’ the low-pass 
filter, that is, it draws its input current from the output 
of the low-pass filter, thereby affecting the output volt-
age V1(jω). The two filters can be isolated by inserting 
a unity-gain amplifier between the two filters, as dis-
cussed in Section 13.3 and illustrated in Figure 14.22.

It follows from Equation 14.2 that V1(jω)/VSRC(jω)  = 
1/(1 + jωCR), and it follows from Equation 14.4 that 
VO(jω)/V1(jω) = jωCR/(1 + jωCR). The overall transfer 
function is
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Dividing the numerator and denominator by jωCR 
and taking 2 outside the denominator, as was done with 
Equation 14.42, Equation 14.44 becomes
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where ω0 = 1/CR. It is seen that Q is increased by isola-
tion from 1/3 to 1/2. This result is quite general and can 
be expressed as the following concept:

Concept: Second-order circuits having two capacitors or two 
inductors cannot have a Q exceeding 0.5.

Having Q = 0.5 means that the circuit is critically 
damped, as explained in connection with Equation 
14.41. Hence, second-order circuits having two capaci-
tors or two inductors are either overdamped or, at best, 
critically damped. They cannot be underdamped. In 
other words, underdamped, second-order, passive circuits of  
Q > 0.5 must have a capacitor and an inductor.

Frequency
10Hz 100Hz 1.0kHz 10kHz 100kHz

–40

–30

–20

|
H

B
P

(j
   

)|
, d

B

–10

–0

–9.54 dB

fc1 fc2f0

FIGURE 14.20
Figure for Example 14.2.

Frequency

H
B

P
(j

   
)

10Hz 100Hz 1.0KHz 10KHz 100KHz
–100d

–50d

0d

50d

100d

FIGURE 14.21
Figure for Example 14.2.

R

VSRC(j   )
–

+
+

–

+

–

R

+

–

×1

1/j   C

1/j   CI(j   ) = 0

V1(j   ) V1(j   ) VO(j   )

FIGURE 14.22
Cascaded first-order filters, with isolation.



422 Circuit Analysis with PSpice: A Simplified Approach

14.6  Second-Order Bandstop Response

It was pointed out in Section 14.2 that the second-order 
bandpass and bandstop responses are complementary 
with respect to the applied input. This implies that if 
the voltage response across R is bandpass, the voltage 
response, which when added to the bandpass response 
equals the source voltage, must be bandstop. In other 
words, the response VLC(jω) across L and C together, as 
illustrated in Figure 14.23, must be bandstop.

That this is the case can be ascertained qualitatively 
before analyzing the circuit, as was done with the cir-
cuits considered so far. At ω = 0, the capacitor acts as 
an open circuit, I(jω) = 0, and VSRC(jω) appears across 
the capacitor so that VLC(jω) = VSRC(jω). As ω → ∞, the 
inductor acts as an open circuit, I(jω) = 0, and VSRC(jω) 
appears across the inductor so that, again, VLC(jω) = 
VSRC(jω). At the resonant frequency ω0, the series combi-
nation of L and C acts as a short circuit, VLC(jω) = 0, and 
I(jω) = VSRC(jω)/R. The nature of the response is there-
fore bandstop.

Analytically, VLC(jω) = VL(jω) + VC(jω), where, from 
voltage division,
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It is seen that the response is zero when 1 − ω2LC = 0, 
at the resonant frequency ω0. The denominator is 
the same as that of Equation 14.30. Proceeding as 
for the bandpass response, that is, substituting CR = 
1/ω0Q (Equation  14.31), LC = 1 0

2/w  (Equation 14.29) in 
Equation 14.46,
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Multiplying the numerator and denominator by 
ω0Q/jω and simplifying,
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It follows that
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To obtain the phase angle, it is convenient to divide 
the numerator and denominator of Equation 14.48 by 
jQ w w w w/ /0 0-( ) to give

 Ð ( ) = -( )éë ùû
-H j QBS w w w w wtan / / /1

0 01  
(14.50)

The amplitude and phase plots are shown in Figure 
14.24a and b for Q of 5 and 10. |HBS(jω)| is plotted 
and not its logarithm, because |HBS(jω)| = 0 at ω = 
ω0, and log100 → −∞. For ω < ω0, the net reactance 
is capacitive and can be represented as 1/ωCeff = 
(1/ωC − ωL). The circuit is equivalent to R in series 
with Ceff, and the response is akin to that of a low-
pass RC filter. When ω is only slightly larger than 
zero, 1/ωCeff is large and VLC(jω)  ≅ VSRC(jω) so that 
the magnitude of the response is near unity and the 
phase angle is small. When ω is slightly less than ω0, 
1/ωCeff is small, like 1/ωC of a low-pass RC filter as 
ω → ∞. The response is small and the phase angle is 
near −90° (Figure 14.24).

For ω > ω0, the net reactance is inductive and can be 
represented as ωLeff = (ωL − 1/ωC). The circuit is equiva-
lent to R in series with Leff, and the response is akin to 
that of a high-pass RL filter. When ω is slightly larger 
than ω0, ωLeff is small, like ωL of the RL filter for ω ≅ 0. 
The response is small and the phase angle is near +90°. 
As ω → ∞, ωLeff is large, the magnitude of the response is 
near unity, and the phase angle is small, like that of the 
high-pass RL filter.

At the half-power frequencies, H jw( ) = 1 2/ . 
Equation 14.49 reduces to Equation 14.38 for the band-
pass case. The half-power frequencies are given by 
Equation 14.39 and the BW by Equation 14.40, the same 
as for the bandpass response.

Primal Exercise 14.13

Repeat Primal Exercise 14.10, but with the output taken 
across L and C.
Ans. Exactly the same as in Primal Exercise 14.10.

Primal Exercise 14.14

Determine the largest value of |H(jω)| in Figure 14.25, 
ω0, and Q.
Ans. 2/3; 104 rad/s; 50.
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FIGURE 14.23
Second-order bandstop response across L and C.
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14.7  Second-Order Low-Pass 
and High-Pass Responses

14.7.1  Low-Pass Response

Suppose that the response is taken across the capacitor 
in the series RLC circuit, as shown in Figure 14.26. At 
ω = 0, the capacitor acts as an open circuit and the induc-
tor as a short circuit, I(jω) = 0, and VC(jω) = VSRC(jω). 
As ω → ∞, the inductor acts as an open circuit and the 
capacitor as a short circuit and VC(jω) = 0. The response 
is clearly of a low-pass nature. It is generally true that 
when the response of a filter is taken across a capacitor, 
the response tends to zero as ω → ∞ so that the response 
is of a low-pass nature.

However, at the resonant frequency, the net reac-
tance is zero, and if R is small enough, the current at 
this frequency will be large. Thus, as R → 0, I(jω0) → ∞. 
When this large current is multiplied by the imped-
ance of the capacitor, VC(jω) can exceed VSRC(jω). In 
other words, the second-order low-pass response can 
exhibit some peaking, unlike the first-order low-pass 
response.

It follows from voltage division that
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Note that the denominator of Equation 14.51 is the 
same as that for the bandpass response (Equation 14.30) 
and the bandstop response (Equation 14.46). The reason 
for this will be explained later.

It follows from Equation 14.51 that
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and
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(14.53)

Note that in Equation 14.53 the imaginary part, ω/ω0Q 
in Equation 14.51, is always positive, but the real part, 
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Bode magnitude plot (a) and Bode phase plot (b) of a second-order, bandstop response for two values of Q.
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1 0
2

- ( )( )w w/ , can be positive or negative. This means 

that +tan−1 (imaginary part/real part) is an angle in 
the first quadrant when ω is small, and  moves counter 
clockwise to the second quadrant as ω → ∞. Its negation, 
∠HLP(jω), is in fourth or third quadrants, respectively.

We wish to determine if |HLP(jω)| has a maximum at 
some frequency, which means that the expression under 
the square root in Equation 14.52 has a minimum. To 
check this, it is convenient to denote ω/ω0 by u so that 
the expression becomes

 f u u u Q( ) = -( ) +1 2 2 2 2/  
(14.54)

Deriving df(u)/du, setting it equal to zero, and retain-
ing only positive nonzero values of u give
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Hence, |HLP(jω)| has a maximum at some non-
zero value ωmax if Q > 1 2/ . That |HLP(jω)| has a maxi-
mum at ω = ωmax and not a minimum can be confirmed 
by substituting ωmax/ω0 in Equation 14.52, which gives
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If R = 0, Q → ∞, and |HLP(jω)|max → ∞ at ω = ωmax, 
confirming that |HLP(jω)| has a maximum at this fre-
quency. For R small but not zero, the response is highly 
peaked, as was argued qualitatively. Moreover, since 
the impedance of the capacitor is inversely propor-
tional to frequency, maximum VC(jω) = I(jω)/jωC occurs 
not when I(jω) is maximum, that is, at ω = ω0, but at a 
slightly lower frequency, as given by Equation 14.55. It 
may be noted that in Equation 14.56, |HLP(jω)|max → ∞ 
when Q2 = 1/4 or Q = 0.5. But ωmax is an imaginary fre-
quency for Q < 1 2/  (Equation 14.55), so no peaking in 
fact occurs for Q £ 1 2/ .

It is of interest to determine the equations of the 
asymptotes of |HLP(jω)|. As ω → 0, |HLP(jω)| → 1 
(Equation 14.52), and 20log10|HLP(jω)| → 0 dB. The low-
frequency asymptote is therefore the 0 dB line, that is, 
the horizontal axis. As ω → ∞, the u4 term in the denomi-
nator of Equation 14.52 dominates so that |HLP(jω)| → 
(ω0/ω)2. Taking the logarithm to base 10 and multiplying 
by 20, the equation of the high-frequency asymptote is

 20 40 4010 10 0 10log log logH jLP w w w( ) = -  (14.57)

It is seen that the high-frequency asymptote has a slope 
of −40 dB/decade. When ω = ω0, the RHS of Equation 14.57 
is zero, which means that asymptote intersects the 0 dB 

line at ω = ω0. A larger magnitude of the slope at high 
frequencies means that these unwanted frequencies 
attenuate more rapidly. This is desirable and closer to 
the ideal low-pass characteristic of Figure 14.2a.

The Bode magnitude and phase plots are discussed in 
more detail in Example 14.3.

Example 14.3: Bode Plots of Second-Order 
Low-Pass Response

It is required to obtain the Bode magnitude and phase 
plots of the low-pass response of the series RLC circuit 
assuming L = 0.5 H, C = 12.5 μF, and R = 10, 100, 283, 
and 400 Ω.

Solution: 

w0
61 0 5 12 5 10 400= ´ ´ =-/ . . /rad s, 2 4000w L= W, and the 

chosen values of R correspond to Q = 20 (R = 10 Ω), Q = 2 
(R = 100 Ω), Q R= =( )1 2 283/ ,W  and Q = 0.5 (R = 400 Ω).

Simulation: The circuit is entered as in Figure 14.27. To 
display multiple traces for different resistance values, 
double-click on the default resistance value displayed, 
which invokes the Display Properties window. In the 
Value field, enter a chosen designation enclosed in curly 
brackets, which tells PSpice that this is a parameter 
and not a fixed value. In the present example, {R_val} 
is entered. The next step is to declare {R_val} a global 
parameter. Place the part PARAM from the SPECIAL 
library; this shows on the schematic as PARAMETERS:. 
When this word is double-clicked, the Property Editor 
spreadsheet is displayed. Click on the New Column 
button to display the Add New Column dialog box. 
Enter R_val in the Name field and any value, say, 1k, 
in the Value field. A new column R_val is added to the 
spreadsheet with the entry 1k. To have this displayed on 
the schematic, click on the Display button and choose 
Name and Value in the Display Properties dialog box. 
R_val = 1k appears under PARAMETERS:, as shown in 
Figure 14.27.

To run the simulation, select AC Sweep/Noise in 
the Simulation Settings dialog box and enter a start 
frequency of 10 Hz, an end frequency of 1000 Hz, and 
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FIGURE 14.27
Figure for Example 14.3.
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1000  points/decade. Then choose Parametric Sweep 
under Options, select Global parameter and enter 
R_val for Parameter name. Under Sweep type enter 
10,100,283,400 in ‘Value’ list.

After the simulation is run, the magnitude plot for the 
four resistance values is displayed, as in Figure 14.28a. 
The high-frequency asymptote is added by selecting 
Trace/Add traces, then entering in the Trace Expression 
field 40*LOG10[63.662] − 40*LOG10[Frequency], where 
f0 = (400/2π) = 63.662 Hz. Other details of the simulation 
are as in Example 14.2.

The cursor can be used to obtain quantitative infor-
mation. To select a particular trace, such as that for Q = 
20, for example, click on its colored marker just below 
the horizontal axis on the LHS. Press the Toggle cur-
sor button and then the Cursor Max button. The cursor 
reads the max as 26.021 dB at 63.631 Hz. The calculated 
values from Equations 14.58 and 14.57 are 26.023 dB at 
63.662 Hz.

The trace for Q = 1 2/  is of special interest as it 
 represents a maximally flat or Butterworth response 
(Section  15.2). For larger values of Q, the response 
is peaked. The trace having Q = 0.5 represents criti-
cal damping. Note that the corner frequency, where 
the two asymptotes intersect, is at f = f0. However, 
this is the 3  dB cutoff frequency only for the plot 
having Q = 1 2/ , for substituting this value of Q in 
Equation 14.52 gives H jLP w( ) = 1 2/ . The 3 dB cutoff 
frequency for all other plots is not at f = f0. This illus-
trates that, in general, the 3 dB cutoff frequency is dif-
ferent from the corner frequency.

To obtain the phase plot, select Trace/Add Traces, 
then choose P( ) and enter V(C1:1). The phase plot is dis-
played as in Figure 14.28b.

It is instructive to interpret the phase response. 
For 0 < ω < ω0, the net series reactance is capacitive. 
For small ω/ω0, this reactance is large, VC(jω) ≅ VSRC(jω), 

so ∠HLP(jω) is small and negative, in accordance with 
Equation 14.53, and as for a low-pass RC filter at ω ≅ 0. 
For ω/ω0 slightly less than 1, the net capacitive reac-
tance is small, I(jω) is nearly in phase with VSRC(jω), and 
VC(jω) lags I(jω) by almost 90°. ∠HLP(jω) ≅ −90°, like 
that of a low-pass RC filter as ω → ∞. From Equation 
14.53 the argument of the arctan function is large and 
positive, so the angle is near 90° and its negation is near 
−90°. For ω > ω0, the net series reactance is inductive. For 
ω/ω0 slightly larger than 1, the net inductive reactance 
is small, I(jω) lags VSRC(jω) by a small angle, and VC(jω) 
lags I(jω) by 90°. ∠HLP(jω) is slightly more negative than 
−90°. In Equation 14.53 the real part in the denominator 
is negative, and the argument of the arctan function is 
large and negative, so the angle is slightly more 90°, in 
the second quadrant, and its negation is slightly more 
negative than −90°, in the third quadrant. As ω → ∞, 
the net inductive reactance is large, I(jω) lags VSRC(jω) 
by almost 90° and VC(jω) lags I(jω) by another 90°, so 
∠HLP(jω) approaches −180° from the third quadrant.

Primal Exercise 14.15

Consider the series circuit of Primal Exercise 14.10 
 having L = 0.1 H, C = 4 nF, and R = 1 kΩ. Determine 
(a) Q, (b) H jLP w( )

max
 in dB, and (c) ωmax.

Ans. (a) 5; (b) 14.02 dB; (c) 49.50 kHz.

14.7.2  High-Pass Response

Suppose that the response is taken across the inductor 
in the series RLC circuit, as shown in Figure 14.29. At 
ω = 0, the capacitor acts as an open circuit and the induc-
tor as a short circuit, I(jω) = 0, and VL(jω) = 0. As ω → ∞, 
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the capacitor acts as a short circuit and the inductor as 
an open circuit and VC(jω) = VSRC(jω). The response is 
clearly of a high-pass nature. It is generally true that 
when the response of a filter is taken across an inductor, 
the response tends to zero as ω → 0 so that the response 
is of a high-pass nature.

At the resonant frequency, the net reactance is zero, 
and if R is small enough, the current at this frequency 
will be large. Thus, as R → 0, I(jω0) → ∞. When this large 
current is multiplied by the impedance of the inductor, 
VL(jω) can exceed VSRC(jω). In other words, the second-
order high-pass response can exhibit some peaking, 
unlike the first-order high-pass response.

It follows from voltage division that
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The denominator of Equation 14.58 is the same as that 
of the second-order responses previously  considered. 
Dividing the numerator and denominator of Equation 
14.58 by −ω2LC,
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Comparing Equations 14.59 and 14.51, it is seen that 
the high-pass and low-pass responses can be derived, 
one from the other, by interchanging jω and ω0, as was 
noted in connection with first-order responses.

It follows from Equation 14.59 that
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and
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Note that in Equation 14.61 the imaginary part, −ω0/ωQ, 

is always negative, but the real part, 1 0
2

- ( )( )w w/ , can be 

positive or negative. This means that +tan−1(imaginary 
part/real part) is an angle in the third quadrant when 
ω is small, and moves counterclockwise to the fourth 
quadrant as ω → ∞. Its negation, ∠HHP(jω), is in the 
 second or first quadrants, respectively.

If ω0/ω is denoted by r, the expression under the 
square root in Equation 14.60 can be represented as

 g u r r Q( ) = -( ) +1 2 2 2 2/  
(14.62)

Equation 14.62 is of exactly the same form as Equation 
14.54 with r = ω0/ω replacing u = ω/ω0. The same con-
clusions reached for the low-pass response apply to the 
high-pass response, but with ω/ω0 replaced by ω0/ω. 
Thus, by analogy to Equation 14.55, |HHP(jω)| has a 
maximum at

 r Q Qmax max/ / /= - = -1 1 2 1 1 22
0

2or w w  (14.63)

The interpretation is that maximum I(jω) occurs 
at ω  =  ω0, when the net reactance is zero. However, 
VL(jω) = jωLI(jω) so that maximum VL(jω) occurs at 
a frequency slightly higher than ω0, as indicated by 
Equation 14.63. The value of |HHP(jω)|max is the same 
as that of |HLP(jω)|max given by Equation 14.56. This is 
to be expected, for if |HHP(jω)| is the same function of 
ω0/ω as |HLP(jω)| is a function of ω/ω0, the high-pass 
and low-pass Bode magnitude plots for the same circuit 
are symmetrical with respect to the line ω = ω0. Thus, at 
a frequency ω = kω0, where k is a constant, ω/ω0 = k and 

H j k k QLP w( ) = -( ) +1 1 2 2 2 2/ /  (Equation 14.52). At a fre-
quency  ω0/ω = k, |HHP(jω)| will have the same value 
(Equation 14.60). On a log scale, the frequencies kω0 and 
ω0/k are equidistant on either side of ω0 so that the two 
plots are symmetrical with respect to the line ω = ω0.

It can be readily shown, as was done for the low-pass 
response, that the low-frequency asymptote has a slope of 
+40 dB/decade and the high-frequency asymptote coin-
cides with the horizontal axis. The Bode magnitude and 
phase plots are discussed in more detail in Example 14.4.

Example 14.4: Bode Plots of Second-Order 
High-Pass Response

It is required to obtain the Bode magnitude and phase 
plots of the high-pass response of the series RLC cir-
cuit assuming the same values of R, L, and C as in 
Example 14.3 (Figure 14.30).

Solution:

The values of ω0 and Q are the same as in Example 14.3.
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FIGURE 14.29
Second-order lowpass response across L.
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Simulation: The circuit is entered as in Figure 14.30; the 
simulation procedure is the same as in Example 14.3, 
but with the voltage across the inductor V(L1:1) selected 
for plotting.

After the simulation is run, the magnitude plot for the 
four resistance values is displayed, as in Figure 14.31a. The 
high-frequency asymptote is added by selecting Trace/
Add traces and then entering in the Trace Expression 
field −40*LOG10[63.662]+ 40 * LOG10[Frequency], where 
f0 = (400/2π) = 63.662 Hz. Note the symmetry with respect 
to the line through f0 between the low-pass response of 
Figure 14.28a and the high-pass response of Figure 14.31a.

It is instructive to interpret the phase response. For 
0 < ω < ω0, the net series reactance is capacitive. For small 
ω, this reactance is large, I(jω) leads VSRC(jω) by slightly 
less than 90° and VL(jω) leads I(jω) by 90°, so ∠HLP(jω) is 
slightly less than 180°. In Equation 14.53, ω0/ω is large, the 
imaginary part and the real part are negative. Their ratio 
is proportional to ω/ω0 and is small. The angle given by 
the arctan function is in the third quadrant, slightly more 
than 180°. Its negation is in the second quadrant, slightly 
less than 180°. For ω slightly less than ω0, the net capaci-
tive reactance is small, I(jω) leads VSRC(jω) by a small angle 
and VL(jω) leads I(jω) by 90°, so ∠HLP(jω) is slightly more 
than 90°. In Equation 14.53, ω0/ω is slightly larger than 1. 
The imaginary part and the real part are still negative but 

their ratio is positive and large. The angle is in the third 
quadrant, slightly less than 270°. Its negation is in the sec-
ond quadrant, slightly more than 90°. For ω > ω0, the net 
series reactance is inductive. For ω slightly larger than ω0, 
the net inductive reactance is small, I(jω) lags VSRC(jω) by 
a small angle and VL(jω) leads I(jω) by 90°, so ∠HLP(jω) is 
slightly less than 90°. In Equation 14.53, ω0/ω is slightly 
less than 1. The imaginary part is negative and the real 
part is positive. Their ratio is negative and large. The 
angle is in the fourth quadrant, slightly larger than 270°. 
Its negation is in the first quadrant, slightly less than 90°. 
As ω → ∞, the net inductive reactance is large, VL(jω) ≅ 
VSRC(jω), so ∠HLP(jω) approaches 0° in the first quadrant.

Primal Exercise 14.16

Compare the high-pass response of the series circuit of 
Primal Exercise 14.15 with its low-pass response consid-
ered in that exercise. Determine (a) Q, (b) H jHP w( )

max
 in 

dB, and (c) ωmax.
Ans. (a) 5, the same as for low-pass response; (b) 14.02 dB, 
the same as for low-pass response; (c) 50.51 kHz.

Primal Exercise 14.17

Determine the type of response VO(jω)/VSRC(jω) in 
Figure 14.32 and its passband gain in dB.
Ans. High pass, −6 dB.

Primal Exercise 14.18

Determine the type of response IO(jω)/ISRC(jω) in Figure 
14.33 and its passband gain in dB.
Ans. Low pass, ≅ −8 dB.
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Primal Exercise 14.19

Determine the frequency at which the high-fre-
quency asymptote of the response VO(jω)/VSRC(jω) in 
Figure 14.34 intersects the 0 dB line.
Ans. 10 krad/s.

14.8  Parallel Circuit

The parallel GCL circuit excited by a current source 
(Figure 14.35) is the dual of the series RLC circuit of 
Figure 14.15, the dual quantities being the same as in  
Table 12.3. This table is reproduced as Table 14.1 in 
terms of the phasor variables, Q, ω0, and BW.

ω0 is clearly the same in both cases, since duality inter-
changes L and C, which leaves their product unaltered. 

Q for the series circuit is given by Equation 14.31 as 
Q = ω0L/R = 1/ω0CR. Replacing quantities by their duals,
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In terms of Rp = 1/Gp, Equation 14.64 becomes
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(14.65)

Note that the dual of Gp is R in the series case, both 
having the same numerical values. But Rp is the recipro-
cal of Gp. It is also helpful to remember that the expres-
sions for Qp in Equation 14.65 are reciprocal in form to 
the expressions for Q in Equation 14.31. Thus, ω0CpRp is 
reciprocal in form to 1/ω0CR, and Rp/ω0Lp is reciprocal 
in form to ω0L/R. Note that for a parallel resonant cir-
cuit, the larger Rp, the larger is Qp.

It should be noted that Q, whether for a series or a par-
allel circuit, is determined only by circuit parameters, 
irrespective of any independent sources that may be 
present and their connections. Hence, the circuit config-
uration, whether series or parallel, can be ascertained, 
and the correct expression and value of Q derived, by 
setting independent sources to zero. This is the same as 
applied in Section 12.4, for ascertaining the circuit con-
figuration and determining α.

With ω0 the same, it is seen that ωc1, ωc2, and BW 
are given by the same expressions as Equations 14.39 
and 14.40, but with Q replaced by Qp:
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TABLE 14.1

Dual Quantities
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Parallel GCL Gp Cp Lp IGp(jω) ICp(jω) ILp(jω) Vp(jω) Qp = ω0CpRp = Rp/ω0Lp w0 1= / C Lp p BW = ω0/Qp
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and

 
BW and= - = =w w w w w wc c

p
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(14.67)

The frequency responses follow readily from duality. 
These are listed in Table 14.2 for the series RLC circuit, as 
has previously been derived, together with the dual GCL 
counterpart. It is seen that the only difference in the dual 
responses when expressed in this form is the replace-
ment of Q of the series circuit by Qp of the parallel circuit.

The responses of the parallel circuit can be readily 
argued qualitatively. Consider, for example, the response 
IGp(jω)/ISRC(jω) and its complement with respect to the 
source, ILpCp(jω)/ISRC(jω) = (ILp(jω) + ICp(jω))/ISRC(jω). The 
key to understanding the behavior of the circuit is to 
recognize that at the resonant frequency ω0, the suscep-
tances of the inductor and capacitor are equal in magni-
tude but opposite in sign so that their sum is zero, that 
is, ω0C − 1/ω0L = 0. In other words, the impedance at 
resonance of Lp in parallel with Cp is infinite; that is, the 
parallel combinations act as an open circuit. This fol-
lows also for the parallel impedance at resonance as
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This is in contrast to the series connection of L and C, 
where the impedance at resonance is zero, so that the 
series combination acts as a short circuit.

If the parallel combination of Lp and Cp acts as an open 
circuit at resonance, then the whole of the source current 
flows through Gp so that the combined current through the 
inductor and capacitor is ILpCp(jω0) = ILp(jω0) + ICp(jω0) = 0, 
and IGp(jω0) = ISRC(jω0). At ω = 0 the capacitor acts as an 
open circuit and the inductor as a short circuit. All of 
ISRC(jω) is diverted through Lp so that ILpCp(jω) = ISRC(jω), 
and IGp(jω0) = 0. If ω → ∞, the inductor acts as an open cir-
cuit and the capacitor as a short circuit. All of the ISRC(jω) 

is diverted through Cp so that, again, ILpCp(jω) = ISRC(jω), 
and IGp(jω0) = 0. It is seen that the response IGp(jω)/ISRC(jω) 
is bandpass, whereas the response ILpCp(jω)/ISRC(jω) is 
bandstop, as expected from duality. Similarly, it follows 
that the response ICp(jω)/ISRC(jω) is high pass, whereas 
the response ILp(jω)/ISRC(jω) is low pass.

It may be noted that the circuit of Figure 14.35 is of spe-
cial interest because it is the small-signal representation 
of a parallel-tuned circuit driven by a transistor amplifier. 
Examples 14.5 and 14.6 consider parallel GCL circuits. 
Example 14.6 illustrates that in determining the circuit 
configuration, whether series or parallel, independent 
sources are set to zero, as was done in Section 12.4. The 
same argument applies, namely, when voltages and cur-
rents in a circuit change, for any reason, including a varia-
tion in frequency; ideal, independent voltage sources act 
as short circuits; and ideal, independent current sources 
act as open circuits, as far as changes are concerned.

Primal Exercise 14.20

Consider the parallel GCL circuit that is the dual of the 
series circuit of Primal Exercise 14.15. Determine (a) Lp, 
Cp, Gp, Rp, (b) ω0, (c) Qp, and (d) BW; (e) compare ω0, Qp, 
and BW with those of the dual series circuit.
Ans. (a) Lp = 4 nH, Cp = 0.1 F, Gp = 1 kS, Rp =1 mΩ; 
(b) 50 krad/s; (c) 5; (d) 10 krad/s; (e) the same as those 
of the dual series circuit.

Exercise 14.21

It was demonstrated earlier that the impedance of a 
series combination of L and C is zero at resonance, 
whereas the admittance of a parallel combination of 
L and C is zero at resonance. Express this behavior in 
terms of duality.

TABLE 14.2

Dual Frequency Responses
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Primal Exercise 14.22

Determine Q of the response VO(jω)/ISRC(jω) in Figure 14.36
Ans. 10.

Example 14.5: Parallel GCL Circuit

A parallel GCL circuit excited by a current source is 
given, as in Figure 14.35. If a current input of 10 mA 
peak is to produce a maximum response of 1 V peak 
at 100 krad/s, it is required to determine Lp and Rp to 
give a BW of 2 krad/s and to derive ωc1 and ωc2. This 
example also illustrates using MATLAB to derive 
Bode plots.

Solution:

At resonance, the 10 mA current source sees only Rp, 
since Lp and Cp in parallel act as an open circuit. Hence, 
to produce a 1 V response at resonance, 1 V = Rp × 1 mA, 

which gives Rp = =1
0 01

100
.

.W

If BW = 2 krad/s and ω0 = 100 krad/s, it follows from 

Equation 14.67 that Qp = =w0 50
BW

. With Q C Rp p p=w0 , 

C
Q
R

p
p

p
= º
w0

5 mF. Then L
C

p
p

= =1
20

0
2w

mH.

From Equation 14.66,
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 krad/s. 

The geometric mean w wc c1 2  is 100 krad/s (Equation 
14.40) and is very nearly equal to the arithmetic mean 
(ωc1 + ωc2)/2, because of the relatively large Qp.

Simulation: The circuit is entered as in Figure 14.37, 
using the source IAC. The resistor and capacitor are 
entered from the ANALOG_P library. To run the simula-
tion, select AC Sweep/Noise for the Analysis type in the 
Simulation Settings dialog box. Under AC Sweep Type 
select ‘Logarithmic’ and enter 100 for ‘Start Frequency’, 
1meg for ‘End Frequency’, and 3000 for ‘Points/Decade’. 
After the simulation is run, select in the SCHEMATIC1 
page Trace/Add Trace and then DB() from the right 

window and V(R1:1) from the left  window. The plot 
appears as in Figure 14.38a.

Note that this is a plot of Vp(jω) in response to the 
10 mA source and is not a plot of the transfer function 
Vp(jω)/ISRC(jω), which is obtained with IAC = 1 A. The 
analytical expression for Vp(jω) is
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At ω = ω0, |Vp(jω0)| = 1 V, and 20log10|Vp(jω0)| = 0, 
as in Figure 14.38a. The low-frequency asymptote, as 
ω →  0, is |Vp(jω)| = ω/50ω0, and the high-frequency 
asymptote, as ω  → ∞, is |Vp(jω)| = ω0/50ω. The two 
asymptotes intersect, where ω/50ω0 = ω0/50ω, which 
occurs at ω = ω0.
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To display the low-frequency asymptote, select Trace/
Add Trace and enter −20*LOG10(15915.5) − 20*LOG10 
(50) + 20*LOG10(Frequency) in the Trace expression field, 
where f0 = 15915.5 Hz. To display the high- frequency 
asymptote, the entry is 20*LOG10(15915.5) − 20*LOG10 
(50 − 20*LOG10 (frequency). The two asymptotes inter-
sect at f = f0, as explained earlier.

f0, fc1, and fc2 can be read using the cursor. Click first 
on the Toggle cursor icon and then on the Cursor Max 
icon. f0 is read in the Cursor Window as 15.922 K, com-
pared to 105/(2π) = 15.916 kHz. With the cursor at f0, 
enter the search command sle(max-3). Cursor 1 moves 
to fc2 and its value is displayed in the Cursor Window 
as 16.075 K, corresponding to 100.002 krad/s. Repeat 
the same command, but with Cursor 2 selected in the 
Search Command window. Cursor 2 moves to fc1 and its 
value is displayed in the Cursor Window as 15.757 K, 
corresponding to 99.004 krad/s. The difference Y2-Y1 
is displayed as 318.000, corresponding to 1.998 krad/s. 
Alternatively, select Trace/Evaluate Measurement and 
then Bandwidth_Bandpass_3dB(1), and enter V(R1:1) 
in place of ‘1’. In the Measurement Results window, 
318.11378 is displayed. The value of Q can be displayed 
by selecting Q_Bandpass(1,db_level) and entering 
V(R1:1) in place of ‘1’ and 3 in place of db_level. The 
value of 50.00340 is displayed in the Measurement 
Results window.

The Bode phase plot can be derived by selecting 
Trace/add Trace and then P() from the right window 
and V(R1:1) from the left window. The plot appears as 
in Figure 14.38b.

Bode plots from MATLAB: The coefficients of s = jω in 
the numerator and denominator of the transfer func-
tion are first entered as arrays in the order of decreasing 
powers of s, including the zero power for any constant 
term. The numerator in this case is 2 × 103s rad/s, so the 
coefficients are entered as

>>num = [2*10^3, 0]

The denominator is s2 + 2 × 103s + 1010, so the coef-
ficients are entered as

>>den = [1, 2*10^3, 10^10]

The bode command is entered as

>>bode(num, den)

The Bode magnitude and phase plots are displayed as 
in Figure 14.39, after some editing for clarity.

Example 14.6: Bandstop Response

 (a) It is required to verify that the response VR(jω) of 
the circuit of Figure 14.40 is bandstop and that the 
response VLC(jω) is bandpass.

 (b) If R = 1 kW, determine L and C  so that the half-
power frequencies are 1000 and 1200 rad/s.

Solution:

 (a) At the resonant frequency, L in parallel with C acts 
as an open circuit so that the current through R is 
zero, VR(jω) = 0, and VLC(jω) = VSRC(jω). At ω = 0, the 
inductor acts as a short circuit so that VLC(jω) = 0 and 
VR(jω) = VSRC(jω). Similarly, as ω → ∞, the capacitor 
acts as a short, and again VLC(jω) = 0 and VR(jω) = 
VSRC(jω). It follows that the response across R is 
bandstop, whereas the response across L and C 
is bandpass. The transfer function is
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(14.70)

Bode diagram
0

–20

–40

–60
90

45

0

–45

–90

Frequency, rad/s

Ph
as

e,
 d

eg
M

ag
ni

tu
d

e,
 d

B

105104 106

FIGURE 14.39
Figure for Example 14.5.

+

–

R–

+

+ VLC(j   )

VR(j   )VSRC(j   ) 1/j   C

j   L

–

FIGURE 14.40
Figure for Example 14.6.



432 Circuit Analysis with PSpice: A Simplified Approach

Equation 14.70 is of exactly the same form 
as Equation 14.47, with Qp, replacing Q, where 
Qp = R/ω0L is Q of the parallel circuit, as given by 
Equation 14.65, with Rp replaced by R. This confirms 
that the circuit configuration can be ascertained by 
setting the voltage source to zero, in which case the 
circuit reduces to a parallel GCL circuit.

 (b) w0 1000 1200 1095 4= ´ = . / .rad s  From Equation 14.65, 

C
Q
R R
p= =

´
=

´ ´
º

w0
3

1 1
200 1 10

5
BW

Fm ;
 
L C= =1 0

2/w
 

1/6 H. Qp = ω0CR = 5.48.

Simulation: The circuit is entered as in Figure 14.41, 
as in previous examples in this chapter. To run the 
simulation, select AC Sweep/Noise for the Analysis 
type in the Simulation Settings dialog box. Under AC 
Sweep, 10 is entered for ‘Start Frequency’, 1k for ‘End 
Frequency’, and 3000 for  ‘Points/Decade’. After the 
simulation is run, select in the SCHEMATIC1 page 
Trace/Add Trace and then DB() from the right window 
and V(R1:1) from the left window. The x-axis range 
is set from 30 Hz to 1 kHz using Plot/Axis Settings. 
The plot appears as in Figure 14.42. Cursor minimum 
gives f0 = 174.350. Cursor command ‘sle(0.70711)’ 
gives fc2  = 190.984. Repeating this command, but 

selecting  cursor 2, gives fc1 = 159.153. The  calcu-
lated values of f0, fc2, and fc1 are 174.346, 190.986, and 
159.155 Hz, respectively.

Primal Exercise 14.23

Determine the type of response VO(jω)/ISRC(jω), its max-
imum magnitude, and Q in Figure 14.43.
Ans. Response is bandpass, maximum response is 10 Ω; 
Q = 10.

14.9  Summary of Second-Order Responses

Prototypical, second-order responses are summarized 
in Table 14.3, normalized to a maximum response 
 magnitude of 1 and with jω replaced by s.

Although s, strictly speaking, is the complex fre-
quency of the Laplace transform (Chapter 20), it can, 
in fact, be replaced by jω for the sinusoidal steady state 
(Section 22.3), as is the case with frequency responses. 
Substituting s = jω gives the same responses as in 
Table 14.2 multiplied by w0

2, with s2
0
2= -w .

The following should be noted concerning Table 14.3:

 1. By definition, the prototypical responses in 
terms of s have a unity coefficient of the term 
representing the highest power of s in the 
denominator, which is s2 in the case of second-
order responses, as well as in the numerator, 
when s2 occurs.

 2. The frequency responses can, in general, be 
multiplied by a scalar K, without changing the 
nature of the response.

 3. When the responses are normalized to a maxi-
mum response magnitude of 1, the numerator of 
the low-pass response must be w0

2, the constant 
term in the denominator, so that the response is 
1 when ω = 0 or s = 0. Similarly, the numerator 
of the high-pass response must be s2 so that the 
response is 1 when ω → ∞ or s → ∞. The numer-
ator of the bandpass response must be (ω0/Q)s 
so that the response is 1 when s2

0
2= -w .
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 4. Each term in the numerator and denominator 
has the units of (rad/s)2 so that the transfer 
function is dimensionless in term of ratios of 
voltages or currents.

 5. The denominator is the same in all the responses. 
This is a consequence of the denominator being 
an expression of the characteristic equation of 
the differential equation (Equation 12.6) and the 
fact that the homogeneous differential equa-
tion is of the same form for all responses in the 
circuit.

 6. The coefficient ω0/Q of s in the denomina-
tor is the 3 dB BW of bandpass and bandstop 
responses. Q in the low-pass and high-pass 
responses is defined as in Table 14.1 for series 
and parallel circuits.

 7. Being independent of the excitation, Q can, in 
all cases, be determined by setting independent 
sources to zero.

 8. Whereas the maximum change in the phase 
angle is 90° in first-order responses, it is 180° 
in second-order responses, except the all-pass 
response. In all the types of fist-order and 
 second-order circuits discussed in this chapter, 
the phase angle becomes more lagging as the 
frequency increases.

 9. The all-pass response has a magnitude of unity 
at all frequencies but produces a phase shift of 
360° as a function of frequency (Problem P14.38).

 10. The responses are interrelated. For example, 
the all-pass response is the bandpass response 

subtracted from the bandstop response 
(Problem P14.38). The bandstop response is the 
sum of the low-pass and high-pass responses.

 11. Interchanging s and ω0 changes a low-pass 
response to a high-pass response and con-
versely. This is equivalent to interchanging 
inductors and capacitors. For if we consider 

w0
2 1=

L Ck m
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L and C is equivalent to replacing the imped-
ance sLk by an impedance 1/sCk and replacing 
sCm by 1/sLm. The expression w0
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, where the expres-

sion for w0
2 becomes 1/L Cm k. It is seen that inter-

changing L and C is equivalent to interchanging 
w0

2 2/s  and s2
0
2/w , that is, interchanging s and ω0.

 12. The response of a circuit can be a combination 
of the prototypical responses of Table 14.3, as 
illustrated by the problems at the end of this 
chapter.

Primal Exercise 14.24

Specify the transfer function of a bandpass filter that 
has ω0 = 5 rad/s, Q = 1, and a maximum passband 
gain of 2.

Ans. 10
5 252

s
s s+ +

.

Primal Exercise 14.25

The transfer function of a filter is of the form As
s As B2 + +

, 
where s = jω and A and B depend on circuit parameters 
but not on ω. Determine B if the half-power frequencies 
are 20 and 45 krad/s.
Ans. 900 krad2/s2.

Exercise 14.26

Based on items 1 and 3 of Section 14.9, derive the pro-
totypical responses in terms of s for first-order filters. 
Compare to Equations 14.14 and 14.23. Note that inter-
changing s and the 3 dB  cutoff frequency changes  a low-
pass response  to a high-pass response, and conversely.

Ans. L
s

P
cl

cl
: ;
w
w+  

H
s

s
P

ch
: .
+w

TABLE 14.3

Prototypical, Second-Order Responses
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Learning Checklist: What Should 
Be Learned from This Chapter

• The transfer function H(jω) in the frequency 
domain is the ratio of the phasor of the des-
ignated output to the phasor of a single input 
applied to the filter:

 1. As a ratio of two phasors, H(jω) has a mag-
nitude and phase angle, both of which are, 
in general, functions of frequency.

 2. H(jω) is derived under steady-state sinusoi-
dal conditions, with independent sources 
present only at the input of the filter.

• There are four basic frequency responses: 
low pass, high pass, bandpass, and bandstop. 
The range of frequencies over which there 
is little or no attenuation between input and 
output is the passband, whereas the range of 
frequencies over which there is considerable 
 attenuation between input and output is the 
stopband.

• The basic frequency responses are interrelated 
in the sense that some responses can be derived 
from other responses through addition, sub-
traction, and multiplication or by complement-
ing the normalized response with respect to 
unity.

• The frequency response of a first-order filter is 
either low pass or high pass, the variation of the 
response with frequency being due to the fre-
quency-dependent reactance of energy storage 
elements.

• In logarithmic plots,

 1. The plot of y axn=  is a straight line of slope n; 
a shifts the line vertically, without affecting 
its slope.

 2. Equal spacing along a logarithmic axis is 
equivalent to equal ratios of the variable 
involved.

• In Bode magnitude plots, the horizontal axis is 
labeled in terms of ω but scaled logarithmically 
as log10ω. The vertical axis is labeled and scaled 
linearly as 20log10|H(jω)| dB, which is the dB 
value of |H(jω)|. In Bode phase plots, the hori-
zontal axis is the same as in the Bode magnitude 
plots, whereas the vertical axis is the phase shift 
in degrees.

• A characteristic feature of Bode plots is that 
they can be approximated over some frequency 

ranges by straight-line asymptotes. First-order, 
low-pass, and high-pass responses have a hor-
izontal-line asymptote over the passband. The 
asymptote in the stopband is a line of slope 
−20 dB/decade in the case of a low-pass filter 
and of slope +20 dB/decade in the case of a 
high-pass filter.

• The points of intersection of asymptotes of Bode 
plots are corner frequencies. In the case of first-
order filters, the corner frequency is also the 
3 dB cutoff frequency, at which the magnitude 
of the transfer function is 1 2/  of its limiting, 
maximum value in the passband. In all cases, 
the 3 dB cutoff frequency is synonymous with 
the half-power frequency, at which the power 
delivered to a resistive load at the output of the 
filter is one-half the maximum power delivered 
to the same load at the limiting maximum value 
in the passband.

• Second-order responses are more varied and 
can be low pass, high pass, bandpass, or band-
stop. The first three types of response show 
pronounced peaking or resonance when the 
damping is small.

• A second-order response can be obtained from 
two independent energy storage elements of 
the same type, that is, elements that cannot be 
combined into a single element. However, Q of 
these circuits does not exceed 0.5.

• In a series RLC circuit, the sum of the inductive 
and capacitive reactances is zero at the resonant 
frequency ω0 so that the series combination of 
L and C acts as a short circuit. In a parallel GCL 
circuit, the sum of the inductive and capacitive 
susceptances is zero at the resonant frequency 
ω0 so that the parallel combination of L and C 
acts as an open circuit.

• A bandpass response can result from cas-
cading a low-pass response and a high-pass 
response. A bandstop response can result from 
the summation of a low-pass and a high-pass 
response.

• The 3 dB BW of bandpass and bandstop circuits 
equals ω0/Q. The higher the Q, the narrower 
the BW for a given ω0, where Q depends on the 
power dissipated in the circuit, relative to the 
maximum energy store.

• w0 1= / LC  for both series RLC circuits and par-
allel GCL circuits. In a series circuit, Q = ω0L/R = 
1/ω0CR. In a parallel circuit, Qp = ω0CpRp = 
Rp/ω0Lp.
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• In all prototypical second-order circuits, the 
denominator is of the form s Q s2

0 0
2w w/( ) + . In 

the case of bandpass and bandstop responses, 
ω0/Q is the BW.

• Interchanging L and C in a low-pass, second-
order circuit changes the response to high pass 
and conversely.

Problem-Solving Tips

 1. Always determine how a filter circuit behaves at 
ω = 0, as ω → ∞, and at the resonant frequency 
in the case of second-order circuits.

 2. In determining the phase response, retain 
the signs of the imaginary and real parts, 
whose ratio is the tangent of the phase angle, 
so as to locate the phase angle in the correct 
quadrant.

Problems

Verify solutions by PSpice simulation.

First-Order Responses

P14.1 Given the transfer function H j
j

w
w

( ) =
+

10
10

7

6 , sketch 

the magnitude Bode plot and determine the output 
voltage as a function of time, when the input voltage is 
0.1sinωt, where (a) w = ´0 3 106. /rad s, (b) w = 106 rad/s, 
and (c) w = ´3 106 rad/s.

 Ans. (a) 0.958 sin(0.3 × 106t − 16.7°) V; (b) 0.707 
sin(106t − 45°) V; (c) 0.316sin(3 × 106t − 71.6°) V.

P14.2 An RC low-pass filter is required having a 3 dB cutoff 
frequency of 500 Hz, using a 50 nF capacitor. Determine 
(a) R and (b) the transfer function, and specify where 
the output voltage is taken.

 Ans. (a) 6366 Ω; (b) 3141.6/(3141.6 + jω), the output 
voltage being across the capacitor.

P14.3 Suppose that the filter in the preceding problem is 
loaded with a resistor having the same value of R. 
Determine (a) the 3 dB cutoff frequency in rad/s, 
(b)  the transfer function, and (c) the passband gain 
at ω = 0.

 Ans. (a) 6283.2 rad/s; (b) 3141.6/(6283.2 + jω); 
(c) 1/2.

P14.4 Given a low-pass RL filter having R = 1 kΩ and L = 20 
mH. Determine (a) the 3 dB cutoff frequency in krad/s 
and (b) the low-pass transfer function.

 Ans. (a) 50 krad/s; (b) 5 × 104/(5 × 104 + jω).

P14.5 Determine, for the filter in Figure P14.5, (a) the transfer 
function, (b) the 3 dB cutoff frequency in rad/s, (c) the 
magnitude of the gain and the phase shift as a func-
tion of frequency, and (d) the maximum gain in the 
passband.

 Ans. (a) j3ω/(1 + j9ω); (b) 1/9 rad/s; (c) 3 1 81 2w w/ + , 
90° − tan−1(9ω); (d) 1/3 as ω → ∞.

P14.6 Determine, for the filter in Figure P14.6, (a) the transfer 
function, (b) the 3 dB cutoff frequency in rad/s, (c) the 
magnitude of the gain and the phase shift as a func-
tion of frequency, and (d) the maximum gain in the 
passband.

 Ans. (a) j0.04ω/(160 + j0.2ω); (b) 800 rad/s; (c) 

w w/ 800
2 2( ) + , 90° − tan−1(ω/800); (d) 0.2 as ω → ∞.

P14.7 Determine, for the filter in Figure P14.7, (a) the transfer 
function VO(jω)/ISRC(jω), (b) the 3 dB cutoff frequency 
in krad/s, (c) the magnitude of the gain and the phase 
shift as a function of frequency, and (d) the maximum 
gain in the passband.

 Ans. (a) 5 10 13´ +( )/ /jw V A, ω in krad/s; (b) 1 krad/s; 

(c) 5 10 13 2´ +/ w , −tan−1ω; (d) 5 × 103 as ω → 0.
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P14.8 Repeat the preceding problem, assuming VO(jω) 
is taken across the 5 kΩ resistor in series with the 
capacitor.

 Ans. (a) 2.5 × 103jω/(1 + jω) V/A, ω in krad/s; (b) 

1 krad/s; (c) 2 5 10 13 2. /´ +w w , 90° − tan−1ω (d) 2.5 × 103 
as ω → ∞.

P14.9 Determine, for the filter in Figure P14.9, (a) the transfer 
function VO(jω)/VSRC(jω), (b) the 3 dB cutoff frequency 
in Mrad/s, (c) the magnitude of the gain and the phase 
shift as a function of frequency, and (d) the maximum 
gain in the passband.

 Ans. (a) 0.5/(1 + j40ω), ω is in Mrad/s; (b) 25 krad/s; 

(c) 0 5 1 40
2

. / + ( )w , −tan−1(40ω); (d) 0.5 as ω → 0.

P14.10 Repeat the preceding problem with VO(jω) taken across 
the 10 kΩ resistor.

 Ans. (a) j40ω/(1 + j40ω), ω is in Mrad/s; (b) 25 krad/s; 

(c) 40 1 40
2w w/ + ( ) , 90° − tan−1(40ω); (d) 1 as ω → ∞.

P14.11 Determine, for the filter in Figure P14.11, (a) the trans-
fer function VO(jω)/VSRC(jω), (b) the 3 dB cutoff fre-
quency in krad/s, (c) the magnitude of the gain and 
the phase shift as a function of frequency, and (d) the 
maximum gain in the passband.

 Ans. (a) j2ω/(1 + j1.8ω), ω is in krad/s; (b) 5/9 krad/s; 

(c) 2 1 1 8
2w w/ .+ ( ) , 90° − tan−1(1.8ω); (d) 10/9 as ω → ∞.

P14.12 Repeat the preceding problem with the capacitor 
replaced by a 0.1 H inductor.

 Ans. (a) (10/9)/(1 + jω/180) V/A, ω is in krad/s; (b) 

180 krad/s; (c) 10 9 1 180
2

/ / /( ) + ( )jw , −tan−1(jω/180); 
(d) 10/9 as ω → 0.

P14.13 (a) Determine Norton’s equivalent circuit (NEC) seen 
by the resistor in Figure P14.13, (b) IO(jω), and (c) the 
3 dB cutoff frequency.

 Ans. (a) 2 A in parallel with 2/3 μF; (b) 2/(1 + jω/1500) A, 
ω is in rad/s; (c) 1.5 krad/s.

P14.14 Repeat the preceding problem assuming the capacitors 
are replaced by inductors, the μF units being replaced 
by H units.

 Ans. (a) 2 A is parallel with 3/4 H; (b) −j1.5ω/(1000 + 
j0.75ω) A , ω is in rad/s; (c) 4/3 krad/s.

P14.15 Determine, for the filter in Figure P14.15, (a) the trans-
fer function VO(jω)/ISRC(jω), (b) the 3 dB cutoff fre-
quency in krad/s, (c) the magnitude of the gain and 
the phase angle as a function of frequency, and (d) the 
maximum gain in the passband.

 Ans. (a) 2 × 103/(1 + j0.09ω) V/A, ω is in krad/s; (b) 

100/9 krad/s; (c) 2 10 1 0 093 2´ + ( )/ . w , −tan−1(0.09ω); 
(d) 2 × 103 as ω → 0.

P14.16 Determine, for the filter in Figure P14.16, (a) the trans-
fer function VO(jω)/VSRC(jω), (b) the 3 dB cutoff fre-
quency in krad/s, (c) the magnitude of the gain and 
the phase shift as a function of frequency, and (d) the 
maximum gain in the passband.

 Ans. (a) j5 × 10–5ω/(1 + j3 × 10−4ω), ω is in rad/s; 

(b) 10/3 krad/s; (c) 5 10 1 3 105 4 2
´ + ´( )- -w w/ , 90° − 

tan−1(3 × 10−4ω); (d) 1/6 as ω → ∞.

P14.17 Repeat the preceding problem with the inductor 
replaced by a 50 nF capacitor.

 Ans. (a) (1/6)/(1 + jω25/3), ω is in Mrad/s; (b) 120 krad/s; 

(c) 1 6 1 25 3
2

/ / /( ) + ( )w , −tan−1(25ω/3); (d) 1/6 as ω → 0.
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P14.18 Determine, for the filter in Figure P14.18, (a) the trans-
fer function VO(jω)/VSRC(jω), (b) the 3 dB cutoff fre-
quency in krad/s, (c) the magnitude of the gain and 
the phase shift as a function of frequency, and (d) the 
maximum gain in the passband.

 Ans. (a) 0 8 1 0 04. / .+( )j w , ω is in krad/s; (b) 25 krad/s; 

(c) 0 8 1 0 04
2

. / .+ ( )w , −tan−1(0.04ω); (d) 0.8 as ω → 0.

P14.19 Repeat the preceding problem with the capacitor 
replaced by a 50 mH inductor.

 Ans. (a) j0.05ω/(1 + jω/16), ω is in krad/s; (b) 

16  krad/s; (c) 0 05 1 16
2

. / /w w+ ( ) , 90° − tan−1(ω/16); 
(d) 0.8 as ω → ∞.

P14.20 Reduce the circuit of Figure P14.20 to a first-order cir-
cuit and specify the values of the circuit elements.

 Ans. 5 Ω in series with 1/6 μF.

P14.21 Determine the transfer functions VC(jω)/ISRC(jω) and 
VL(jω)/ISRC(jω) in Figure P14.21. Note that each is a 
first-order transfer function that is independent of the 
parameters of the other subcircuit.

 Ans. R1/(1 + jωCR1) V/A, −jωLR2/(R2 + jωL) V/A

P14.22 Determine the transfer functions I1(jω)/VSRC(jω) and 
I2(jω)/VSRC(jω) in Figure  P14.22. Note that each is a 
first-order transfer function that is independent of the 
parameters of the other subcircuit.

 Ans. jωC/(1 + jωCR1) A/V, 1/(R2 + jωL) A/V.

P14.23 The LF and HF asymptotes of the response |VO(jω)/ 
VSRC(jω)| in Figure P14.23 intersect at (1 krad/s, 
−12 dB). Determine R2.

 Ans. 25.12 Ω.

P14.24 A low-pass, first-order transfer function H1(jω) has a 
maximum gain in the passband of −2 dB and a cor-
ner frequency of 50 kHz. Another low-pass, first-order 
transfer function H2(jω) has a magnitude that is 8 
times that of H1(jω) and a corner frequency of 1 kHz. 
Determine |H1(jω)H2(jω)| in dB when it falls 3 dB 
below its maximum value at low frequencies.

 Ans. 11 dB.

Second-Order Responses

P14.25 A series RLC circuit has R = 1 kΩ and half-power 
 frequencies of 20 and 100 kHz. Determine L and C.

 Ans. 1.99 mH, 0.251 μF.

P14.26 A series RLC circuit has a resonant frequency of 
150  kHz and a BW of 75 kHz. Determine the half-
power frequencies.

 Ans. 117.1, 192.1 kHz.

P14.27 For the circuit of Figure P14.27, determine (a) the trans-
fer function VO(s)/VSRC(s), where s = jω, (b) ω0, (c) Q, 
(d) BW, and (e) vO(t) if vSRC(t) = 450cos(ω0t) V.

 
Ans. (a) 4

5 6252

s
s s+ +

, s is in krad/s; (b) 25 krad/s; 

(c) 5; (d) 5 krad/s; (e) 360cos(ω0t) V.
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P14.28 Determine Rx in Figure P14.28 so that the BW does not 
exceed 750 rad/s.

 Ans. Rx ≤ 500 Ω.

P14.29 Determine in Figure P14.29 (a) the maximum value of 
the transfer function |VO(jω)/ISRC(jω)|; (b) Q and BW.

 Ans. (a) 25 V/A; (b) 3.125, 3.2 krad/s.

P14.30 Determine R, L, and C in Figure P14.30 so that the 
maximum response is 1 V, ω0 = 100 krad/s, and BW = 
4 krad/s.

 Ans. R = 10 kΩ, L = 4 mH, C = 25 nF.

P14.31 Determine ω0 and Q in Figure P14.31.

 Ans. 100 krad/s, 10.

P14.32 Determine ω0 and Q in Figure P14.32.

 Ans. 1.1 Mrad/s, 11.

P14.33 Determine R and L in Figure P14.33 so that the reso-
nant frequency is 4 kHz and Q = 5.

 Ans. 15.92 Ω, 3.17 mH.

P14.34 Determine in Figure P14.34 (a) the minimum value of 
the transfer function |VO(jω)/VSRC(jω)|; (b) Q and BW.

 Ans. (a) 1/15; (b) 80, 12.5 rad/s.

P14.35 Determine Q and BW in Figure P14.35.

 Ans. 15, 10.61 kHz.

P14.36 If a 4 MΩ resistor is connected in parallel with L and 
C in Figure P14.36, determine the percentage change 
in BW.

 Ans. BW increases by 25%.

P14.37 For the circuit of Figure P14.37, determine (a) ω0, (b) Q, 
and (c) VO(jω0) if VSRC(jω0) = 1 V.

 Ans. (a) 104 rad/s; (b) 8; (c) 0.8 V.
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P14.38 (a) Show that the response VO(jω)/VSRC(jω) in Figure 
P14.38 is an all-pass response. (b) Determine the 
 frequency at which the phase shift is 180°, assuming 
R = 10 kΩ, L = 1 μH, and C = 1 μF.

 Ans. 1 Mrad/s.

P14.39 Determine the frequency at which the response 
VO(jω)/VI(jω) in Figure P14.39 is a maximum.

 Ans. 104 rad/s.

P14.40 Determine the frequency at which VO(jω) = 0 in Figure 
P14.40.

 Ans. 1 2/ /Mrad s.

P14.41 Determine L1 and L2 in Figure P14.41 so that the mag-
nitude of the transfer function VO(jω)/VI(jω) is unity at 
1 Mrad/s and zero at 0.5 Mrad/s.

 Ans. L1 = 0.1 mH, L2 = 0.3 mH.

P14.42 Determine (a) the nature of the response in Figure 
P14.42, (b) ω0, and (c) BW.

 Ans. (a) Bandpass; (b) 1 krad/s; (c) 3 krad/s.
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P14.43 Determine K, the gain of the op amp stage in Figure 
P14.43 so that the maximum magnitude of the response 
VO(jω)/VSRC(jω) is 20 dB.

 Ans. 20.

P14.44  (a)  Show that the response VO(jω)/VSRC(jω) in Figure 
P14.44 is the product of a first-order low-pass 
response and a first-order high-pass response.

 (b)  Choose Rf and Cf so that the two first-order 
responses have the same 3 dB cutoff frequency, and 
the maximum magnitude of the overall response is 
0 dB, assuming R = 2 kΩ and C = 0.5 μF.

 (c) Specify Q of the overall response.

 Ans. (b) Rf = 8 kΩ, Cf = 0.125 μF; (c) 0.5.

P14.45 Given the circuit of Figure P14.45, where k is a positive 
constant. (a) Derive the transfer function VO(s)/VSRC(s); 
(b) specify the type of response and derive the expres-
sion for Q; (c) determine Q when (i) k = 1 and (ii) k is 
very large. Explain the difference in Q in the two cases.

 
Ans. (a) 

V s
V s C R s

s
CR

k
C R

SRC

0
2 2

2
2 2

1 1

2 1
1

( )
( )

=
+ +( ) +/

; (b) 

low pass, Q
k

=
+
1

2 1/
; (c) (i) 1/3; (ii) 0.5 because the 

second circuit does not load the first.

P14.46 Given the circuit of Figure P14.46, where k is a positive 
constant, (a) derive the transfer function IO(s)/ISRC(s); 
(b) specify the type of response and derive the expres-
sion for Q; (c) determine Q when (i) k = 1 and (ii) k is 
very large. Explain the difference in Q in the two cases. 

Note that the circuit is the dual of that of the preceding 
problem.
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( )

=
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; (b) low 

pass,
 
Q

k
=

+
1

2 1/
; (c) (i) 1/3; (b) 0.5 because the second 

circuit does not load the first.

P14.47 (a) Derive H(jω) = VO(jω)/VSRC(jω) in Figure P14.47 
and specify the type of response; (b) determine the 
maximum value of H(jω) and the frequency at which 
it occurs; (c) determine the 3 dB BW; (d) derive the 
expressions for the low-frequency and high-frequency 
asymptotes and specify their slopes in dB/decade.

 Ans. (a) 1
3

300
300 2 102 4

s
s s+ + ´

, bandpass; (b) 1/3 at 

w0 100 2= rad/s; (c) 300 rad/s; (d) |H(jω)| = ω/200, 
of slope +20 dB/decade, and |H(jω)| = 100/ω, of slope 
−20 dB/decade.

P14.48 Determine the 3 dB BW of the response VO(jω)/ISRC(jω) 
in Figure P14.48.

 Ans. 5 rad/s.

P14.49 Determine the maximum magnitude of VO(jω) in 
Figure P14.49 and the phase angle at this magnitude.

 Ans. 1∠180° V.
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P14.50 Determine the maximum magnitude of the transfer 
function VO(jω)/VSRC(jω) in dB in Figure P14.50.

 Ans. 40 dB.

P14.51 C = 2/3 nF in Figure P14.51. (a) Derive NEC looking 
into terminals ‘ab’; (b) derive the transfer function 
VO(s)/VSRC(s), expressing it in standard form in terms 
of s = jω. (c) From the transfer function, determine the 
maximum gain, ω0, and Q.

 Ans. (a) Norton’s capacitance: 1 nF, Iab  =  IN = (1/3)jωVSRC(jω); 

(b)
 

1
3 2 10 10

2

2 6 12

s
s s+ ´( ) +

; (c) 1/3, 1 Mrad/s, 0.5.

P14.52 (a)  Determine R in Figure P14.52 so that Q = 10, assum-
ing C = 75 nF; (b) derive the transfer function IO(jω)/
ISRC(jω); (c) characterize the response in terms of the 
basic responses of second-order circuits; (d) deter-
mine the gain in dB as ω → 0 and at ω = ω0.

 
Ans. (a) 1 kΩ; (b) 1

3
10 10

10 10

4 10

2 4 10

s
s s

+
+ +

; (c) the response 

is the sum of a bandpass and a low-pass response; 
(d) −9.54 and 10.5 dB.

Transfer Functions

P14.53 Given
 
H s

s s
( ) =

+ +
10

1600 10

6

2 6 , determine the  maximum 

gain in dB at ω = 103 rad/s.

 Ans. −4.1 dB.

P14.54 Given H s
s

s s
( ) =

+ +
35

50 36002 , determine the maximum 

of |H(s)|.

 Ans. 0.7.

P14.55 Given H s
s

s s
( ) = +

+ +

2

2

3600
50 3600

, determine the smaller 

3 dB cutoff frequency.

 Ans. 40 rad/s.

P14.56 Given H s
s

s s
( ) =

+ +
100

100 102 8 , determine Q and BW.

 Ans. 100, 100 rad/s.

P14.57 Given the transfer function 10
1002

0
2

s
s s+ +w

, determine 

Q if the product of the two 3 dB cutoff frequencies is 
106 (rad/s)2.

 Ans. 10.

P14.58 Given H s
s s
s s

( ) = + +
+ +

4 1000 100
5 500 125

2

2 , determine the maxi-

mum response in dB.

 Ans. 6 dB.

P14.59 Determine the transfer function whose asymptotic 
Bode magnitude plot is shown in Figure P14.59.

 Ans.
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10 200
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s
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.
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P14.60 Given the asymptotic Bode magnitude plot of Figure 
P14.60, determine (a) the X dB level and (b) the transfer 
function represented by this asymptotic plot.

 

Ans. (a) 0 dB; (b) 
s s

s s s

+( )´
+( ) +( ) +( )

10 10

100 10 10

5 6

4 6
.

P14.61 Determine the transfer function whose asymptotic 
Bode magnitude plot is shown in Figure P14.61.

 
Ans. s s

s
+( )
+( )
25

25 2
.

Design Problems

P14.62 A high-pass filter is to be used to reduce the drift, 
that is, the slow variation with time, of a biological 
signal applied to an electronic instrument having an 
input resistance of 1 MΩ and negligible input capaci-
tance. If a low-frequency signal of 0.25 Hz is not to be 
attenuated by more than 3 dB, determine the smallest 
capacitance that must be connected at the input of the 
instrument.

 Ans. 0.64 μF.

P14.63 In high-quality sound reproduction, different loud-
speakers handle different ranges of audio frequencies. 
A woofer loudspeaker reproduces lower audio fre-
quencies, up to about 3 kHz, whereas a tweeter loud-
speaker reproduces audio frequencies in the range 
3 kHz to about 20 kHz. The output of the audio ampli-
fier is applied to the loudspeakers through a crossover 
circuit that directs the appropriate range of frequen-
cies to each loudspeaker. In its simplest form, this 
circuit consists of first-order low-pass and high-pass 
filters that feed the woofer and tweeter, respectively, 
as in Figure P14.63. The responses of the two filters 
cross at the crossover frequency fc, which is the −3 dB 
frequency of each filter. Determine L and C, assuming 
fc = 2.5 kHz and that each loudspeaker presents a pure 
resistance of 8 Ω.

 Ans. Approximately 0.5 mH and 8 μF.

P14.64 Determine L and C in Figure P14.64 so as to have a 
bandpass filter having a resonant frequency of 2 kHz 
and a BW of 500 Hz.

 Ans. 4.97 mH, 1.27 μF.

Audio
amplifier

Tweeter

Woofer

C

L

FIGURE P14.63 
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P14.65 A bandpass, series RLC circuit is required having 
ω0 = 106 rad/s, BW = 104 rad/s, L = 1 mH, and a maxi-
mum gain of 0.5. Implement the circuit using 5 Ω resis-
tors, 2 mH inductors, and 2 nF capacitors.

 Ans. The circuit consists of a series combination of 
two 2 mH inductors in parallel, two 2 nF capacitors 
in series, and two 5 Ω resistors in series, across one of 
which the output is taken.

P14.66 In touch-tone telephone dialing, the push buttons are 
arranged in four rows and three columns, with buttons 
in each row arranged to generate one of four frequen-
cies in a low-frequency group and buttons in each col-
umn arranged to generate one of three frequencies in 
a high-frequency group, as illustrated in Figure P14.66. 
In this way, each button is identified by one of seven 
combinations of a low frequency in the low-frequency 
group and a high frequency in the high-frequency 
group. Pressing the number 5 button, for example, 
generates tones of frequencies 770 and 1336  Hz. The 
frequencies for each button are discriminated from 
neighboring circuits by bandpass filters. In the case 
of the number 5 button, the center frequency of the 
low-frequency bandpass filter is 770 Hz, whereas its 
3 dB cutoff frequencies are 697 and 852 Hz, which are 
the center frequencies for the bandpass filters for the 
neighboring frequency on each side. Similarly, the cen-
ter frequency of the high-frequency bandpass filter is 
1336 Hz, whereas its 3 dB cutoff frequencies are 1209 
and 1477 Hz. Determine L and C for a series RLC  circuit 
that discriminates the frequencies in the low-frequency 
group, considering the outermost frequencies of this 

group to be 3 dB cutoff frequencies, and assuming R in 
standard telephone circuits is 600 Ω.

 Ans. L = 0.39 H, C = 0.1 μF.

Probing Further

P14.67 Consider the series RLC circuit of Figure 14.15. Let the 
current at resonance be i = Imcosω0t A. (a) Show that 

the peak energy stored in the inductor, w
L

IP m=
2

2 ,
 
is the 

same as the peak energy 
1

2 0
2

2

w C
Im stored in the capacitor; 

(b) show that the average energy dissipated per cycle 

in the resistor is
 

2 1
20

2p
w

RIm
æ
è
ç

ö
ø
÷ 

and the average energy 

dissipated per radian of the cycle is
 
w RID m= æ

è
ç

ö
ø
÷

1 1
20

2

w
;
 

(c) deduce that Q = wP/wD.

P14.68 Show that the peaked, second-order low-pass response 
Q <( )1 2/  crosses the 0 dB axis y =( )1  at a frequency 

w w0
22 1 1 2 2- ( )( ) =/ maxQ .

P14.69 Show that the second-order low-pass response at ω0 is 
H j QLP w0( ) = .

P14.70 Show that for the low-pass response, the 
half-power frequency is given by w1 2/ = 

w0
2

2
21 1 2 1 1 1 2- ( )( ) + + - ( )( )/ /Q Q . Verify this result 

for the cases of critical damping (Q = 0.5) and maxi-
mally flat response Q =( )1 2/ .

P14.71 Show that if the low-pass response is peaked, the 
−3  dB frequencies with respect to the peak are given 

by w wc Q Q Q1 0
2 21 1 2 1 1 1 4= - ( )( ) - ( ) - ( )/ / /  and  wc2 = 

w0
2 21 1 2 1 1 1 4- ( )( ) + ( ) - ( )/ / /Q Q Q . Verify that if Q is 

large, the BW is approximately ω0/Q, as for the band-
pass response.

P14.72 Consider a plot of the phase angle of Equation 14.53 
as a function of log10u. Show that the slope at w w= 0 
is −4.6Q rad/decade. Deduce that a line of this slope 

intersects the 0° line at u u
Q Q

1
9 2

1
9 210 10= =

- -
p p
. .,  and 

intersects the −180° line at u u
Q Q

2
9 2

2
9 210 10= =

p p

. ., . Note 
that such a line may be used to approximate the Bode 
phase plot.

P14.73 Consider the relation w0 1= / LC . Show that 
d dC

C
w
w

0

0

1
2

= - . Note that this means that a 1% increase 

in C deceases w0 by 0.5%.

1209 Hz 1336 Hz 1477 Hz
High-frequency group

L
ow

-f
re

qu
en

cy
 g

ro
up

697 Hz

770 Hz

852 Hz

941 Hz

1 ABC
2

DEF
3

GHI
4

JKL
5

MNO
6

PQRS
7

TUV
8

WXYZ
9

OPER
0 #*

FIGURE P14.66 



http://taylorandfrancis.com


445

Objective and Overview

Having considered the basic first-order and second-
order frequency responses in Chapter 14, the present 
chapter focuses on two types of filters that are of consid-
erable practical importance, namely, Butterworth and 
active filters.

Butterworth filters characteristically have a maximally 
flat response in the passband, which makes them par-
ticularly useful as low-pass and high-pass filters. Active 
filters, as their name implies, incorporate an active ele-
ment, usually in the form of an operational amplifier, 
previously discussed in Chapter 13. These filters are also 
commonly used, because the op amp provides many 
advantages, including the convenience of using only 
capacitors and resistors, with a Q that is not limited to 
0.5 or less, as is the case with passive RC circuits.

This chapter begins by explaining the procedure of 
scaling, which focuses on designing a particular type 
of filter in normalized form. The nature of Butterworth 
filters is then explained and examples are given of the 
design of such filters. First-order active filters are intro-
duced and their responses analyzed. Second-order 
active filters of various types, using a single op amp in 
the noninverting or inverting configuration, are then 
presented. The chapter ends with a discussion of a 
 second-order universal active filter that can implement 
any of the second-order responses.

15.1  Scaling

Scaling provides a convenient, generalized, and system-
atic procedure for implementing a given type of passive 
or active filter. The type of filter under consideration is 
first designed in a normalized form, based on a 3 dB cut-
off frequency ωc, or a center frequency ω0, of 1  rad/s, 
as well as any conditions imposed by the nature of the 
filter. Scaling is then applied to implement the filter in 
the form having the desired ωc or ω0 and any desired 
constraints, such as the value of a capacitance, induc-
tance, or resistance.

Consider, for example, a normalized second-
order bandpass filter having ω0  =  1  rad/s. To have 
ω0  =  1  rad/s, it is convenient to assume normalized 
values of L = 1 H and C = 1 F, since these values give 

w0 1 1= =/ rad/sLC . The normalized value of R cannot 
also be 1, because this would constrain Q = ω0L/R for a 
series circuit, or Qp = ω0CR for a parallel circuit, to be 1. 
Hence, the value of R in the normalized filter depends 
on the desired Q. If Q = 10, for example, then R = 0.1 Ω 
for the series circuit. Based on these normalized val-
ues, scaling can be applied to derive a filter having any 
desired ω0, such as 100 krad/s, and any particular value 
of L, C, or R, such as L = 1 mH.

It is convenient to consider that scaling is applied 
in two steps: (1) multiplying the magnitudes of the 
impedances in the circuit by a magnitude scaling fac-
tor, without changing the frequency, and (2) multiply-
ing the frequency by a frequency scaling factor, without 
changing the magnitudes of the impedances. When 
both impedance magnitudes and frequency are to be 
changed, both scaling factors are applied.

In scaling impedance magnitudes, the object is to 
multiply these magnitudes by a positive, real scale fac-
tor km, which could be less than or greater than unity, 
without changing the frequency. To implement this, R 
is multiplied by km. L is also multiplied by km so that 
the impedance magnitude ωL is multiplied by km, with 
ω unchanged. C must be divided by km so that the 
impedance magnitude 1/ωC is multiplied by km, with ω 
unchanged. Thus,

 R k R L k L C C km m m m m m¢ = ¢ = ¢ =; ; and /  (15.1)

where unprimed parameters denote the initial nor-
malized values and primed parameters having an m 
subscript denote the scaled values in accordance with 
impedance magnitude scaling.

Note that cutoff frequencies such as R/L or 1/CR, or 
center frequencies such as 1/ LC , are not affected by 
impedance magnitude scaling, since km cancels out from 
these expressions. This justifies considering scaling of 
impedance magnitudes independently of changing the 
frequency.

In frequency scaling, frequencies are changed without 
affecting magnitudes of impedances. Since resistance is 
not a function of frequency, it is not affected by frequency 
scaling. If the frequency is multiplied by a positive, real 
scale factor kf, without changing the magnitude of the 
impedance ωL, then L must be divided by kf. Similarly, 

15
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if the frequency is multiplied by kf, without changing the 
magnitude of the impedance 1/ωC, then C must also be 
divided by kf. If ω′ = kf ω is the scaled frequency, then in 
frequency scaling alone,

 ¢ = ¢ = ¢ = ¢ =w wk R R L L k C C kf f f f f f, , ,/ and /  (15.2)

where unprimed parameters denote the initial normalized 
values and primed parameters having an f subscript denote 
the scaled values in accordance with frequency scaling.

If both magnitude and frequency scaling are applied, 
then the scaling coefficients for each of the parameters in 
Equations 15.1 and 15.2 are multiplied together to give

 
¢ ¢ ¢ ¢= = = =R k R k L

k
k

L C
k k

Cm f
m

f m f
, , ,w w and

1

 
(15.3)

where unprimed parameters denote the initial normal-
ized values and primed parameters without a subscript 
denote the scaled values in accordance with both imped-
ance magnitude scaling and frequency scaling.

The bandwidth BW, being a frequency, scales like ω. 
Q = ω0/BW = ω0L/R, or Qp = ω0CpRp, are unchanged by 
frequency or magnitude scaling, since they are dimen-
sionless. Thus,

 BW BW, and( )¢ = ´ ¢ = ¢ =k Q Q Q Qf p,  (15.4)

Consider, for example, the normalized, series RLC, 
bandpass filter having ω0  =  1  rad/s, L  =  1 H, C  =  1  F, 
Q  =  10, in which case R  =  ω0L/Q  =  0.1  Ω, as explained 
previously. Suppose that a filter of this type is required to 
have ω0 = 100 krad/s and L = 1 mH. Applying frequency 
scaling to ω0 gives kf  =  (100  krad/s)/(1  rad/s)  =  105. 
To determine km when both impedance magnitude 
and frequency scaling are used, Equation 15.3 is 
applied to L and L′. Thus, km = kfL′/L = (105 × (1 mH)/
(1 H)  =  100. It follows from Equations 15.3 that 
R′ = 100 × (0.1 Ω) = 10 Ω and C′ = (1 F)/(105 × 100) = 0.1 μF. 
It is seen that w0

3 71 10 10 100= ´ =- -/ krad/s, and 
Q  =  ω0L/R  =  105  ×  10−3/10  =  10, or Q  =  1/ω0CR  =  1/
(105 × 10−7 × 10) = 10, as required.

Note that scaling applies to filters of any order and is 
not restricted to normalized filters but can be applied to 
any filter when it is desired to change a parameter value 
or frequency, as illustrated by Exercises 15.3 and 15.4.

Primal Exercise 15.1

Given a first-order, normalized RL filter having R = 1 Ω 
and L  =  1 H, determine the frequency and magni-
tude scaling factors to have a 3 dB cutoff frequency of 
10 krad/s and an inductance of 1 mH.

Ans. kf = 104, km = 10.

Primal Exercise 15.2

Scale the normalized second-order series RLC bandpass 
filter having L = 1 H, C = 1 F, and Q = 10 to have a band-
width of 5 krad/s, using a 50 nF capacitor.

Ans. L′ = 8 mH, R′ = 40 Ω.

Primal Exercise 15.3

Consider a series RLC filter having R = 40 Ω, L = 8 mH, 
and C = 50 nF, which makes ω0 = 50 kHz, Q = 10, and 
BW = 5 kHz. Suppose that the filter is to be modified to 
have R = 1 kΩ and ω0 = 100 kHz. Determine kf, km, the 
scaled values of L′ and C′ and verify that Q remains 
the same.

Ans. kf = 2, km = 25, L′ = 0.1 H, C′ = 1 nF.

Primal Exercise 15.4

Consider the filter of Primal Example 15.3 having R = 40 Ω, 
L = 8 mH, and C = 50 nF, which makes ω0 = 50 kHz, Q = 10, 
and BW = 5 kHz. Suppose that the filter is to be modified 
to have ω0 = 10 kHz, L = 20 mH, and Q = 5. Determine 
km, kf, the scaled values of R′ and C′ and verify that the 
required values are obtained. Note that the frequency 
should first be scaled, which keeps Q the same, and then 
R changed to change Q.

Ans. kf = 0.2, km = 0.5, C′ = 0.5 μF, R = 40 Ω.

15.2  Butterworth Response

The Butterworth response will be illustrated, to begin 
with, using the second-order low-pass response. Recall 
from Section 14.2 that an ideal low-pass filter has unity 
gain in the passband, zero gain in the stopband, with 
an infinitely sharp transition, or roll-off, between the 
two bands. The Bode magnitude plot is as illustrated 
in Figure 15.1a. Referring to Figure 14.28a, consider the 
Bode magnitude plots for Q = 1 2/  and Q = 0.5, repro-
duced in Figure 15.1b. The plot for Q = 1 2/  is maxi-
mally flat in the sense that, if Q > 1 2/ , the plot rises to 
a maximum above the 0 dB line, which means that the 
response is not flat in the passband. On the other hand, 
if Q < 1 2/ , the plot begins to fall below the 0  dB at 
smaller values of ω/ω0 than in the case of Q = 1 2/ . This 
again means that the response is not as flat in the pass-
band as in the case of Q = 1 2/ . We wish to investigate 
the reason for this behavior and hence deduce the form 
of maximally flat responses for filters of order greater 
than second order.
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From Table 14.3, the prototypical, second-order low-
pass response is
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where jω is substituted for s and the numerator and 
denominator are divided by w0

2. It follows that
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(15.6)

where u = ω/ω0, and
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(15.7)

as in Equation 14.54.
It follows from Equation 15.7 that, for the two values 

of Q in Figure 15.1b,

 Q y u u= = + +0 5 2 11
4 2.  (15.8)

 Q y u= = +1 2 12
4/  (15.9)

Table 15.1 lists several values of u in the passband, 
between 0 and 1, in 0.1 increments, and the corre-
sponding values of u2, 2u2, u4, y1, and y2. The key obser-
vation is that the increase in y1 with u, and hence the 
drop in |HLP(jω)| with ω, is dominated in the range 
0 ≤ u ≤ 1 by the term 2u2 and not by the term u4. This is 
because as a fraction, u4 is smaller than u2, particularly 
for small value of u. As a result, y2 increases less rap-
idly with u than y1, resulting in a flatter response in 
the passband for Q = 1 2/ , compared to the response 
for Q = 0.5.

It is seen from Equations 15.6 through 15.9 that for the 
maximally flat, second-order response having Q = 1 2/ ,
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+ ( )  

(15.10)

The same argument can be extended to a response of 
higher order n, in which case the power of ω in the transfer 
function is n and becomes a power of 2n in the magni-
tude response when the real part is squared. This is the 
case with the second-order response, since the power of 
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FIGURE 15.1
(a) Ideal low-pass filter response; (b) second-order Butterworth response and second-order low-pass response having Q = 0.5; (c) second-order 
and fifth-order Butterworth responses.
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ω is 2 in Equation 15.5 and becomes 4, as u4, in Equation 
15.10. The response of order n is then

 

H j
u u
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1

1

1

1
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(15.11)

Such a response has three important features:

 1. When n  =  2 and u  =  0.3, for example, 
y2  =  (1  +  u4)  =  1.0081 (Table 15.1), and 
H jLP2 1 1 0081 0 996w( ) = =/ . . . On the other 
hand, when n = 5, for example, (1 + u10) has 
the same value of 1.0081 if u = 0.618, or more 
than twice the frequency of 0.3. This means 
that the larger the n, the larger the frequency 
is in the passband at which the response is 
at a certain value less than unity. In other 
words, the larger n, the “flatter” the response is 
in the passband.

 2. The high-frequency asymptote, as u  →  ∞, is 
20log10|HLP2(jω)| = −20log10(un) = −20nlog10(u). 
That is, the slope is 20n dB/decade. As n 
increases, not only is the response flatter in the 
passband, but the transition between the passband 
and the stopband is also sharper. The response 
becomes closer to the ideal.

 3. When u  =  1, then u2n  =  1 for all n, 
20 1 2 310log / dB( ) = - . That is, all the responses 
have an attenuation of −3 dB at u = 1, or ω = ω0, 
regardless of n. Hence, ω0 is the 3 dB cutoff fre-
quency or the half-power frequency for all  n. 
It is also the corner frequency, because the 
asymptote −20nlog10(u) is zero at u = 1. In other 
words, the high-frequency asymptote inter-
sects the 0 dB line at ω = ω0. Because of this, ω0 
can  be replaced by ωc, the symbol for a cutoff 
frequency. The responses for n = 2 and n = 5 are 
shown in Figure 15.1c.

Higher-order responses of the form of Equation 15.11 
are indeed possible and are known as Butterworth 
responses. They are based on the Butterworth poly-
nomials given in Table 15.2 for orders up to eight. 

These  polynomials are in normalized form, corre-
sponding to a cutoff frequency of 1  rad/s. The poly-
nomials of order greater than two are expressed as 
products of second-order and first-order power func-
tions, which are appropriate for implementation as a 
cascade of first-order and second-order filters, as will 
be clarified shortly.

To show that these polynomials do give the required 
responses, consider, the first-order Butterworth polyno-
mial, B1(s). Substituting s = jω, B1(jω) = 1 + jω, and

 B j1
21w w( ) = +  (15.12)

which is the same as in the denominator of Equation 
15.11, with n = 1 and u = ω, since ω0 is normalized to 1.

Substituting s =  jω in the expression for the second-
order polynomials gives

 B j j2
21 2w w w( ) = +–  (15.13)

and

 
B j2

2 2 2 41 2 1w w w w( ) = -( ) + = +
 

(15.14)

as in the denominator of Equation 15.10, or Equation 
15.11 with n = 2.

TABLE 15.1

Second-Order Butterworth Response

u 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9

u2 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81
2u2 0.02 0.08 0.18 0.32 0.5 0.72 0.98 1.28 1.62
u4 0.0001 0.0016 0.0081 0.0256 0.0625 0.1296 0.2401 0.4096 0.6561
y1 1.0201 1.0816 1.1881 1.3456 1.5625 1.8496 2.2201 2.6896 3.2761
y2 1.0001 1.0016 1.0081 1.0256 1.0625 1.1296 1.2401 1.4096 1.6561

TABLE 15.2

Normalized Butterworth Polynomials of Order n

n Factors of Polynomial Bn(s)

1 (s + 1)
2 (s2 + 1.414s + 1), where 2 1 414= .
3 (s + 1)(s2 + s + 1)
4 (s2 + 0.765s + 1)(s2 + 1.848s + 1)
5 (s + 1)(s2 + 0.618s + 1)(s2 + 1.618s + 1)
6 (s2 + 0.518s + 1)(s2 + 1.414s + 1)(s2 + 1.932s + 1)
7 (s + 1)(s2 + 0.445s + 1)(s2 + 1.247s + 1)(s2 + 1.802s + 1)
8 (s2 + 0.390s + 1)(s2 + 1.111s + 1)(s2 + 1.663s + 1)(s2 + 1.962s + 1)
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Expanding the third-order polynomial and substitut-
ing s = jω,

 B j s s s j3
3 2 2 22 2 1 1 2 2w w w w( ) = + + + = + ( )– –  (15.15)

and

 
B j3

2 2 2 2 2 61 2 2 1w w w w w( ) = -( ) + -( ) = +
 

(15.16)

as in the denominator Equation 15.11, with n = 3.
In summary, the Butterworth polynomials embody 

the following concept:

Concept: In the expression for the magnitude of a Butterworth 
polynomial of order n, the only term in ω is a term raised to 
the power 2n.

How are these polynomials used in low-pass and high-
pass filters? To answer this question, we will consider 
first-order and second-order responses only, because, in 
practice, higher-order filters are implemented as a cas-
cade of such filters. For a first-order response (n  =  1), 
the magnitude of the normalized, low-pass response is 
given by Equation 15.11, with ω0 = 1 and u = ω, as

 
H jLP1

2

1

1
w

w
( ) =

+  
(15.17)

corresponding to a transfer function

 
H j

j
LP1

1
1

w
w

( ) =
+  

(15.18)

which is the same as Equation 14.14, with ωcl = 1 rad/s. 
That is, an ordinary first-order response is in fact a 
Butterworth response of the first order.

For a second-order response (n  =  2), the magni-
tude of the normalized, low-pass response is given by 
Equation 15.11, with ω0 = 1 and u = ω, is

 
H jLP2

4

1

1
w

w
( ) =

+  
(15.19)

The denominator of Equation 15.19 is |B2(jω)| of 
Equation 15.14, which is the magnitude of B2(jω) of 
Equation 15.13, corresponding to B s s s2

2 2 1( ) = + + . It 
 follows that the denominator of HLP2(s) for a  normalized, 
second-order, Butterworth low-pass response is B2(s). 
Thus,

 
H s

s s
LP2 2

1
2 1

( ) =
+ +  

(15.20)

It follows from Table 15.2 that the normalized Butter
worth polynomial of the second order is the denominator of 
the normalized Butterworth lowpass response.

As for a high-pass response, recall from Table 14.3, 
that the transformation from a low-pass to a high-pass 
filter involves replacing s/ω0 by ω0/s or replacing jω 
by 1/jω in the case of a normalized response having 
ω0 = 1 rad/s. Thus, Equation 15.18 becomes
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(15.21)

and

 

H jHP1
2

1

1 1
w

w
( ) =

+ ( )/  

(15.22)

corresponding to Equations 14.23 and 14.24, with ωch = 
1 rad/s.

Replacing ω by 1/ω in Equation 15.19,
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(15.23)

corresponding to the transfer function

 
H s

s
s s

LP2

2

2 2 1
( ) =

+ +  
(15.24)

which is also obtained by replacing s by 1/s in Equation 
15.20. The denominator of Equation 15.24 is the normalized 
Butterworth polynomial of the second order. This transfer 
function is the same as that of the prototypical high-pass 
response of Table 14.3, with ω0 = 1 rad/s and Q = 1 2/ .

The preceding arguments can be generalized in the 
following concepts:

Concepts:

 1. In a normalized Butterworth, lowpass response of 
order n, the Butterworth polynomial of Table 15.2 
is the denominator of the transfer function, the 
numerator of the transfer function being unity.

 2. In a normalized Butterworth, highpass response of 
order n, (a) the Butterworth polynomial of Table 15.2, 
with s replaced by 1/s, and the numerator of the  transfer 
function being unity, is the denominator of the trans
fer function, or (b) the Butterworth polynomial of Table 
15.2 is the denominator of the transfer function, the 
numerator of the transfer function being sn.

What about bandpass and bandstop filters? Bandpass 
filters having a flat, or nearly flat response, are very 
desirable in many applications. Such responses can be 
derived using a more complicated transformation than 
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that between low-pass and high-pass responses. In 
practice, the required response is commonly obtained 
using magnetically coupled, second-order tuned circuits 
in cascaded amplifier stages, or by “stagger-tuning” 
 second-order tuned circuits in cascaded amplifier stages, 
that is, by having slightly different resonant frequencies 
of these circuits. Bandstop circuits normally have narrow-
band responses in order to reject a particular frequency, 
such as the 50  Hz power frequency, so that bandstop 
Butterworth responses are not normally required.

Although a high-order low-pass or high-pass Butter-
worth response can approach the ideal filter response, 
other types of filters are more efficient in achieving the 
same sharp transition between the passband and the stop-
band but with a lower-order filter, which means having 
fewer components in the circuit. However, this is achieved 
by allowing some “ripple,” or oscillation, in the magni-
tude of the response in the passband, as in Chebyshev 
filters, or in both the passband and the stopband, as in 
elliptic filters.

Primal Exercise 15.5

The low-frequency asymptote of a high-pass Butterworth 
response of maximum gain 9  dB has a slope of 
80 dB/decade and intersects the 9 dB line at a frequency of 
1 kHz. Determine the frequency at which the gain is 6 dB.

Ans. 1 kHz.

Primal Exercise 15.6

Given the transfer function 
s

s s

2

2 2 1+ +
 for a normalized 

second-order Butterworth high-pass filter, determine 
the transfer function of the filter when the frequency is 
scaled to 10 rad/s.

Ans. 
s

s s

2

2 10 2 100+ +
.

Exercise 15.7

A fourth-order Butterworth high-pass filter has a pass-
band gain of 10 and a 3 dB cutoff frequency of 10 kHz. 
Determine the frequency at which the gain is 3 × 10−6.

Ans. 234.0 Hz.

Example 15.1: Second-Order and Third-Order 
Butterworth Low-Pass Filters

It is required to design a low-pass Butterworth filter 
having a cutoff frequency of 100 krad/s, using 50  nF 

capacitors and to implement the filter as (a) a second-
order filter and (b) a third-order filter, both filters having 
a maximum gain of unity in the passband. The transfer 
functions are to be derived and the filters implemented 
using series RLC circuits.

Solution:

 (a) From Table 15.2, B s s s2
2 2 1( ) = + +( ), which means 

that Q = 1 2/  and R L Q= = ´ ´w0 1 1 2/  in the nor-
malized response. To scale the frequency from 1 rad/s 
to 100 krad/s requires kf = 105. To scale C from 1 F to 
50  nF, with frequency scaling, requires km  =  (1  F)/
(kf × 50 nF) = 1/(105 × 50 × 10−9) = 200 (Equation 15.3). 
It follows that L′ = (km/kf) × (1 H) = 200 × 10−5 = 2 mH, 
and R¢ = =200 2 282 8. W. The circuit is implemented 
as in Figure 15.2, the output being taken across the 
capacitor. The transfer function is, from Table 14.9.1, 
with ω0 = 105 rad/s and Q = 1 2/ :

 
H

s s
LP2

10

2 5 10

10
10 2 10

=
+ +  

(15.25)

Note that whereas R′ of the required filter depends 
on km, and L′ depends on both km and kf, the transfer 
function of the required filter (Equation 15.25) depends 
only on kf. This is because the units of each term in the 
numerator and denominator of the voltage/voltage 
or current/current transfer function is (rad/s)2 (Table 
14.3), which implies that these terms are affected by 
frequency scaling only. This means that the required 
response of Equation 15.25 can be derived from the 
normalized response of Equation 15.20 by applying 
frequency scaling only. To do so, we note that the cut-
off frequency is 1 rad/s in the normalized response 
and 105  rad/s in the required response. Hence, to 
derive the transfer function of the required response 
from that of the normalized response, frequency in the 
normalized transfer function (Equation 15.20) should 
be divided by kf = 105 to give
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s s
LP2
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1

10 2 10 1
( ) =

( ) + ( ) +/ /  
(15.26)

Note that s in Equation 15.26 corresponds to 
the scaled frequency, that is, the normalized fre-
quency multiplied by kf to give a cutoff frequency 
of 100 krad/s. Hence, s must be divided by 105 to 
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FIGURE 15.2
Figure for Example 15.1.
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correspond to a normalized cutoff frequency of 
1 rad/s, when substituting in Equation 15.20.

Multiplying the numerator and denominator 
of Equation 15.26 by 1010 gives the transfer func-
tion of Equation 15.25. To verify that km cancels out 
in the transfer function, we note that, when both 
magnitude and frequency scaling are applied,
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(15.27)

km cancels out in the term w0
2 and in the term ω0/Q, 

with Q unaffected by scaling.
 (b) From Table 15.2, B3(s) =  (s + 1)(s2 + s + 1), which 

is a cascade of a first-order circuit and a second-
order circuit. The normalized first-order circuit has 
ω0 = 1 rad/s, which means C = 1 F and R = 1 Ω. As 
in (a) kf = 105 and km = 200, so that C′ = 50 nF and 
R′ = 200 Ω, which gives ωcl = 100 krad/s. The cir-
cuit is shown in Figure 15.3.

For the second-order circuit, kf, km, and L′ are the 
same. However, the coefficient of s in the bracketed 
second-order term in B3(s) is unity, and not 2 , as 
in B2(s). This means that ω0/Q = 1, or Q = 1, since 
ω0 = 1  rad/s in the normalized response. Hence, 
R = 1/ω0CQ = 1 Ω, so that R′ = 200 × 1 = 200 Ω. The 
overall transfer function is the product of low-pass 
transfer functions of the first and second orders:
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(15.28)

Multiplying the opencircuit transfer functions corre
sponds to cascading the circuits, with isolation, as dis-
cussed at the end of this section. The circuit is as 
shown in Figure 15.3, where isolation is provided 
by a unity-gain amplifier. The second-order cir-
cuit is shown preceding the first-order circuit. The 
same transfer function is of course obtained if the 
first-order circuit precedes the second-order cir-
cuit. In practice, the circuit that has the larger input 
impedance is generally preferred as the input cir-
cuit so as to minimize loading of the input source.

Simulation: Only the third-order circuit will be simu-
lated, since the second-order circuits were simulated 

in Chapter 14. The circuit is entered as in Figure 15.4. 
Simulation Settings are a start frequency of 1k, an end 
frequency of 100k, and 3000 points/decade. After the 
simulation is run, select DB(V(C2:1)). |HLP3(jω)| is dis-
played as in Figure 15.5. Using cursor search, the 3 dB 
cutoff frequency is read as 15.903K, the calculated value 
being 15.916  kHz. The high-frequency asymptote is 
entered as 60*LOG10(15915.5)-60*LOG10(Frequency). 
The phase shift is displayed by entering P(V(C2:1)) and 
varies between 0° at low frequencies to −270° at high 
frequencies. By entering sxval(15.9155k), the phase shift 
at the 3 dB cutoff frequency is read as −135.000. This 
is to be expected, since the phase shift at ω0 is −45° for 
the first-order filter (Figure 14.10b) and is −90° for the 
 second-order filter (Figure 14.28b).

Example 15.2: Second-Order and Third-Order 
Butterworth High-Pass Filters

It is required to design a high-pass Butterworth filter hav-
ing a cutoff frequency of 100 krad/s, using 50 nF capaci-
tors and to implement the filter as (a) a second-order filter 
and (b) a third-order filter. Derive the transfer functions 
and implement the filters using series RLC circuits.

Solution:

 (a) The values of L′ and R′ are the same as those 
determined in part (a) of Example 15.1, namely, 
2  mH and 282.8  Ω. The circuit is implemented 
as in Figure 15.6, the output being taken across 
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the inductor. The transfer function is, from Table 
14.9.1, with ω0 = 105 rad/s and Q = 1 2/ :
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As argued in connection with Equation 15.26, the 
response of Equation 15.29 can be derived from the 
normalized Butterworth high response by replacing 
s with s/105.

 (b) The values of the circuit components of the first-
order and second-order filters are the same as those 
determined in part (b) of Example 15.1. The circuit 
is as shown in Figure 15.7, the transfer function 
being the product of the open-circuit high-pass 
transfer functions of the first- and second-order 
responses:
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Simulation: The circuit is entered as in Figure 15.8. 
Simulation Settings are a start frequency of 1k, an end fre-
quency of 100k, and 3000 points/decade. After the simula-
tion is run, select DB(V(R2:1)). |HHP3(jω)| is displayed as 

in Figure 15.9. Using cursor search, the 3  dB cutoff fre-
quency is read as 15.903K, the calculated value being 
15.916  kHz. The low-frequency asymptote is entered as 
–60*LOG10(15915.5) + 60*LOG10(Frequency). The phase 
shift is displayed by entering P(V(R2:1)) and varies between 
270° at low frequencies to 0° at high frequencies. By entering 
sxval(15.9155k), the phase shift at the 3 dB cutoff frequency 
is read as 135.000. This is to be expected, since the phase 
shift at ω0 is 45° for the first-order filter (Figure 14.11b), and 
is 90° for the second-order filter (Figure 14.31b).

Primal Exercise 15.8

Consider three, identical, low-pass, first-order filters that 
are cascaded with isolation. (a) Determine the ratio of the 
response at the 3 dB cutoff frequency of a single filter to 
that at very low frequencies; (b) compare with ratio of the 
responses for a third-order Butterworth low-pass filter hav-
ing the same  3 dB  cutoff frequency as the single filter in (a). 
Express the ratio in terms of dB and as a decimal fraction.

Ans. (a) −9 dB, (0.707)3 = 0.354; (b) −3 dB, 0.707.

Primal Exercise 15.9

Determine the gain of a Butterworth low-pass filter of 
order n at a frequency that is a decade higher than the 
cutoff frequency.

Ans. Very nearly −20n dB.

Exercise 15.10

In the time domain, is a second-order Butterworth res-
ponse, overdamped, critically damped, or underdamped?

Ans. Slightly underdamped, because Q = 0.71 > 0.5 for 
critical damping.
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15.2.1 Product of Transfer Functions

It is opportune at this stage to emphasize how the 
product of transfer functions is implemented. Consider 
two circuits ‘N1’ and ‘N2’ having open-circuit trans-
fer functions H1(s) and H2(s), as in Figure 15.10a 
and b. What happens when these two circuits are cas-
caded, as in Figure 15.10c? The overall transfer function 
V s V sO I2 1
¢ ( ) ( )/  can be expressed as
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(15.31)

where, in cascading, the output voltage V sO1¢ ( ) of ‘N1’ is 
applied as the input voltage of ‘N2’. Note that H2(s) is the 
same, because ‘N2’ is open-circuited in Figure 15.10b 
and c. However, V sO1

¢ ( ) in Figure 15.10c is not the same as 
VO1(s) in Figure 15.10a because the current I12 that flows 
between the two cascaded circuits alters, in general, the 
output voltage of ‘N1’. This means that the transfer func-
tion H(s) should be derived by analyzing circuits ‘N1’ and 
‘N2’ together. In some cases, however, the transfer func-
tions of the two individual circuits can be simply mul-
tiplied together to obtain the overall transfer function, 
which is the case when the second circuit has no effect 
on the first. We wish to clarify under what conditions this 
occurs. There are three general cases to consider:

 1. When I12 is zero or insignificantly small. I12 is 
zero if an isolating amplifier, of infinite input 
impedance, is interposed between the two cir-
cuits, as in Figure 15.7. I12 is insignificantly 
small when the input impedance of ‘N2’, that is, 
V s I sO1 12¢ ( ) ( )/  is large compared with the output 
impedance of ‘N1’, which is Thevenin’s imped-
ance looking into the output terminals of ‘N1’, 
with the input source set to zero. This case was 
considered in Problem P14.45.

 2. When the output of ‘N1’ is an ideal voltage source, 
as when this output is that of an ideal op amp. In 
this case the open-circuit output voltage of ‘N1’ is 
the same as in the presence of a finite I12 because, 
by definition of an ideal voltage source, the source 
voltage is independent of the source current. 
Many such cases will be encountered later on, as 
in the case of the broadband filter (Figure 15.14).

 3. When ‘N2’ input is a virtual ground. In this case, 
I12(s)/VI1(s) is determined by ‘N1’ alone, and 
VO2(s)/I12(s) is determined by ‘N2’ alone. The 
overall transfer function is then the product of 
these two individual transfer functions. This is 
the case when ‘N2’ is an op amp in the inverting 
configuration.

Another point that should be kept in mind is that 
when transfer functions are multiplied in the frequency 
domain, their magnitudes are multiplied together and 
their phase angles are added together. Thus,
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On the Bode magnitude plot, the Bode magnitude 
plots of |H1(jω)| and |H2(jω)| add together to give the 
Bode magnitude plot of the overall transfer function. 
Thus, |H(jω)| = |H1(jω)∥H2(jω)|, so that

 20 20 2010 10 1 10 2log log logH j H j H jw w w( ) = ( ) + ( )  
(15.33)

15.3  First-Order Active Filters

Op amps may be used with RC circuits to construct 
active filters. RC, rather than RL, circuits are used for 
this purpose, because capacitors are less bulky and 
expensive than inductors and are closer to an ideal cir-
cuit element. Moreover, inductors are more awkward 
to implement in integrated circuits than capacitors. 
Op amps in active filters can be used to provide gain, 
isolation, load drive, and a higher Q for improved per-
formance. Q of Butterworth filters exceeds 0.5, which 
means that such filters cannot be realized using RC 
circuits alone, since the maximum Q of these filters 
is 0.5. Active filters are extensively used for frequen-
cies up to a few megahertz, limited by the frequency 
response of op amps. For higher  frequencies, pas-
sive filters are generally used. The simplest forms 
of active filters are the first-order  filters discussed in 
this section.
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Product of transfer functions. Two circuits (a) and (b) cascaded in (c).
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15.3.1  Low-Pass Filter

The transfer function of the ideal integrator is 
Hint(s) = −1/sCfRr (Equation 13.25). The Bode magnitude 
plot is −20log10(ωCfRr), which is a straight line of slope 
−20 dB/decade that intersects the 0 dB line at ω = 1/CfRr, 
as this gives log10(1) = 0 (Figure 15.11a). The gain is high 
at low frequencies because of the reactance 1/ωCf of the 
capacitor, which makes Zf/Zr → ∞ as ω → 0 (Equation 
13.22). In order to have a low-pass characteristic, the 
response must become flat at low frequencies, as indi-
cated by the thick horizontal line in Figure 15.11a, which 
coincides with the 0 dB line for log10ωCf Rr < 1. This can 
be achieved by connecting a resistance Rf in parallel 
with Cf (Figure 15.11b), so that at low frequencies, as the 
 reactance of the capacitance becomes very large, the 
gain of the amplifier becomes essentially independent 
of  frequency. The transfer function is
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where ωcl = 1/CfRf. The transfer function HLP1(s) is that 
of a first-order low-pass response having a cutoff fre-
quency wcl and a gain of −Rf/Rr as s → 0.

Primal Exercise 15.11

A filter of the type of Figure 15.11b is required to have 
a passband gain of −10 and a 3 dB cutoff frequency 
of 1 krad/s, using a 0.1 μF capacitor. Determine Rr and Rf .

Ans. Rr = 1 kW, Rf = 10 kW.

15.3.2  High-Pass Filter

Interchanging resistors and capacitors in the low-
pass filter results in a high-pass filter (Exercise 
15.13). However, the passband gain in this case is 
given by the ratio of two capacitances, which is not 
as convenient to control precisely as the ratio of two 
resistances.

Alternatively, a high-pass filter using two resis-
tors and a capacitor can be derived from the 
ideal differentiator, whose transfer function is 
Hdif(s)  =  −sCrRf (Equation 13.27). The Bode magni-
tude plot is +20log10(ωCrRf), which is a straight line 
of slope + 20 dB/decade that intersects the 0 dB line 
at ω =  1/CrRf (Figure 15.12a). The gain is Rf divided 
by (1/ωCr) and is high at high frequencies because 
of the small reactance 1/ωCr of the capacitor, since 
Zf/Zr → ∞ as ω → ∞ (Equation 13.22). In order to have 
a high-pass characteristic, the response must become 
flat at high frequencies, as indicated by the thick hori-
zontal line in Figure 15.12a, which coincides with the 
0 dB line  for log10ωCf Rr > 1. This can be achieved by 
connecting a resistance Rr in series with Cr (Figure 
15.12b), so that at high frequencies, as the reactance 
of the capacitance becomes very small, the gain of 
the amplifier becomes essentially independent of fre-
quency. The transfer function is
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where ωch  =  1/CrRr. The transfer function of Equation 
15.35 is that a first-order high-pass response having a 
cutoff frequency ωch and a gain of −Rf/Rr as s → ∞.
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FIGURE 15.11
(a) Bode magnitude plot of first-order low-pass response derived from that of an ideal integrator; (b) circuit implementation using an op amp 
in the inverting configuration.
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Primal Exercise 15.12

A filter of the type of Figure 15.12 is required to have 
a passband gain of −10, a 3 dB cutoff frequency of 10 
krad/s, and an input impedance of magnitude 10 kΩ at 
20 krad/s. Determine Cr, Rr and Rf.

Ans. Cr = 5 5 nF, Rr = 20 5/ kW, Rf = 200 5/ kW.

Exercise 15.13

Show that a high-pass filter can be derived from the 
low-pass filter in Figure 15.11b by (a) replacing Cf by 
an inductor or (b) by replacing Rr by a capacitor, which 
amounts to interchanging resistors and capacitors in the 
circuit. Derive the transfer functions and the passband 
gain in each case.

Ans. (a) -
+

R
R

s
s

f

r chw
, where ωch  =  Rf/Lf, passband gain: 

−Rf/Rr; (b) -
+

C
C

s
s

r

f chw
, where ωch = 1/CfRf, passband gain: 

−Cr/Cf .

Primal Exercise 15.14

Specify the type of response VO(jω)/VSRC(jω) in Figure 15.13.

Ans. Ideal integrator.

As explained in Section 14.2, a second-order bandpass 
response can be obtained by multiplying low-pass and 
high-pass responses. This is conveniently accomplished 
using active filters. When the upper 3 dB cutoff frequency 
of the resulting bandpass response is much larger than 
the lower 3 dB cutoff frequency, the filter is referred to 
as broadband. The design of such a filter is particularly 
simple, as illustrated by the following Example.

Example 15.3: Broadband Bandpass Filter

It is required to design a broadband bandpass filter in 
the audio frequency range 20  Hz to 15  kHz, having a 
passband gain of 5, using 50 nF capacitors and op amps 
in the inverting configuration.

Solution:

The overall transfer function is the product of the 
low-pass and high-pass transfer functions given by 
Equations 15.34 and 15.35, respectively:
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or
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where the l and h in the subscripts of the resistors 
refer to the low-pass and high-pass filters, respec-
tively, K = RflRfh/RrlRrh, ωc1 = 1/CrhRrh is the 3 dB cutoff 

Ideal differentiator
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FIGURE 15.12
(a) Bode magnitude plot of first-order high-pass response derived from that of an ideal differentiator; (b) circuit implementation using an 
op amp in the inverting configuration.
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frequency of the high-pass filter, and ωc2 = 1/CrlRrl is 
the 3 dB cutoff frequency of the low-pass filter, with 
ωc1 < ωc2. Equation 15.37 is of the form of a bandpass 
response (Table 14.3), where w w w0 1 2= c c  is the center 
frequency of the passband.

|HBP2(jω)| is the product of the magnitudes of each of 
the fractions in Equation 15.36. Thus,
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For a broadband filter, w wc c2 1� . In this case, 
ωc2/ωc1  =  (2π  ×  15,000)/(2π  ×  20), or ωc2  =  750ωc1. If 
ω  <  ωc2/10, say, that is, less than 2π  ×  1.5 krad/s in 
this case, then w w2

2
2 0 01/ c < . . The term w w2

2
2/ c  under the 

square root can therefore be neglected for frequencies in 
the vicinity of ωc1, since this term has very little effect on 
the response.
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The filter behaves as a high-pass filter of 3 dB cutoff 
frequency ωc1 that is hardly affected by ωc2. Similarly, if 
ω > 10ωc1, say, which is larger than 2π × 100 rad/s, in this 
case, then w wc1

2 2 0 01/ < . , and
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The filter behaves as a low-pass filter of 3 dB cutoff fre-
quency ωc2 that is hardly affected by ωc1. In other words, 
as long as ωc2 is at least 10 times ωc1, each filter has a 
negligible effect on the other, so that the two filters can be 
designed separately.

For the high-pass filter, Rrh = 1/(ωc1Crh) = 1/(2π × 20 × 
50 × 10−9) ≅ 160 kΩ. For the low-pass filter, Rfl = 1/(ωc2Cfl) = 
1/(2π × 15,000 × 50 × 10−9) ≅ 210 Ω. K = RflRfh/RrlRrh = 5. 
We may choose Rfh = 400 kΩ, so Rrl = 105 Ω. The filter 
circuit is shown in Figure 15.14. As mentioned in con-
nection with Figure 15.3, it is more advantageous that 
the high-pass filter precedes the low-pass filter in this 
case in order to have a higher input impedance.

It should be noted that according to the statement 
of the problem, ωc1 = 2π × 20 rad/s and ωc2 = 2π × 15 
krad/s, which gives a 3 dB bandwidth of (ωc2 − ωc1). 
But the cascading of the low-pass and high-pass fil-
ters results in a bandpass bandwidth of (ωc2 + ωc1), in 
accordance with Equation 15.36, in which the coeffi-
cient of s in the denominator is (ωc2 + ωc1). This wider 

bandwidth is due to the effect of one filter on the other, 
which has been neglected in the preceding solution for 
the sake of a much simplified design procedure. When 
ωc2 ≫  ωc1, the resulting error is small. It is in this case 
((fc2 + fc1) − (fc2 − fc1))/(fc2 − fc1) = 2fc1/(fc2 − fc1) = 40 Hz/
(15 kHz − 20 Hz). This evaluates to about 0.3% and is in 
fact erring on the right side, as a slightly wider band-
width is generally more desirable. This discrepancy is 
quite acceptable, considering that, in practice, the tol-
erance on the values of commonly used components is 
at least ±2% for resistors and ±5% for capacitors.

Simulation: The circuit is entered as in Figure 15.15. 
Simulation Settings are a start frequency of 1 Hz, an end 
frequency of 100  kHz, and 2000  points/decade. After 
the simulation is run, select DB(V(U2:OUT)). |HBP3(jω)| 
is displayed as in Figure 15.16. Using cursor max, the 
maximum gain in the passband is read as 13.968  dB 
at 551.442  Hz, compared to 20log10(5)  =  13.979  dB at 
f0 20 15 000 547 72= =* , . Hz. Cursor search gives 
the lower 3 dB cutoff frequency as 19.889  Hz and the 
upper 3 dB cutoff frequency as 15.161  kHz. The equa-
tion of the low-frequency asymptote is 20*LOG10(5) 
−20*LOG10(20)+ 20*LOG10(Frequency), whereas the equa-
tion of the high-frequency asymptote is 20*LOG10(5) 
+20*LOG10(15E3)−20*LOG10(Frequency).
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15.4  Noninverting Second-Order 
Active Filters

15.4.1  High-Pass Filter

A high-pass noninverting filter is illustrated in 
Figure 15.17. Using the node-voltage method, for exam-
ple, the transfer function can be shown to be
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where
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s = jω

As ω  →  ∞, the capacitors act as short circuits. R2 is 
connected across vSRC and is redundant as far as vO is 
concerned. R1 is connected between vSRC and the ideal 
voltage source output of the ideal op amp. It is also 
redundant because the current through it only affects 
the currents in these ideal sources and nothing else in 
the circuit. With C1 and C2 replaced by short circuits and 
R1 and R2 removed, the circuit reduces to a noninverting 
amplifier of gain A.

As ω  →  0, the capacitors act as open circuits. The 
amplifier is isolated from the input source, its input is 
grounded, through R2, so that the output is zero. The 
response is therefore high pass.

To facilitate the design, A is set to 1, that is, the ampli-
fier is connected as a unity-gain amplifier. To normal-
ize the response, it is convenient to set C1 = C2 = 1 F, so 
that the coefficient of s, and hence Q, in Equation 15.41 
is determined by R2 only. To have ωch = 1 rad/s, R1R2 = 1. 
Equation 15.41 becomes in normalized form:
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Example 15.4: Second-Order Noninverting 
High-Pass Butterworth Filter

It is required to design a unity-gain, second-order, 
Butterworth high-pass filter having a 3 dB cutoff fre-
quency of 500 Hz, using 0.5 μF capacitors.

Solution:

For a second-order Butterworth normalized response, 
the coefficient of s in the dominator of Equation 15.42 
should be 2  (Table 15.2). This gives R2 2 2 2= =/ W, 
so that R1 1 2= / W. To move the cutoff frequency from 
1 rad/s to 2π × 500 Hz requires a frequency scale fac-
tor kf  =  1000π. To use capacitors of 0.5  μF requires a 

magnitude scale factor km =
´ ´

=-

1
1000 0 5 10

2000
6p p.  

(Equation 15.3). Resistances are multiplied by km, so that 

R1
1000 2

450 16= =
p

. W and
 
R2

2000 2
900 32= =

p
. W.

Simulation: The circuit is entered as in Figure 15.18. 
Simulation Settings are a start frequency of 10  Hz, an 
end frequency of 10 kHz, and 2000 points/decade. After 
the simulation is run, select DB(V(U1:OUT)). |HHP2(jω)| 
is displayed as in Figure 15.19. Using cursor search gives 

the 3 dB cutoff frequency as 500.591 Hz. The equation of 
the low-frequency asymptote is:
−20*LOG10(500)+20*LOG10(Frequency).

15.4.2  Low-Pass Filter

It was explained in connection with Table 14.3 that a 
low-pass filter can be derived from the high-pass filter 
or, conversely, by interchanging s and ω0. In the case 
of the active RC filters under consideration, this corre-
sponds to interchanging s and ωc, the 3 dB cutoff fre-
quency, by replacing every resistor of the filter circuit, 
that is, excluding Rr and Rf of the op amp, by a capaci-
tor, and conversely. In the transfer function, this replaces 
every Rm by 1/sCm, and every 1/sCk by Rk, or every Ck 

by 1/sRk. With wc
k mC R

= 1
, this changes 

wc

k ms sC R
= 1

 to
 

R sC
s

k m
c

( ) =
w

, where the expression for ωc becomes
 

1
C Rm k

. 

It is seen that making these replacements interchanges 
ωc/s and s/ωc, that is, interchanges s and ωc. The circuit 
in Figure 15.17 becomes that in Figure 15.20, where R1 in 
Equation 15.41 is replaced by 1/sC1, R2 by 1/sC2, C1 by 
1/sR1, and C2 by 1/sR2. After the resulting equation is 
simplified, the transfer function becomes
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where
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As ω → 0, the capacitors act as open circuits. R1 and R2 
do not carry any current because they are connected 
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to open circuits. The circuit reduces to a noninverting 
configuration of gain A. As ω  →  ∞, the capacitors act 
as short circuits. C2 effectively grounds the input of the 
op amp, so the output is zero. The response is low pass.

To facilitate the design, the amplifier is connected as a 
unity-gain amplifier, so that A = 1. The response is con-
veniently normalized by setting R1 = R2 = 1 Ω, so that the 
coefficient of s, and hence Q is determined by C1 only. 
To have ωcl = 1 rad/s, C1C2 = 1. Equation 15.43 becomes
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Example 15.5: Third-Order Noninverting 
Butterworth Low-Pass Filter

It is required to design a third-order, Butterworth low-
pass filter based on the circuit in Figure 15.20, having 
a gain of 3 and a 3 dB cutoff frequency of 2000 rad/s, 
using 1 kΩ resistors in the filter sections.

Solution:

Referring to Table 15.2, the normalized third-order 
Butterworth polynomial is (s2 + s + 1)(s + 1). Equating the 
unity coefficient of s in s2 + s + 1 to 2/C1 in Equation 15.44 
gives C1 = 2 F, so that C2 = 0.5 F in the normalized filter. To 
move the cutoff frequency to 2000 rad/s requires kf = 2000. 
To use 1 kΩ resistors requires km = 1000. It follows that 
C1 = (2 F)/(1000 × 2.000) = 1 μF and C2 = C1/4 = 0.25 μF.

The normalized first-order filter has R = 1 Ω, C = 1 F, and 
ωcl = 1 rad/s. It has, therefore, the same kf and km as the sec-
ond-order filter. Hence, C = (1 F)/(1000 × 2.000) = 0.5 μF. If 
the first-order filter is implemented using an active filter 
(Figure 15.11b), the overall gain is negative, which requires 
an additional inverting amplifier stage to obtain a positive 
overall gain. Alternatively, a simple RC low-pass filter can 
be used, followed by a noninverting amplifier having a 
gain of three. The amplifier isolates the RC filter from the 
load so as to have the required transfer function. The filter 
circuit is shown in Figure 15.21. The first-order filter could 
precede the second-order filter in this case.

Simulation: The circuit is entered as in Figure 15.22. 
Simulation Settings are a start frequency of 10 Hz, an end 
frequency of 10 kHz, and 2000 points/decade. After the 
simulation is run, select DB(V(U2:OUT)). |HLP3(jω)| is 
displayed as in Figure 15.23. The passband gain is read 
from the  cursor as 9.542  dB, which equals 20log10(3). 
Cursor search  gives the 3 dB cutoff frequency as 
318.058 Hz, compared to a calculated value of 318.31 Hz. 
The equation of the high-frequency asymptote is 
20*LOG10(3) + 20*LOG10(318.31) −20*LOG10(Frequency).

15.4.3  Bandpass Filter

A bandpass filter is shown in Figure 15.24, whose trans-
fer function is
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where w0 1 2 1 3 21= ( )/ C C R R R� . Since ω0/Q 
is the coefficient of s in the denominator, 

Q
R C C C R R AR R

=
+( ) + ( ) -[ ]

1
1

0

2 1 2 1 1 3 2 1

/
/

w
� ( )

. The maxi-

mum gain is when ω  =  ω0 so that s2
0
2 0+ =w  in the 

denominator; s cancels out from the numerator and 
denominator, which gives the maximum gain as 
K = (A/C1R3)/(ω0/Q) = QA/(ω0C1R3).

That the response is bandpass can be readily checked. 
As ω → 0, C1 isolates the input of the op amp from the 
source and the output is zero. As ω → ∞, C2 grounds the 
input of the op amp, and the output is again zero. This 
implies that the nonzero output is a maximum at some 
intermediate value, so the response is bandpass.

It will be noted that normalizing Equation 15.45 is not 
as simple as in the low-pass and high-pass filters. A filter 
of this type is considered in Problem P15.43. An invert-
ing bandpass filter that is easier to design is presented 
in the next section.

15.5  Inverting Second-Order Active Filters

15.5.1  Bandpass Filter

An inverting second-order bandpass filter is illustrated 
in Figure 15.25, whose transfer function is
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where w0 1 2 1 2 31= ( )/ C C R R R� , 
w0

1 1 2

1 1 1
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÷ is 

the 3 dB bandwidth. The gain at the center frequency, 

obtained by setting s j= w0, is K
R C

R C C
= -

+( )
1 1

2 1 2
.

That the response in Figure 15.25 is bandpass can be 
readily ascertained. As ω → 0, the capacitors act as open 
circuits, no current passes through R1, the output termi-
nal is at virtual ground, and the output voltage is there-
fore zero. As ω → ∞, the capacitors act as short circuits, 
thereby connecting the output terminal directly to virtual 
ground and resulting in zero output voltage. The non-
zero output voltage must have a maximum magnitude 
at some intermediate value, so the response is bandpass.

If the filter response is normalized by having 
C1 = C2 = 1 F and ωo = 1 rad/s, Equation 15.46 becomes

 

V j

V j R
s

s
R

s
R R RO

SRC

w
w

( )
( )

= -
+ +

( ) =1
2

1
1

2 2

1

1 2 3, with �

 
(15.47)

where 
1 2

1Q R
= =BW  and K

Q
R

= -
2
. It follows that R1 = 2Q, 

R2 = −Q/K, and R
Q

Q K
3 22
=

+
. Once the center frequency 

ωo, the passband gain K, and BW or Q are specified, R1, 
R2, and R3 can be determined, as illustrated by the fol-
lowing example.

Example 15.6: Second-Order Inverting Bandpass Filter

It is required to design a bandpass filter having a center 
frequency of the passband of 20 krad/s, Q = 10, and a 
passband gain of −4, using 0.05 μF capacitors.

Solution:

Using the relations derived in connection with 

Equation 15.47, R1  =  2Q  =  20  Ω, R2
10
4

2 5= = . W, and 

R3 2
10

2 10 4

10
196

=
´( ) -

= W. The frequency scale factor kf is 

20,000. To have C = 0.05 μF requires an impedance mag-

nitude scale factor km =
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R1 = (20 Ω) × 1000 = 20 kΩ, R2 = (2.5 Ω) × 1000 = 2.5 kΩ, 

and R3
10
196

1000 51 02= ´ = . W. The bandwidth is 

wo
f

Q R
k= =

2
2000

1
rad/s.

Simulation: The circuit is entered as in Figure 15.26. 
Simulation Settings are a start frequency of 100 Hz, an end 
frequency of 100 kHz, and 2000 points/decade. After the 
simulation is run, select DB(V(U1:OUT)). |HBP2(jω)| is 
displayed as in Figure 15.27. The maximum gain is read 
from cursor maximum as 12.038 dB at 3.1842K, or 20.007 
krad/s, compared to 20log10(4) = 12.041 dB at 20 krad/s. 
Cursor search gives the upper 3 dB cutoff frequency fc2 as 
3.3459K and the lower 3 dB cutoff frequency fc1 as 3.0283K. 
This gives BW = 317.6 Hz, or 1995.5 rad/s, compared to a 
calculated value of 2000 rad/s, and a Q of 10.026.

From Equation 15.46, H j R CBP2 2 2 0
2w w w( ) = ( )/  as ω → 0. 

The equation of the low-frequency asymptote is

20 20 2 20 2010 10 2 2 0
2

10 10log log log logf R C f- ( ) = -w p/  
2 5 10 5 10 20 10 2 20 203 8 3 2

10 10. log log´ ´ ´ ´ ´( )( ) = ( ) -- / p f   
7057 7.( ) 

As ω → ∞, |HBP2(jω)| →  1/(ωC2R2). The  equation of the 
high-frequency asymptote is 20log10(1/2πC2R2) − 20log10(f) = 
20log10(1273.2) − 20log10(f).

15.5.2  High-Pass Filter

If in Figure 15.25, R2 is replaced by a capacitor C3, the 
transfer function of Equation 15.46 becomes
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(15.48)

where

 wch C C R R= 1 1 2 1 3/  

 Q R C C C C Cch= + +w 1 1 2 1 2 3/( ) 

Equation 15.48 is the transfer function of a high-pass 
response, the circuit being as in Figure 15.28.

As ω → 0, the capacitors act as open circuits, no cur-
rent passes through R1, the output terminal is at virtual 
ground, and the output voltage is therefore zero, as in 
Figure 15.25. As ω  →  ∞, the reactances of the capaci-
tors become very small and the transfer function Zf/Zr 
approaches −C3/C2, as in Equation 15.48.

The response can be normalized by setting 
C1 = C2 = C3 = 1 F, ωch = 1 rad/s, so that R1R3 = 1, and 
the maximum magnitude of the gain becomes unity. The 
transfer function of the normalized response becomes

 

V j

V j
s

s
R

s
R RO

SRC
ch

w
w w

( )
( )

= -
+ +

=
2

2

1

2
1 33 1

 

(15.49)

where R1 = 3Q. The design and simulation of the circuit 
are left as a problem (P15.45).

15.5.3  Low-Pass Filter

Replacing capacitors by resistors, and conversely, result 
in an inverting low-pass filter as in Figure 15.29, where 
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the same subscript is used for the elements that replace 
one another. The transfer function is
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(15.50)

where

 wcl C C R R= 1 1 3 1 2/  

 Q C R R Rcl= ( )w 3 1 2 3� �  

As ω → 0, the capacitors act as open circuits. No cur-
rent flows in R1, and the circuit reduces to an inverting 
amplifier having a transfer function −R2/R3. As ω → ∞, 
the capacitors act as short circuits, with C3 short-circuit-
ing the input to the op amp, so that the output voltage 
is zero.

The response can be normalized by setting 
R1 = R2 = R3 = 1 Ω, ωch = 1 rad/s, so that C1C3 = 1, and 
the maximum magnitude of the gain becomes unity. 
The transfer function of the normalized response 
becomes

 

V j

V j
s

s
C

s
C CO

SRC
ch

w
w w

( )
( )

= -
+ +

=
2

2

3

2
1 33 1,

 

(15.51)

where C3 = 3Q. The design and simulation of the circuit 
are left as a problem (P15.46).

15.6  Universal Filter

A universal filter is illustrated in Figure 15.30. The filter 
has three inputs and is capable of providing any of the 
five, second-order filter responses, depending on how 

the three inputs are applied. The output of the filter as a 
function of all three inputs is

 
V j

s V j Q sV j V j

s Q s
O

SRC SRC SRCw
w w w w w

w
( ) = ( ) + ( ) ( ) + ( )

+ ( )
2

2 0 3 0
2

1
2

0

/
/ ++w0

2
 

(15.52)

where ω0 = 1/RC and Q is a designated value. The input 
combinations for the different responses are indicated 
in Table 15.3. To obtain a low-pass response, for exam-
ple, the input is applied as VSRC1(jω), with the other two 
inputs connected to ground.

Equation 15.52 can be derived by the node-voltage 
method; voltage variables are assigned to the essential 
nodes at ‘P’, ‘O’, and the essential nodes between the 
two capacitors and the two resistors. KCL is derived 
at each of these nodes and the resulting simultaneous 
equations solved. It is simpler and more instructive to 
derive Equation 15.52 using the substitution theorem 
(Section 4.4).

Since the amplifier is unity-gain, the voltage at the non-
inverting input ‘P’ of the op amp is the same as the output 
voltage VO(jω) at node ‘O’. The op amp can therefore be 
replaced by an ideal independent voltage source VO(jω) 
between node ‘O’ and ground, and the branch connected 
between node ‘P’ and ground can also be replaced by 
this source, in accordance with the substitution theorem. 
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TABLE 15.3

Input Combinations and Responses of Universal Filter

VSRC1 (jω) VSRC2 (jω) VSRC3 (jω) Response

VSRC(jω) 0 0 Low pass
0 VSRC(jω) 0 High pass
0 0 VSRC(jω) Bandpass
VSRC(jω) VSRC(jω) 0 Bandstop
VSRC(jω) VSRC(jω) −VSRC(jω) Allpass
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Since nodes ‘P’ and ‘O’ are at the same voltage VO(jω) 
with respect to ground, they can be connected together. 
The circuit in the frequency domain becomes as in 
Figure 15.31. We wish to determine the currents I1 and I2. 
The circuit for I1 is shown in Figure 15.32a.

The voltage drop across R on the RHS is RI1, which is also 
the voltage across the capacitor. The capacitor current is 
therefore 2sCRI1. The total current is I1(1 + 2sCR). From KVL, 
VSRC1(jω) = RI1(1 + 2sCR) + RI1 + VO(jω). It follows that
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(15.53)

where ω0 = 1/RC. The circuit for determining the cur-
rent I2 is shown in Figure 15.32b. I2 may be determined 
in the same way as I1 in Figure 15.32a. Alternatively, it 
may be noted that if R and 1/sC in Figure 15.32a are 
replaced by 1/sC and R, respectively, the circuit of 
Figure 15.32b is obtained. Making these replacements in 
Equation 15.53 gives
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Referring to Figure 15.30, I3 is given by
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From KCL, I3  =  I1  +  I2. Substituting for the currents 
in this equation, collecting terms, and simplifying give 
Equation 15.52.

Example 15.7: Notch Filter

It is required to configure the universal filter as a band-
stop filter having a center frequency of 1 krad/s and a Q 
of 50 using 0.1 μF capacitors.

Solution:

R  =  1/(ω0C)  =  1/(103  ×  10−7)  =  10  kΩ. For a Q of 50, 
2RQ = 20 × 103 × 50 = 1 MΩ, and C/(2Q) = 10−7/100 = 1 nF.

Simulation: The circuit is entered as in Figure 15.33. 
Simulation Settings are a start frequency of 100  Hz, 
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an  end  frequency of 300  Hz, and 5000  points/decade. 
After  the simulation is run, select DV(U1:OUT). 
|HBP2(jω)|  is displayed as in Figure 15.34. The mini-
mum gain of zero is read from cursor minimum as at 
159.148, compared to a calculated value of 159.155 Hz. 
Cursor search gives the upper 3 dB cutoff frequency 
fc2 as 160.755 and the lower 3 dB cutoff frequency fc1 as 
157.571. This gives BW = 3.184 Hz, corresponding to a Q 
of 159.148/3.184 = 49.98.

Learning Checklist: What Should 
Be Learned from This Chapter

• Scaling is a convenient procedure based on 
designing a certain type of filter in normal-
ized form and then scaling the values of these 
normalized filters as may be required for any 
particular implementation of this type of 
filter.

 1. For a normalized first-order filter, the values 
chosen are ωc = 1 rad/s, R = 1 Ω, C = 1 F, and 
L = 1 H.

 2. For a normalized second-order filter, the 
values chosen are ωc = 1 rad/s, C = 1 F, and 
L = 1 H. The normalized R is chosen to give 
the required value of Q.

• The scaled values are ¢ ¢ ¢= = =w wk R k R Lf m, ,   
k
k

L C
k k

Cm

f m f
, and ¢ = 1

 where the frequency 

scaling factor kf is determined by the desired ωc,  
ω0, or BW, and the magnitude scaling factor km is 
determined by the desired value of some circuit 
parameter.

 1. BW scales like ω, Q is unaffected by scaling.
• Scaling can be applied to any filter when it 

is desired to change a parameter value or 
frequency.

• A Butterworth low-pass or high-pass response is 
a maximally flat response in the passband. The 
reason for this is that in the expression for the 
magnitude of a Butterworth polynomial of order 
n, the only term in ω is a term raised to the power 
2n, so that the change in the attenuation with fre-
quency in the passband is as small as possible.

• In a normalized Butterworth, low-pass response 
of order n, the normalized Butterworth polyno-
mial is the denominator of the transfer func-
tion, the numerator of the transfer function 
being unity. The magnitude of the normalized, 
Butterworth low-pass response of order n is of 

the form 1 1 2/ + u n , where u = ω/ωc.

• In a normalized Butterworth, high-pass 
response of order n, the normalized Butterworth 
polynomial is the denominator of the transfer 
function, the numerator of the transfer func-
tion being sn. The magnitude of the normalized, 
Butterworth high-pass response of order n is of 

the form u un n/ 1 2+ .
• All Butterworth low-pass or high-pass responses 

have an attenuation of −3 dB with respect to the 
passband gain at ω = ωc, irrespective of n. ωc is 
both the 3 dB cutoff and the corner frequency. 
The magnitude of the slope of the asymptote of 
the response is 20n dB/decade.

• Op amps in active filters provide gain, isolation, 
load drive, and high Q.

• Op amps are used with RC circuits to surpass 
the limit of Q = 0.5 for passive RC circuits and 
implement active, Butterworth RC filters hav-
ing Q > 0.5.

• A first-order low-pass active filter can be 
derived from an ideal integrator by connecting 
a resistor in parallel with the capacitor in order 
to limit the gain at low frequencies.

• A first-order high-pass active filter can be 
derived from an ideal differentiator by  con-
necting a resistor in series with the capacitor in 
order to limit  the gain at high frequencies.

• A second-order, broadband, bandpass filter can 
be implemented by cascading a first-order low-
pass active with a first-order high-pass active 
filter. The two filters can be designed separately, 
as long as the 3 dB cutoff frequencies are at least 
a decade of frequency apart.

• Second-order low-pass, high-pass, bandpass, 
and bandstop active filters having any desired Q 
may be constructed using operational amplifiers 
in the noninverting or inverting configuration.

Problem-Solving Tips

 1. Scaling is convenient to use in filter design. In 
applying scaling, remember that, in general, 
values of L and C are scaled by both frequency 
and magnitude scale factors, that bandwidth 
scales like frequency, and that Q is invariant with 
scaling.

 2. Always determine how an active filter circuit 
behaves at ω → 0, as ω → ∞.

 3. In all types of filters (low pass, high pass, band-
pass RLC, and bandstop RLC), it is generally 
possible to determine the gains of interest from 



Butterworth and Active Filters 465

the circuit, without deriving the transfer func-
tion, by examining the circuits at the frequency 
extremes (ω → 0 and ω → ∞) or at the resonant 
frequency ω0. However, in the case of bandpass 
RC circuits, the maximum gain can only be 
derived, in general, from the transfer function.

 4. The 3 dB cutoff frequency of a first-order filter 
can be obtained from RTh seen by the energy 
storage element without having to derive the 
transfer function.

Problems

Verify solutions by PSpice Simulation.

Scaling and Passive Butterworth Filters

P15.1 Given a transfer function of a series RLC circuit as 
10
0 1 12

s
s s+ +.

, normalized to have ω0 = 1 rad/s, C = 1 F, 

L = 1 H, and R = 0.1 Ω, determine L, C, R, and Q if (a) ω0 
is scaled to 1 Mrad/s without magnitude scaling and 
(b) if ω0 is scaled to 1 Mrad/s and 

 
C

 
 is scaled to 100 nF.

 Ans. (a) 1 μH, 1 μF, 0.1 Ω, Q = 10; (b) 10 μH, 100 nF, 1 Ω, 
Q = 10.

P15.2 Given the magnitude response H jw w

w
( ) =

+

3

61
, spec-

ify the type of response.

 Ans. Third-order, Butterworth high pass.

P15.3 Given a normalized, series RLC circuit with L  =  1 H 
and C  =  1  F, select R so as to have a second-order, 
low-pass, normalized Butterworth response when the 
output is taken across C. Scale the parameters so as to 
have ω0 = 10 krad/s and C = 100 nF.

 Ans. L′ = 0.1 H, R¢ = 1000 2 W.

P15.4 Repeat Problem P15.3 considering the filter to be high 
pass instead of low pass.

 Ans. L′ = 0.1 H, R¢ = 1000 2 W.

P15.5 Given a parallel GCL circuit with Lp = 10 mH, Cp = 4 μF, 
(a) select Rp so as to have a second-order, low-pass, 
normalized Butterworth response when the output is 
taken as the current through Lp and (b) select Lp and Rp 
so as to have ω0 = 100 krad/s and Cp = 10 nF.

 Ans. (a) Rp = 25 2 W; (b) Lp = 10 mH, Rp = 500 2 W.

P15.6 (a) Derive the transfer function of the circuit in Figure 
P15.6; (b) determine L and C so as to have a second-
order, normalized Butterworth low-pass response, with 
R1 = 2 Ω and R2 = 1 Ω; (c) scale the parameters so as to 
have R2 = 10 kΩ and a 3 dB cutoff frequency f0 = 10 kHz.

 Ans. (a)
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P15.7 (a) Derive the transfer function of the circuit in Figure 
P15.7; (b) determine L and C so as to have a third-
order, normalized Butterworth high-pass response, 
with 1 Ω resistors; (c) scale the parameters so as to 
have resistance values of 2 kΩ and a cutoff frequency 
f0 10= kHz.

 
Ans. (a) 

V j

V j
s LC

s LC s LC C sC
O

SRC

w
w

( )
( ) = + +( ) + +

3 2

3 2 2 22 2 2 1
; 

(b) C = 1 F and L = 0.5 H; (c) ¢ =L 15 9. mH, C′ = 7.96 nF.

P15.8 (a) Derive the transfer function VO(jω)/VSRC(jω) in 
Figure P15.8; (b) select R so as to have a normalized 
Butterworth high-pass filter; (c) scale R, L, and C so as 
to have ω0 = 1 krad/s, using a 1 mH inductor.

 
Ans. (a) 
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.

; (b) 8 2 W; 

(c) C′ = 0.25 mF, R¢ = 4 2 W.

P15.9 Determine R and L in Figure P15.9 for a second-order, 
Butterworth high-pass filter having ω0  =  10  krad/s, 
using a 0.1 μF capacitor

 Ans. L1 10¢ = mH, R¢ = 100 2 W.
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First-Order Active Filters

P15.10 Derive the transfer function of a first-order low-pass 
filter having a passband gain of 0.5 and a corner fre-
quency of 1 kHz.

 
Ans. 

1000
2000

p
ps +

.

P15.11 Derive the transfer function of a first-order high-pass 
filter having a passband gain of 10 and a corner fre-
quency of 100 rad/s.

 
Ans.

 
10

100
s

s +
.

P15.12 Given a first-order, low-pass active filter having 
Rr = 20 Ω, Rf = 800 Ω, and ωcl = 200 rad/s, determine Rr 
and Rf that will make ωcl = 1 krad/s, without changing 
the gain or capacitor value.

 Ans. Rf = 160 Ω, Rr = 4 Ω.

P15.13 Derive the transfer function of the circuit of Figure 
P15.13 and determine the gain as ω → 0 and as ω → ∞. 
Sketch the Bode plots when (i) CrRr  >  10CfRf, (ii) 
CfRf > 10CrRr.

 
Ans.
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P15.14 Determine the passband gain and the 3 dB cutoff fre-
quency of the filter shown in Figure P15.14.

 Ans. Gain = 1, ωcl = 250 rad/s.

P15.15 Determine, for the circuit of Figure P15.15, (a) the 
 frequency of maximum gain, (b) K for a maximum gain 
of 20 dB, and (c) the bandwidth.

 Ans. (a) 2 rad/s; (b) K = 50; (c) 5 rad/s.

P15.16 The op amp in Figure P15.16 is ideal except that its gain 

is frequency dependent and given by A j
j

v w
w

( ) =
+
10

1

5

.
  

Determine the 3 dB cutoff frequency of the response 
|VO(jω)/VI(jω)|.

 Ans. 50.0 krad/s.

P15.17 If a resistance R is connected in series with the input of 
the circuit in Figure P13.64, a first-order low-pass filter 
is obtained having a variable cutoff frequency and a 
magnified capacitance value. Determine the 3 dB cut-
off frequency if R = 10 kΩ, C = 100 nF, and α = 0.2.

 Ans. 200 rad/s.

P15.18 (a) Derive the transfer function VO(jω)/VI(jω) in Figure 
P15.18; (b) determine the low-frequency and high-
frequency asymptotes of the Bode plot, the corner fre-
quency, and the gain at this frequency in dB; (c) sketch 
the Bode magnitude and phase plots.

 Ans. (a) 2 + jω; (b) LF asymptote: 20log10|H(jω)| = 6 dB, 
HF asymptote: 20log10|H(jω)| = 20log10ω, ωc = 2 rad/s, 
gain at this frequency: 9 dB.
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P15.19 Derive the transfer function VO(jω)/VSRC(jω) in 
Figure P15.19.

 
Ans.

 
1
2 12s s+ +

.

P15.20 (a) Sketch, on the same graph, the Bode plots of 
|VO1(jω)/ VSRC(jω)| and |VO2(jω)/VO1(jω)| in Figure 
P15.20; (b) determine (i) the maximum dB value of 
|VO2(jω)/VSRC(jω)|, (ii) the frequency at which this maxi-
mum occurs, and (iii) the dB value of |VO2(jω)/VSRC(jω)| 
a decade above and a decade below the frequency of 
maximum |VO2(jω)/VSRC(jω)|. Note that this is a broad-
band filter composed of two isolated passive filters.

 Ans. (b) (i) −6 dB, (ii) 1 krad/s, (iii) −9 dB.

Higher-Order Active Filters

P15.21 Specify the response VO/VI of the filter circuit of Figure 
P15.21 and determine the passband gain. Note that this 
is the same as the high-pass filter of Figure 15.17 with 
the capacitors replaced by inductors.

 Ans. Second order, low pass of passband gain of 3.

P15.22 Specify the response VO/VI of the filter circuit of Figure 
P15.22 and determine the passband gain. Note that this 
is the same as the high-pass filter of Figure 15.28 with 
the capacitors replaced by inductors.

 Ans. Second order, low pass of passband gain of −1.

P15.23 Show that the transfer function of the circuit in 

Figure P15.23 is -
+ +

1
1 1sC R
sC R
sC R

sC R
sC Rf r

f f

f f

r r

r r
. Note that 

if C R C Rf f r r= =t , then the transfer function becomes 

-
+

æ
è
ç

ö
ø
÷

1
1

2

sC R
s
s

V
f r

src
t
t

. Deduce that the circuit behaves 

as a bandpass filter for frequencies in the neighbor-
hood of w t= 1/ , as a differentiator at low frequencies 
and as an integrator at high frequencies.

P15.24 Derive the transfer function of the filter shown in 
Figure P15.24.
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P15.25 Determine the center frequency of the filter shown in 
Figure P15.25.

 Ans. 39.53 krad/s.

P15.26 (a) Derive the transfer function of the filter shown 
in Figure P15.26. (b) Determine the maximum gain. 
(c) Determine the bandwidth.

 
Ans. (a)

 
10

2 10 10

5

2 4 8

s
s s+ ´ +

; (b) 5; (c) 20 krad/s.

P15.27 (a) Derive the transfer function of the filter shown in 
Figure P15.27. (b) Determine the center frequency, the 
maximum gain, Q, BW, and the 3 dB cutoff frequen-
cies. (c) If the circuit is to be used as a broadband fil-
ter, determine (i) the capacitor values that give a 3 dB 

bandwidth from 100  rad/s to 1  Mrad/s and (ii) the 
maximum gain in dB.

 
Ans. (a) 

10
2 10 10

5

2 3 6

s
s s+ ´ +

; (b) ω0 = 1 krad/s, 50, Q = 0.5, 

BW = 2 krad/s,
 
wc = ±( )2 1  krad/s; (c) capacitance of 

high-pass filter: 10  μF, capacitance of low-pass filter: 
1 nF, 40.0 dB.

P15.28 Determine the maximum gain of the filter shown in 
Figure P15.28 and the frequency at which it occurs.

 Ans. 0.8 at 100 rad/s.
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P15.29 Given two first-order filters of transfer functions 

-
+
200

200s
 and -

+
s

s 50
. The inputs of these filters are 

paralleled together and the outputs are added in an 
inverting adder of unity gain. (a) Derive the trans-
fer function and characterize the resulting response; 
(b) determine the maximum gain and the frequency at 
which it occurs.

 
Ans. (a)

 

s s
s s

2

2

400 10 000
250 10 000

+ +
+ +

,
,

, sum of bandpass and band-

stop responses; (b) 1.6 at 100 rad/s.

P15.30 (a) Derive the transfer function VO(jω)/VI(jω) in Figure 
P15.30; (b) characterize the response; (c) determine the 
maximum gain, the minimum gain, both in dB, and the 
frequencies at which they occur.

 
Ans. (a) 10

250 125 10
100125 125 10

2 5

2 5

s s
s s

+ + ´
+ + ´

; (b) the response is
 

a combination of second-order bandpass and second-
order bandstop responses; (c) maximum gain is 20 dB 
and occurs as ω → 0 or ω → ∞; minimum gain is −32 dB 
and occurs at 3.54 krad/s.

P15.31 Given the filter of Figure P15.31, (a) derive the transfer 
function and (b) determine A, if Q = 0.8.

 
Ans. (a)

 

A s

s A s

2
0
2

2
0 0

22 2

+( )
+ -( ) +

w

w w
, where ω0 = 1/CR; (b) 1.375.

P15.32 The circuit of Figure P15.32 provides an adjustable 
response in which the output could lag or lead the input. 

Show that the transfer function is
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where t1 1 1=C R , t 2 2 2=C R , t a ap pC R R1 1 1 1 1 11= + -( )éë ùû, 

and t a ap pC R R2 2 2 2 2 21= + -( )éë ùû.

P15.33 Two circuits are cascaded, with isolation (Figure 
P15.33). H1(s), is the transfer function of a first-order, 
normalized, Butterworth low-pass filter of passband 
gain of 2. The overall open-circuit transfer function 
H(s)  =  VO(s)/VI(s) is that of a second-order, normal-
ized, Butterworth low-pass response of passband gain 
of 1/2. (a) Derive H2(s); (b) sketch the magnitude Bode 
plots of H1(jω) and H(jω); (c) determine |H2(jω)| and 
evaluate |H2(j1)| in dB; (d) derive the equations of 
the low-frequency and high-frequency asymptotes of 
|H2(jω)| and evaluate the 3 dB cutoff frequency

 
Ans. (a)

 

1
4

1
2 12

s
s s

+
+ +

; (c)
 
H j2

2

4

1
4

1

1
w w

w
( ) = +

+
, |H2 (j1)| = 

20log10(1/4) = −12 dB; (d) LF asymptote: 20log10(1/4) = 
−12 dB, HF asymptote: as ω → ∞ is −12 dB − 20log10ω, 
ωc = 1.55 rad/s.

P15.34 Three filters, each having the response s/(s  +  1) 
are cascaded with isolation. (a) Characterize the 
response; (b) determine the half-power frequency; 
(c) if each filter is implemented as an active filter 
having 1  kΩ resistors, determine the value of the 
required capacitor; (d)  using scaling, determine the 
value of the capacitor if the half-power frequency is 
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multiplied by a factor of 1000 and the resistances are 
reduced to 500 Ω.

 
Ans. (a) Third-order high pass; (b)

 

1

2 1
1 96

3 -
= . rad/s; 

(c) 1 mF; (d) 2 μF.

P15.35 (a) Determine L and C in Figure P15.35 so that the 
denominator of the transfer function Vo(jω)/VI(jω) 
is the product of two equal factors having a root at 
ω = −10 rad/s; (b) using these values of L and C, deter-
mine the 3 dB cutoff frequency of the filter response; (c) 
what type of damping would the response in the time 
domain have?

 Ans. (a) L = 1 H, C = 0.01 F; (b) 15.54 rad/s; (c) critical 
damping.

Design Problems

P15.36 It is required to design a second-order, high-pass 
Butterworth filter that has a 3 dB cutoff frequency of 
10  krad/s, using a 10  mH inductor. Determine R, C, 
and Q, if the filter is implemented as (a) a series RLC 
circuit and (b) a parallel GCL circuit.

 Ans. (a) C = 1 μF, R = 100 2 W, Q = 1 2/ ; (b) C = 1 μF, 
R = 100 2/ W, Q = 1 2/ .

P15.37 (a) Design a first-order, low-pass active filter hav-
ing ωcl  =  500  rad/s and a gain of −10 using a 0.1  μF 

capacitor; (b) implement the filter as in Figure P15.37 
with a gain of +10, using Rr = R.

 Ans. Rf = 20 kΩ, Rr = 2 kΩ; (b) R = 20 kΩ, Rf = 180 kΩ.

P15.38 (a) Design a first-order, high-pass active filter having 
ωcl = 10 krad/s and a magnitude of gain of 33 dB using 
a capacitor of 0.01 μF, as in Figure P15.38 with Rr = Ri; 
(b) implement the filter using Rr = 10 kΩ.

 Ans. Rr = 10 kΩ, Rf = 446.7 kΩ; Rf = 446.7 kΩ.

P15.39 Design a broadband bandpass filter having 3 dB cutoff 
frequencies of 100 Hz and 10 kHz and a passband gain 
of 2 using 0.2 μF capacitors. The filter is to have a very 
high input impedance.

 Ans. Low-pass filter: Rf  =  80.0 Ω, Rr  =  40 Ω; high-
pass filter: Rf = Rr = 7958 Ω. First stage is a unity-gain 
amplifier.

P15.40 Design a broadband bandpass filter to meet the follow-
ing specification: (a) 3 dB cutoff frequencies of 10 Hz 
and 20 kHz, (b) a 1 nF capacitor is to be used in the 
low-pass filter and a 100 nF capacitor in the high-pass 
filter, (c) minimum impedance of 10 kΩ resistive, and 
(d) overall gain of −10.

 Ans. First stage, amplifier of gain −10 and Rr = 10 kΩ; 
second stage, high-pass filter, Rr = 159.2 kΩ, Rf = 200 kΩ; 
third stage, low-pass filter, Rr = 10 kΩ, Rf = 7.958 kΩ.

P15.41 Design a broadband bandpass filter to meet the fol-
lowing specification: (a) 3 dB cutoff frequencies of 
10  Hz and 20  kHz, (b) a passband gain of 2, (c) a 
purely resistive input impedance of 1 kΩ, (d) a slope 
of low-frequency and high-frequency asymptotes of 
±20 dB/decade, (e) 1 μF capacitors are to be used.

 Ans. First stage, low-pass filter: Rr  =  1  kΩ, Rf  =  8  Ω; 
 second stage, high-pass filter, Rr = 16 kΩ, Rf = 4 MΩ.

P15.42 It is required to design a third-order high-pass 
Butterworth filter using a first-order high-pass filter 
cascaded with a second-order high-pass, noninverting 
filter of the type shown in Figure 15.17, reproduced in 
Figure P15.42 using a unity-gain amplifier. The filter 
should have a gain of 20 dB and a 3 dB cutoff frequency 
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of 10 krad/s, using 0.1  μF capacitors. Determine the 
required values of resistances.

 Ans. R1 = 500 Ω, R2 = 2 kΩ; first-order filter, Rr = 1 kΩ, 
Rf = 10 kΩ.

P15.43 A noninverting bandpass filter of the type shown in 
Figure 15.24 is required having a center frequency of 
100 kHz and a Q of 20. The filter is to have 1 kΩ resis-
tors and capacitors of equal value C. Determine C, A, 
and the maximum gain.

 
Ans. C A= ( ) = = - =10 2 2 25 5

2
20

4 93/ nF,p . . ,
 

maximum gain dB= @ =
QA

2
70 37

P15.44 It is required to design a second-order bandpass filter 
of the type shown in Figure 15.25, reproduced in Figure 
P15.43. The filter should have a gain of −10, Q  =  10, 
ω0 = 500 rad/s, using 1 μF capacitors. Determine the 
required values of resistances.

 Ans. R1 = 40 kΩ, R2 = 2 kΩ, R3 = 105.3 Ω (Figure P15.44).

P15.45 It is required to design a unity-gain, inverting, second-
order, Butterworth high-pass filter of the type shown 
in Figure 15.28, reproduced in Figure P15.45. The filter 

should have a 3 dB cutoff frequency of 500 Hz, using 
0.5  μF capacitors, as in Example 15.4. Determine the 
values of R1 and R3.

 Ans. R1
6000

2
1350= @

p
W and R3

2000 2
3

300= @
p

W.

P15.46 It is required to design a unity-gain, inverting, second-
order, Butterworth low-pass filter of the type shown 
in Figure 15.29, reproduced in Figure P15.46. The filter 
should have a 3 dB cutoff frequency of 500 Hz, using 
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0.5  μF capacitors, as in Example 15.4. Determine the 
values of R1 and R3.

 
Ans.

 
C1

100 2
3

15 00= =
p

. nF and C3
300

2
67 52= =

p
. nF .

P15.47 It is required to design a bandstop filter based on the 
universal filter in Figure 15.30, reproduced in Figure 
P15.47. The filter should reject the power frequency of 
50 Hz with a Q of 100, using C = 1 μF.

 
Ans.

 
R = =

10
3 183

p
. kW, 2RQ = 636.6 kΩ, C/2Q = 5 nF.

P15.48 A Butterworth low-pass filter is required having an 
attenuation of 1  dB at 100  Hz and at least 50  dB at 
1 kHz. (a) Specify the order of the filter; (b) determine 
the cutoff frequency of the filter.

 Ans. (a) 3; (b) 787 rad/s.
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Responses to Periodic Inputs

Objective and Overview

Chapter 8 was concerned with the sinusoidal steady state 
in which all the sources applied to a given circuit are of 
the same frequency. This case can be readily generalized 
to inputs that are nonsinusoidal but periodic. The basis 
for this generalization is Fourier’s theorem, according 
to which a periodic signal of a given frequency can be 
expressed, in general, as an infinite series of sine and 
cosine functions whose frequencies are integral multi-
ples of the frequency of the periodic signal. The ampli-
tudes of the higher-frequency sinusoids decrease fairly 
rapidly in most cases so that the periodic signal can be 
represented in practice by a finite sum of sinusoids.

Once a periodic signal is represented as a series expan-
sion of sinusoids of different frequencies, the response 
of a linear time-invariant (LTI) circuit to the periodic 
signal is the sum of the responses to the individual fre-
quency components. The different frequencies do not 
interact in an LTI circuit so that each of these responses 
can be obtained using phasor analysis, as was done in 
Chapter 8.

Circuit responses to periodic signals are of consider-
able practical interest, because these signals are very 
common. The steady state of any linear or nonlinear cir-
cuit, other than the dc steady state, is periodic. Thus, the 
outputs of free-running oscillators, the time bases of TV 
and computer displays, and continuous vibrations of all 
kinds are periodic signals.

The Fourier series expansion (FSE) of periodic func-
tions can be generalized to nonperiodic functions by 
means of the Fourier transform (Chapter 23).

This chapter begins by presenting Fourier’s theorem 
and deducing how the coefficients of the sine and cosine 
terms of the FSE can be obtained. The derivation of the 
FSE is significantly simplified if the given periodic func-
tion possesses some symmetry properties or if it’s the 
sum, the product, the derivative, or the integral of func-
tions whose FSE is already known. These simplifications 
are discussed in considerable detail. This is followed by 
considering circuit responses to periodic signals and the 
average power involved, leading to the definition and 
derivation of the root-mean-square (rms) value of a peri-
odic voltage or current.

16.1  Fourier Series

Figure 16.1 illustrates a periodic function f(t) of arbitrary 
waveform. Its period T is defined, like that of a sinu-
soidal function, as the time interval between successive 
repetitions of the same full range of values of the peri-
odic function.

Mathematically, the defining property of any periodic 
function f(t) of period T is

 f t f t nT( ) = +( ) (16.1)

for any t within the period T, where n is any positive or 
negative integer. This means that the function repeats 
every period T. Thus, In Figure 16.1, f(t0) has the same 
value as f(t0 + T), f(t0 − T), and so on for any integral 
multiple of T. The sinusoidal function discussed in 
Chapter 8 is an example of a periodic function so that 
the same definitions of cycle, frequency, and angu-
lar frequency for a sinusoidal function (Equation 8.2) 
apply to periodic functions in general. In particular, 
the reciprocal of T is the fundamental frequency of the 
periodic waveform.

From a mathematical viewpoint, a periodic time func-
tion extends over all time, from −∞ to +∞. In practice, 
a function can be assumed periodic if it has been in a 
steady state for a time interval that is large compared to 
the period, say, 10 times. Periodic functions need not be 
time functions. They can be spatial functions, in which 
case the period is the wavelength.

16
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t0 – T t0 + Tt0
t

TT

f(t)
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FIGURE 16.1
Periodic function.
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A remarkable theorem on periodic functions is 
Fourier’s theorem:

Fourier’s Theorem: A periodic function f(t) can be expressed, 
in general, as an infinite series of cosine and sine functions:

 
f t a a n t b n t

n

n n( ) = + +( )
=

¥

å0

1

0 0cos sinw w
 

(16.2)

where
n is a positive integer
a0, an, and bn are constants, known as Fourier  coefficients, 

that depend on f(t)

The component having n  =  1 is the fundamen-
tal and is represented by the sum of two terms, 
a1cosω0t  +  b1sinω0t, where ω0  =  2πf  =  2π/T. The com-
ponent having n > 1 is the nth harmonic and is repre-
sented by the sum of two terms, ancosnω0t + bnsinnω0t. 
The series expression of Equation 16.2 is the Fourier 
series expansion (FSE) of f(t).

To appreciate the idea behind Fourier’s theorem, con-
sider the periodic triangular waveform of Figure 16.2 
having a unit amplitude and a period of 4  s. The FSE 
of the negation of this waveform is derived in Example 
16.5. The FSE of the waveform of Figure 16.2 is
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(16.3)

Comparing Equations 16.2 and 16.3, it is seen that no 
sine terms are present in Equation 16.3 and the cosine 
terms are nonzero for odd values of n only. This is gen-
erally true of many FSEs, that is, some values of an and 
bn in Equation 16.2 may be zero in some cases. The first 
term in the FSE in Equation 16.3, which is (8/π2)cosω0t, 
is shown in Figure 16.3a for the first period, 0–4 s, and 
is a rough, first approximation to the triangular wave-
form. Adding the second term in the FSE, (8/9π2)cos3ω0t, 
which is the third harmonic, gives a better approxima-
tion, as in Figure 16.3b. Adding the fifth harmonic, the 
third term in the FSE, and higher harmonics in the FSE 
further improve the approximation.

Although periodic functions encountered in practice can 
be usually expressed as FSEs, it is mathematically of inter-
est to determine if Fourier’s theorem applies to any arbi-
trary periodic function. Dirichlet’s conditions, which are 
sufficient to ensure that the FSE of a given periodic function 
f(t) converges to f(t) for any t, may be stated as follows:

 1. The integral f t dt
t

t T

( )
+

ò
0

0

 exists, that is, the inte-

gral is finite, for any arbitrary t0.
 2. f(t) is single valued over a period, with only a 

finite number of finite discontinuities, maxima, 
or minima.

Combining the sine and cosine terms for the same n 
in Equation 16.2, the FSE becomes
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(16.5)

16.2  Fourier Analysis

The object of Fourier analysis is to derive the Fourier 
coefficients of a given FSE. Some integral trigonometric 
relations needed for this purpose can be summarized as 
follows:

Summary: Given the four functions cosmω0t, sinmω0t, 
cosnω0t, and sinnω0t, where m and n are nonzero integers, the 
integral of the product of any two of these functions over 
the period of the fundamental, T = 2π/ω0, is zero, except for 
the products cos2nω0t and sin2nω0t, having m = n, in which 
case the integral is T/2.
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soidal  waveform and (b) adding a third-harmonic gives a better 
approximation.
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Thus,
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Equations 16.6 through 16.8 are proved next, using 
basic trigonometric relations (Appendix B). The proof is 
based on the following basic concept:

Concept: The integral of the kth harmonic, sinkω0t or 
coskω0t, where k is a nonzero integer, is zero over the period of 
the fundamental component, T = 2π/ω0.

In Figure 16.4, the integral of the fundamental com-
ponent sinω0t is clearly zero over a period, such as that 
from t = 0 to T, since the area of a positive half-cycle is 
equal in magnitude but opposite in sign to the area of a 
negative half-cycle. The integral of 0.5sin3ω0t between 
t  =  0 and T is also zero because three full periods are 
included in this interval. In general,
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When k  =  0, Asinkω0t  =  0, and its integral over a 
period is zero. In a similar manner,
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When k = 0, Acoskω0t = 1, and its integral over a period 
is AT = 2Aπ/ω0.

Consider the trigonometric identities

 sin sin cos cos sina b a b a b+( ) = +  (16.11)

and

 sin sin cos cos sina b a b a b-( ) = -  (16.12)

If Equations 16.11 and 16.12 are added together,
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Identifying β with nω0t and α with mω0t, the integral 
in Equation 16.6 becomes
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Since m and n are integers, (m + n) or (m − n) is either 
a nonzero integer or a zero (m = n). The nonzero inte-
ger can be identified with k in Equation 16.9 so that the 
integrals on the RHS of (Equation 16.14) are zero. When 
m = n, the integrand of the second integral on the RHS 
of Equation 16.14 is zero, and the first integral is zero, so 
that the integrals on the RHS of Equation 16.14 are again 
zero. This proves Equation 16.6.

Consider next the trigonometric identities

 cos cos cos sin sina b a b a b+( ) = -  (16.15)

and

 cos cos cos sin sina b a b a b-( ) = +  (16.16)

If Equations 16.15 and 16.16 are added together,
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2  
(16.17)

Identifying β with nω0t and α with mω0t, the first 
 integral in Equation 16.7 becomes
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(16.18)
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FIGURE 16.4
Fundamental and third harmonic over a period of the fundamental.
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As long as m ≠ n, (m + n) and (m − n) are nonzero inte-
gers, and the integrals are zero (Equation 16.10). If m = n, 
the first integral on the RHS of Equation 16.18 is zero, 
and the second integral is T, so that the RHS of Equation 
16.18 is T/2. This proves Equations 16.7 and 16.8 for the 
cosine functions. The proof for the sine functions follows 
along the same lines, starting with subtracting Equation 
16.15 from Equation 16.16, which gives the difference 
between two cosine functions rather than their sum.

Returning to Fourier analysis and the determination of 
Fourier coefficients, we note that a0 in the FSE is determined 
by integrating both sides of Equation 16.2 over a period:
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where the second and third integrals on the RHS are 
zero in accordance with Equations 16.9 and 16.10. It 
 follows that
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a0 is therefore the average of f(t) over a period. It is the 
dc component of f(t), whereas the cosine and sine terms 
are the ac component.

We wish to determine next an and bn, where n refers 
to a particular positive integer in the range 1 to ∞, such 
as a3 or b5. But since it is common practice to also use n 
as an indexing positive integer in the range 1 to ∞, as in 
Equation 16.2, it is necessary to distinguish between the 
indexing positive integer in the range 1–∞ and a par-
ticular value in this range because both will occur in the 
same expression. We will denote the indexing integer in 
the FSE of Equation 16.2 by k and let n denote the order 
of the harmonic for which an and bn are to be determined.

If both sides of Equation 16.2 are multiplied by 
cosnω0t and are integrated over a period and invoking 
Equations 16.6 through 16.8, we obtain
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where the only nonzero integral is that of cos(k − n) for 
k = n, which results in an integral (T/2)an.

This gives
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Note that setting n = 0 in Equation 16.20 gives twice  
the value of a0 (Equation 16.19). Hence, a0 cannot, in 
 general, be obtained from an by setting n = 0.

To determine bn, we multiply both sides of Equation 
16.2 by sinnω0t, integrate over a period, and invoke 
Equations 16.6 through 16.8 to obtain
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for k = n, as in the preceding case. This gives
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The derivation of the Fourier coefficients can be 
 summarized as follows:

Summary: a0 is the average of f(t) over a period, an is twice 
the average of f(t)cosnω0t over a period, and bn is twice the 
average of f(t)sinnω0t over a period.

Primal Exercise 16.1

Express the following functions as FSEs and determine 
the period by applying the definition of periodicity 
( f(t) = f(t + nT)): (a) sin2tcos4t and (b) sin2t + sin5t + sin7t. 
Note that the fundamental frequency is the largest common 
factor of the frequencies of the individual components.

Ans. (a) −0.5sin2t + 0.5sin6t, π; (b) periodic of period 2π.

Example 16.1: Fourier Analysis of Sawtooth Waveform

It is required to derive the Fourier coefficients of the 
sawtooth waveform of Figure 16.5.

Solution:
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the period is a triangle of area AT/2, and the average 
over a period is the area divided by the period or A/2. 
An easier way of obtaining the average value in many 
cases is to determine by how much the horizontal axis 
should be moved so that the area enclosed by the func-
tion above the new horizontal axis is the same as the 
area enclosed by the function below this axis. It is seen 
that in Figure 16.5, if the horizontal axis is moved in 
the positive direction (i.e., upwards) by +A/2, as in 
Figure 16.6a, as much positive area is enclosed by the 
function as negative area. The average value is there-
fore +A/2.
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Integrating by parts or using the Table of Integrals 
(Appendix B),
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The FSE does not have any cosine terms for reasons that 
will be explained later.
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where ω0T  =  2π. The trigonometric form of fst(t) is 
therefore
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The FSE of Equation 16.22 makes sense. For exam-
ple, if the dc component A/2 is subtracted from the 
FSE, the  ac component, of zero average, is as shown 
in Figure 16.6a. The sinusoidal function that roughly 
approximates the waveform of Figure 16.6a is –Bsinω0t, 
where B is some appropriate amplitude. This agrees 
with the fundamental component in the FSE. The addi-
tional harmonics, all being negative sinusoids, improve 
the approximation.

At the points of discontinuity, where f(t) jumps between 
0 and A, t = kT, where k = 0, ±1, ±2, ±3, …. The sinusoi-
dal terms are of the form sin(nω0 × kT) = sin(2πnk), where 
ω0T = 2π. Since nk is an integer, sin(2πnk) = 0. It follows 
that all the sinusoidal terms vanish at t = kT and f(t) = A/2, 
which is the average value of f(t) at the two ends of the 
discontinuity. This is a general feature of the FSE.

Problem-Solving Tips

• Remember that ω0T = 2π.
• When the period has a simple geometric form, a0 

can be easily determined by dividing the area over 
the period by the period T or by shifting the hori-
zontal axis so as to obtain a zero average. The aver-
age value is then equal to the shift of the horizontal 
axis. If the shift is upwards, the average value  is 
positive, and conversely.

• Whenever feasible, check if the form of the FSE 
makes sense as a rough approximation to the given 
periodic function.

t
–T

A

T

fst(t)

2T

FIGURE 16.5
Figure for Example 16.1.

t

–T

A/2

–A/2
T 2T

t

–T T 2T
–A/2

A/2

(b)

(a)

FIGURE 16.6
(a) Sawtooth waveform of zero average, and is approximated by a 
negative sinusoid in (b).
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Primal Exercise 16.2

Determine ω0 for the function of Figure 16.5 if (a) T = 1 s 
and (b) T = π s.

Ans. (a) 2π rad/s; (b) 2 rad/s.

16.2.1  Exponential Form

The FSE can also be conveniently expressed in expo-
nential form. For this purpose, cosnω0t and sinnω0t in 
Equation 16.2 are replaced by their exponential forms, 
and terms having the same exponent are grouped 
together. Thus,
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(16.23)

Let Cn  =  (an − jbn)/2. Substituting for an and bn from 
Equations 16.20 and 16.21, Cn can be expressed as
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Using Euler’s formula (Equation 8.3), we obtain
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It follows that for n = 0,
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Note that unlike an (Equation 16.20), C0 can be 
obtained from Cn by setting n = 0 in the integrand in 
Equation 16.25.

If the complex conjugate of Cn is denoted by 
C a jbn n n

* = +( )/2, it can be readily shown that Cn
* is sim-

ply derived from Cn by changing the sign of n, as this 
changes the sign of the sine component but not the 
cosine component. Thus, substituting for an and bn from 
Equations 16.20 and 16.21 and using Euler’s formula,
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Equation 16.23 can be then expressed as
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Note that the two summations on the RHS of Equation 
16.28 represent the ac component and have a zero 
average.

If the index values of n in the last term on the RHS are 
changed to negative integers from −1 to –∞, C−n becomes 
Cn, and the sign of the exponent in the last term on the 
RHS becomes positive. Equation 16.28 can now be writ-
ten as
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Equation 16.29 can be expressed more compactly as
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where n = 0 gives the first term in Equation 16.29, posi-
tive values of n give the middle term, and negative val-
ues of n give the last term. It should be noted, however, 
that whereas Equation 16.30 is the compact mathemati-
cal form, Equation 16.29 is the more practical form. This 
is because in some cases, as in Example 16.2, deriving Cn 
using Equation 16.25 and then setting n = 0 do not give 
a finite value for C0. In such cases, C0 is derived directly 
from the average value of f(t) and used in Equation 16.29.

The relationships between Cn, an, and bn readily follow 
from the definition of Cn. Thus,

 a C b Cn n n n= ( ) = - ( )2 2Re and Im  (16.31)
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where cn and θn are given by the relations of Equation 16.5.
Compared to the trigonometric form, the exponential 

form is advantageous for several reasons: (1) it is gener-
ally easier to apply Equation 16.25 to determine Cn rather 
than using Equations 16.20 and 16.21 to determine an 
and bn, (2) deriving Cn gives both an and bn simultane-
ously, and (3) some important properties of f(t), such as 
its frequency spectrum, are expressed directly in terms 
of Cn, as discussed next.

16.2.2  Frequency Spectrum

The plots of |Cn| and θn against frequency are, respec-
tively, the amplitude spectrum and the phase spectrum 
of f(t). They both constitute the frequency spectrum of f(t). 
Because frequencies in the FSE have discrete values only, 
the frequency spectrum of a periodic function is a line spec-
trum that consists of a series of lines at ω = nω0, where n = 0, 
±1, ±2, ±3, … (Figure 16.7). Since C Cn n- = *, it is seen that 
|Cn| = |C−n| and ∠Cn =  − tan−1(bn/an) =  −  ∠C−n, because Cn 
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and its complex conjugate have the same magnitude but 
phase angles of opposite sign. The amplitude spectrum is 
therefore an even function, that is, it is symmetrical about 
the vertical axis (Figure 16.7a). Note that |C0| is the mag-
nitude of the dc component and |Cn| is half the amplitude 
of the fundamental component (n = 1) or the harmonics 
(n > 1), in accordance with Equation 16.32. The phase spec-
trum, on the other hand, is an odd function (Figure 16.7b). 
However, when Cn is purely real (bn = 0), then θn = 0°, when 
Cn > 0, or θn = 180°, when Cn < 0. In these cases, the negation 
of 0° or 180° is the same angle of 0° or 180°.

It should be noted that ω and ω0 are positive quan-
tities. Negative values of ω/ω0 in Figure 16.7 arise 
because of negative values of n that multiply a posi-
tive value of ω0 to give a negative value, −nω0. So 
negative values of nω0 are not negative frequencies, 
which have no physical meaning. Mathematically, 
these negative values combine with their positive 
counterparts in complex exponentials (Equation 
16.30) to give real cosine and sine terms, because all 
physical voltages and currents are real and cannot 
have imaginary components.

The exponential form of the FSE for the sawtooth 
waveform is derived in Example 16.2, together with its 
frequency spectrum. This example also demonstrates an 
important and useful technique, namely, that of deriv-
ing the FSE of a different but related version of a given 
f(t) from the already derived FSE of f(t).

Example 16.2: Exponential Fourier Series 
of Sawtooth Waveform

It is required to derive the exponential Fourier coeffi-
cients of the sawtooth waveform of Figure 16.5 and plot 
its amplitude and phase spectra.

Solution:
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with ω0T = 2π,
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Cn is imaginary, which means that an = 0 (Equation 
16.31). Note that the average value of fst(t) is A/2 and 
cannot be obtained by setting n = 0 in Equation 16.33. 
This is because if n = 0, then it should be substituted in 
the expression for Cn before integration. Otherwise, the 
integration would mean dividing by zero, which invali-
dates the result.

From Equation 16.29, the exponential form of fst(t) is
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From Equation 16.33, |Cn|  =  A/2πn. The amplitude 
spectrum consists of a line of height A/2 at ω = 0 and 
lines of height A/(2πn) at nω/ω0, where n is a positive or 
a negative integer (Figure 16.8a). The height of A/(2πn) 
is one-half the amplitude of the fundamental or the nth 
harmonic. The phase angle of Cn is +90° for n, a positive 
integer, and −90° for n, a negative integer (Figure 16.8b).

Cn can be obtained using MATLAB’s int(E,t,a,b) 
command. Ignoring for the moment A/T2, the integral 

dc component
|Cn|

Fundamental of     
frequency   0 

/   0

Harmonics

(a)

0 1–1 2 3 4–2–3–4

(b)

1 2 3 4

–1

n

–2–3–4
/   0

FIGURE 16.7
(a) Amplitude spectrum; (b) frequency spectrum.
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te dtjn t
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0
 can be evaluated by entering the following 

code:

syms t n w
int(t*exp(−j*n*w*t),t,0,2*pi/w)

where w denotes ω0. MATLAB returns:

-1/(n^2*w^2)+((1/exp(2*pi*n*i))* 
(1+2*pi*n*i))/(n^2*w^2)

which is
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since ej2πn = 1 for all n. Multiplying by A T A/ /2
0
2 24= w p  

gives C j
A

n
n =

2p
, as in Equation 16.33.

If the function fst(t) of Figure 16.5 is negated (Figure 
16.9a), then shifted upward by A, it becomes the 
“reversed sawtooth” waveform fstr(t) of Figure 16.9b. 
The FSE of fstr(t) is obtained by adding A to the negation 
of the RHS of Equation 16.34:
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Equation  16.35 also follows from fst(t) + fstr(t) = A.

C0¢ of fstr(t) is A/2 and its Cn
¢  is

 
- j

A
n2p

. The amplitude spec-

trum is unchanged, but the phase spectrum is negated.

Primal Exercise 16.3

Derive the Fourier coefficients of the reversed sawtooth 
waveform of Figure 16.9b by applying Equations 16.19 
through 16.21.

Example 16.3: Fourier Analysis 
of Rectangular Waveform

It is required to derive the Fourier coefficients of the 
rectangular pulse train fpt(t) illustrated in Figure 16.10 
and plot its amplitude and phase spectra.

Solution:

Since fpt(t) is an even function, it is convenient to take 
a period that is symmetrical about the vertical axis, as 
shown. Hence, Equation 16.25 becomes
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where sinc(x) = (sinx)/x. The sinc(x) function, illustrated in 
Figure 16.11, is an important function in signal  analysis. 
sinc(x) = 0, when sin(x) = 0, that is, when x = nπ, where 
n is a positive or negative nonzero integer. When x → 0, 
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FIGURE 16.8
Amplitude spectrum (a) and phase spectrum (b) of the sawtooth 
waveform.
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sinc(0) → 0/0, which is indeterminate. However, accord-
ing to L’Hopital’s rule (Appendix A),
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It follows that sinc(0)  =  1, as in Figure 16.11. For 
0 < x < π, sin(x) > 0, and sinc(x) > 0. For π < x < 2π, sin(x) < 0, 
and sinc(x) < 0. For x > 0, sinc(x) therefore has alternat-
ing positive and negative lobes between successive zero 
crossings at integral multiples of π. But since sinc(x) is a 
sine function divided by its argument, the magnitude of 
sinc(x) decreases as the magnitude of x increases. sinc(x) 
is an even function, because when x changes sign, sin(x) 
also changes sign, since sin(−x) = −sin(x).

Returning to Equation 16.36, we note that since Cn is 
real, bn = 0, and the FSE of fpt(t) function does not have 
any sine terms. The reason for this is that the function 
is even, as explained in the next section. The average 
value of fpt(t) is Aτ/T. However, it can be obtained in 
this case by setting n = 0 in Equation 16.36, because in 
this case, the numerator of the integral is zero when 
n  =  0, so L’Hopital’s rule can be applied and gives a 
finite result.

If we set α = τ/T and replace ω0T by 2π,
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and
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To express the FSE in trigonometric form, we substi-
tute a0 = C0 = αA, an = 2Cn, and bn = 0 in Equation 16.2:

 

f t A
A

t t

t

pt ( ) = + +é
ëê

+ +

a
p

ap w ap w

ap w

2 2
2

2

3
3

3

0 0

0

sin cos
sin

cos

sin
cos ��ù

ûú  
(16.40)

The amplitude spectrum is easier to visualize if 
a particular value of α is selected, say, α  =  1/5. From 
Equation 16.38, |Cn| = (A/5)|sinc(nπ/5)|. It is seen that 
|C0| = A/5, and the lines of the amplitude spectrum are 
bounded by the magnitude of the sinc function for con-
tinuous n, as illustrated in Figure 16.12a. The line spec-
tra occur at integer values of n = ω/ω0. The amplitude 
is zero for values of n that are integral multiples of 5. 
The phase spectrum is shown in Figure 16.12b. Since Cn 
is real, its phase angle is zero when Cn > 0 and is 180° 
when Cn < 0. The phase angle is zero when n = 0, since 
C0 = A/5 is positive and is not defined, strictly speaking, 
when Cn = 0, as when n = ±5, because the phase angle 
can be zero or 180° when the magnitude is zero.

If α is small, it is seen from Equation 16.40 that the fun-
damental and harmonics all have essentially the same 
amplitude 2αA, since for small x, sinx ≅ x. This is an 
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important result in signal analysis, according to which, 
the narrower the pulses, the more significant the higher 
harmonics are, relative to the fundamental.

To determine Cn using MATLAB’s int(E,t,a,b) com-
mand, we enter the following:

syms t n w a.
int(exp(−j*n*w*t),t,-a/2,a/2)

where
w is ω0

a is τ

MATLAB returns: (2*sin((a*n*w)/2))/(n*w), which is 
2 20

0

sin t w
w
n

n
/( ) . Substituting ω0/2 = π/T and α = τ/T, this 

becomes 
T n

n
sin a p

p
( ). Multiplying by A/T gives Cn as in 

Equation 16.38.
We can deduce from Equation 16.40 the FSE fsq(t) of a 

square wave of amplitude Am and zero average value 
(Figure 16.13). To do so, we set α = 1/2 and Am = A/2 and 
remove the dc value from Apt(t) (Equation 16.40). When 
n is even, sin(nπ/2) = 0, whereas for odd n, sin(nπ/2) is 
alternately +1 and −1. This gives

 

f t

A
t t t t

sq

m

( )

= - + - +é
ëê

ù
ûú

4 1
3

3
1
5

5
1
7

70 0 0 0p
w w w wcos cos cos cos �

 
(16.41)

Note that the cosine function is a first rough approxi-
mation to an even square wave.

Exercise 16.4

Derive the Fourier coefficients of the rectangular wave-
form of Figure 16.10 by applying Equations 16.19 
through 16.21.

Exercise 16.5

Determine A and α = τ/T in Figure 16.10 so that C0 = 1/2 
and C1 = 1/π.

Ans. A = 1, α = 1/2.

16.2.3  Translation in Time

The exponential form is convenient for determining the 
effect of translation in time. If a periodic waveform f(t) is 
delayed by td, it becomes f(t − td) with respect to the same 
time origin. Replacing t by (t − td) in Equation 16.30,
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The effect is to replace Cn by Cne−jnω0td. The mag-
nitude of Cn, and hence the amplitude spectrum, 
remains unchanged because ï ÷ ÷ ÷e n t j n tjn td- = -w w w0

0 0cos sin

cos sin2
0

2
0 1n t n tw w+ = . However, the new phase angle 

qn¢ is

 q q wn n dn t¢ = - 0  (16.43)

where θn is the phase angle of Cn. Conversely, if the 
function is advanced by ta, Cn is replaced by Cne+jnω0ta; the 
phase angle θn is increased by nω0ta. Note that a change 
in θn (Equation 16.32) implies a change of nω0td in the 
phase angle of each term of the FSE (Equation 16.4).

Example 16.4: Translation in Time 
and Fourier Analysis of Square Wave

It is required to derive the FSE of the square wave 
(Figure 16.12) when delayed or advanced by T/4.

Solution:

Since td = T/4, nω0td = nω0T/4 = nπ/2. When a function is 
delayed in time, a given part of the waveform will occur 
later in time, which means that the function is shifted 
to the right. Thus, consider the transition that occurs 
at t = −T/4 in Figure 16.13 from −Am to +Am. When the 
function is delayed by T/4, this same transition will 
occur at t = 0. In effect, the function is shifted by T/4 
to the right (Figure 16.14a). Conversely, if the function 
is advanced in time by T/4, the same transition now 
occurs at t = −T/2. In effect, the function is shifted by 
T/4 to the left (Figure 16.14b).

t
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Figure for Example 16.3.
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When the square wave function of Figure 16.12 is 
delayed by T/4 (Figure 16.14a), the phase angle of each 
of the terms in Equation 16.41 is decreased by nπ/2:
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If the square wave of Figure 16.12 is advanced by T/4 
(Figure 16.14b), it becomes the negation of Figure 16.14a, 
so that its FSE is the negation of Equation 16.44:
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As argued in connection with Figure 16.6, +sinω0t is 
qualitatively a first approximation in shape to the square 
wave of Figure 16.14a, whereas −sinω0t is qualitatively 
a first approximation in shape to the square wave of 
Figure 16.14b.

Simulation: PSpice can be used to (1) obtain a file 
printout of the amplitude and phase of each fre-
quency component of a periodic waveform and (2) 
display the amplitude spectrum of a periodic wave-
form. Periodic sources are available in PSpice, such 
as VPULSE and VSIN from the SOURCE library, 

which can be modified using parts from the analog 
behavioral module (ABM) Library. For example, a 
VSIN source followed by an ABS block from the ABM 
Library can be used to generate a full-wave rectified 
waveform (Figure 16.27b). VPULSE can be used to 
generate practically any periodic waveform of rect-
angular, triangular, or trapezoidal pulses by proper 
choice of pulse durations and rise and fall times. More 
general periodic waveforms consisting of straight-
line segments can be generated by the source VPWL_
RE_FOREVER (Example 16.8).

The square waveform of Figure 16.14a is simulated, 
assuming Am = 5 V and T = 2 s. VPULSE (Appendix C) is 
used to obtain a pulse train of 10 V peak-to-peak ampli-
tude and zero average value, as in Figure 16.15. The 
output is labeled vo using net alias. To run the simula-
tion, Time Domain (Transient) is selected for Analysis 
type, 6 is entered for ‘Run to time’, 0 for ‘Start saving 
data after’, and 0.1m for ‘Maximum step size’. In the 
same Simulation Settings window, select Output File 
Options. In the new Transient File Output Options win-
dow, select Perform Fourier Analysis, and enter 0.5 for 
‘Center Frequency’, 9 for ‘Number of Harmonics’, and 
V(vo) for ‘Output variables’. After the simulation is run, 
selecting Trace/Add Trace and then V(vo) displays vo 
as a function of time. Selecting Trace/Fourier displays 
the amplitudes of the Fourier components as a function 
of frequency. Expand the x-axis by selecting Plot/Axis 
settings and define an x-axis range of 0–5 Hz. The plot 
of Figure 16.16 is displayed. To label the first peak, for 
example, enter the cursor command sxv(0.5). After the 
cursor moves to the peak, press the Mark Label icon. The 
peak value is displayed as 6.3663 corresponding to a cal-
culated value of 4Am/π = 20/π = 6.3662. The other peaks 
are inversely proportional to the order of the harmonic, 
in accordance with Equation 16.44. Note that the ampli-
tude of the Fourier components displayed by PSpice is 
cn = 2|Cn| (Equation 16.32).

To view the printout, select View Simulation Output 
File from the Schematic1 page and scroll down to the 
Fourier analysis part. The results tabulated below are 
displayed. The dc component is listed separately at 
the top and is insignificant. The first column is the 
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harmonic number, with the harmonic number 1 being 
the fundamental. The second column is the frequency 
in Hz of the harmonics. The third column is the mag-
nitude of the harmonics. It is seen that the even har-
monics are nominally zero. The magnitudes of the 
odd harmonics are in accordance with those in Figure 
16.16. The fourth column is the normalized magni-
tude of the harmonics with respect to the fundamen-
tal. The fifth column is the phase angle of the 
harmonics, assuming a sine function, as in Equation 
16.44, so that the phase angles of the odd harmonics 
are nominally zero. The last column is the normalized 
phase angle with respect to the fundamental. The 
total percentage harmonic component at the end of 
the table is a measure of the total harmonic content of 
the signal.

Primal Exercise 16.6

Given the periodic function f(t) in Figure 16.17, deter-
mine the dc component of f(t).

Ans. 1.

Primal Exercise 16.7

Given the periodic function f(t) in Figure 16.18, deter-
mine the dc component of f(t) in two ways: (a) from the 
area enclosed by f(t) and (b) by shifting the horizon-
tal axis so that the areas above and below the axis are 
equal. Note how much this method is easier in this case.

Ans. 4.

Fourier Components of Transient Response V(VO)
dc Component = 3.500184E−04

Harmonic Frequency, Fourier Normalized Phase, Normalized
No. Hz Component Component deg Phase, deg

1 5.000E−01 6.366E+00 1.000E+00 −2.070E−02 0.000E+00
2 1.000E+00 7.000E−04 1.100E−04 8.996E+01 9.001E+01
3 1.500E+00 2.122E+00 3.333E−01 −6.210E−02 −4.850E−10
4 2.000E+00 7.000E−04 1.100E−04 8.993E+01 9.001E+01
5 2.500E+00 1.273E+00 2.000E−01 −1.035E−01 −2.425E−09
6 3.000E+00 7.000E−04 1.100E−04 8.989E+01 9.002E+01
7 3.500E+00 9.095E−01 1.429E−01 −1.449E−01 −6.789E−09
8 4.000E+00 7.000E−04 1.100E−04 8.986E+01 9.002E+01
9 4.500E+00 7.074E−01 1.111E−01 −1.863E−01 −1.455E−08

Total Harmonic Distortion = 4.287948E+01 percent

           Frequency
0Hz 0.5Hz 1.5Hz 2.5Hz 3.5Hz 4.5Hz

0V

2.0V

4.0V

6.0V

8.0V

(4.5000,707.365m)
(3.5000,909.470m)

(2.5000,1.2733)

(1.5000,2.1221)

(500.000m,6.3663)

FIGURE 16.16
Figure for Example 16.4.
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Primal Exercise 16.8

Derive (a) the Fourier coefficients of the square wave-
forms of Equations 16.44 and 16.45 by applying 
Equations 16.19 through 16.21, and (b) the exponential 
form of the square waves fsq(t), fsqd(t), and fsqa(t).

Ans. (b)
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where n is odd.

Exercise 16.9

Derive and compare the amplitude and phase spectra 
of the square waves of Equations 16.41, 16.44, and 16.45.

Ans. The amplitude spectrum is C
A

n
n

m= 2
p

, where n is 

odd, for the three cases. The phase spectrum of fsq(t) is 
zero for n = 1, 5, 9, 13, etc., and is 180° for n = 3, 7, 11, 
15, etc. The phase spectrum of fsqd(t) is −90° for positive n. 
The phase spectrum of fsqa(t) is 90° for positive n. In all 
cases, the amplitude spectrum is an even function and 
the phase spectrum is an odd function.

16.3  Symmetry Properties of Fourier Series

16.3.1  Even-Function Symmetry

Consider an even function such as

 f t t t teven ( ) = + +2 5 2 10 30 0 0cos cos cosw w w  (16.46)

Such a function is even, that is, feven(t) = feven(−t), because 
all of its components are even. If an odd function, such 
as 4sinω0t, is added to the even components, then the 
function is no longer even, since 4sinω0(−t) = −4sinω0(t). 
This leads to the following general concept:

Concept: The FSE of an even periodic function does not con-
tain any sine terms; its Fourier coefficients can be evaluated 
over half a period.

When the function is even, a period of the function 
is centered about the vertical axis, from −T/2 to +T/2. 
Since the FSE of an even periodic function does not con-
tain any sine terms, bn = 0 and Cn = an/2 is real. It follows 
that
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If we substitute t =  − t′ in the first integral in brack-

ets, this integral becomes f t n t dt
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. Changing the dummy inte-

gration variable back to t and invoking the property 
of an even function that f(t)  =  f(−t), with the cosine 
function itself an even function, the integral becomes 
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The dc component is obtained from the first integral 
in Equation 16.48 by setting n = 0. With an = 2Cn, it fol-
lows that
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Note that an even function can have a dc component 
and still remain even, because the dc component, being 
a constant, has even symmetry. Examples of even func-
tions are the rectangular pulse train (Figure 16.10) and 
the square waveform of Figure 16.13. The correspond-
ing FSEs (Equations 16.40 and 16.41) do not have any 
sine terms.

16.3.2  Odd-Function Symmetry

In a manner exactly analogous to that of even-function 
symmetry, it can be argued that an odd function can 
only contain odd terms, without any even terms. This 
implies that the FSE of an odd function consists of sine 
terms only without any cosine terms or a dc component. 
Thus, the following concept applies:

Concept: The FSE of an odd periodic function does not con-
tain an average term nor any cosine terms; its Fourier coef-
ficients can be evaluated over half a period.

When the function is odd, a period of the function 
extends from −T/2 to +T/2. Since the FSE of an odd 
periodic function does not contain any cosine terms,  
an = 0 and Cn = −jbn/2 is imaginary. It follows that
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If we substitute t =  − t′ in the first integral in brackets, 

this integral becomes f t n t dt
T
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. Changing the dummy inte-

gration variable back to t and invoking the prop-
erty of an odd function that f(t) = –f(−t), with the sine 
function itself an odd function, the integral becomes 
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, the same as the second integral. 

Hence, for the odd function,
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or
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Note that the term between square brackets in 

Equation 16.51 is the imaginary component, including 
j and the sign.

An example of an odd function is the square waves 
of Figure 16.14. The FSEs of these functions (Equations 
16.44 and 16.45) consist of sine terms only.

Note that a periodic function that appears to be nei-
ther odd nor even can become odd when the dc compo-
nent is removed. An example is the sawtooth waveforms 
of Figures 16.5 and 16.9b. If the dc component A/2 is 
subtracted, the functions become odd, as illustrated in 
Figure 16.19. The FSEs (Equations 16.22 and 16.35) have 
a dc component and sine terms only, corresponding to 
an odd ac component. In such cases, Equations 16.51  
and  16.52 should be applied to the function after the 
dc component is removed.

16.3.3  Half-Wave Symmetry

A periodic function f(t) possesses half-wave symmetry if

 f t f t T f t f t T t T( ) = - +( ) ( ) = - -( ) £ £/ or / /2 2 0 2 
(16.53)

The two forms of the definition in Equation 16.53 
are identical, since the second form is obtained by 
subtracting T from the argument of the first form, in 
accordance with the definition of a periodic function 
(Equation 16.1). An example of a half-wave symmetric 
waveform is shown in Figure 16.20, where increasing 
or decreasing t by T/2 negates the value of the func-
tion, in accordance with Equation 16.53. Geometrically, 
half-wave symmetry means that if either half-cycle or 
half-wave is displaced horizontally by T/2 toward the 
other half, so that the two half-waves are aligned verti-
cally, the half-waves are symmetrical with respect to 
the horizontal axis.

fstr(t)

–T T 2T

t

A

(b)

fst(t)

t

–T

A

T 2T(a)

FIGURE 16.19
dc component removed from the sawtooth waveform (a), and from 
the reversed sawtooth waveform (b).
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Concept: The FSE of a half-wave symmetric periodic 
f unction does not contain an average term or any even har-
monics; its Fourier coefficients can be evaluated over half a 
period. Thus,
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To prove this property, we express Cn as
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Substituting t′ = t − T/2, the second integral becomes 
1
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variable t′ back to t, invoking the half-wave symme-

try property, and substituting
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It is seen that for n = 0 or even, e−jnπ =  cosnπ – j sinnπ = 1, 
so that Cn = 0. But for n odd, e−jnπ =  − 1. Equation 16.54 
then follow.

In terms of the coefficients an and bn of the trigonomet-
ric form

 a a b nn n0 0 0= = =, for even 

and
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The reason, of course, why half-wave symmetric 
waveforms have odd harmonics only is that odd har-
monics, such as the third harmonic in Figure 16.21, are 
half-wave symmetric. Thus, if the half-wave of the third 
harmonic between T/2 and T in Figure 16.21 is shifted 
by T/2 to the left, it becomes symmetrical to the half-
wave of the third harmonic between 0 and T/2 with 
respect to the horizontal axis. On the other hand, even 
harmonics are not half-wave symmetric. Thus, if the 
half-wave of the second harmonic between T/2 and T in 
Figure 16.21 is shifted to the left by T/2, it coincides with 
the half-wave of the second harmonic between T/2 and 
T. In fact, if when the half-wave of a periodic waveform 
between T/2 and T is shifted to the left by T/2 it coin-
cides with the half-wave between 0 and T/2, then the 
FSE of the periodic waveforms contains even harmonics 
only. In effect, the period of such a waveform is T/2 rather 
than T. An example of such a waveform is the full-wave 
rectified waveform discussed later in Example 16.6.

It should be noted that if a dc component, which is 
even, is added to a half-wave symmetric periodic wave-
form, the half-wave symmetric property is destroyed, 
but the ac component still does not contain any even 
harmonics. In this case, Equations 16.54 and 16.57 
should be applied to the function after the dc compo-
nent is removed.

16.3.4  Quarter-Wave Symmetry

A half-wave symmetric function that is odd or even is 
also symmetrical about a vertical line through the mid-
dle of its positive or negative half-cycles. Consider, for 
example, the function of Figure 16.22a. The function is 

t
T

T/2–T/2

t – T/2 t + T/2t

ftr(t)

Am

–Am

FIGURE 16.20
Half-wave symmetric periodic function.

T

Third harmonic

Second harmonic

T/2

FIGURE 16.21
Half-wave symmetry of odd and even harmonics.
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half-wave symmetric, for if the negative half-cycle from 
0 to −T/2 is shifted to the right by T/2, the shifted half-
wave and the positive half-wave from 0 to T/2 are sym-
metrical with respect to the horizontal axis. If instead 
of being shifted to the right by T/2, the negative half-
wave is folded around the vertical axis, so that the point 
at −T/2 coincides with the point at T/2, the two half-
waves are again symmetrical with respect to the hori-
zontal axis. This implies that each of the positive and 
negative half-cycles is symmetrical about a vertical line 
through its middle. Note that the half-wave symmetric 
function of Figure 16.20 does not have this property.

Formally, this can be proved as follows, consid-
ering an odd function to begin with: from the defi-
nition of half-wave symmetry (Equation 16.53), 
f(t) =  − f(t − T/2), 0  ≤  t  ≤  T/2. From the definition of 
an odd function, f(t) = −f(−t), which means that negat-
ing the argument negates the function. Negating the 
argument of −f(t − T/2) and the function, it becomes 
f(T/2 − t), so that

 f t f T t t T( ) = - £ £( )/2 /0 2 (16.58)

Equation 16.58 implies that f(t) is symmetrical about a 
vertical line through the middle of the positive half-cycle, 
at t = T/4, as illustrated in Figure 16.22a. From half-wave 
symmetry, f(t) is also symmetrical about the vertical line 
through the middle of the negative half-cycle.

If the odd function of Figure 16.22a is shifted by T/4 
to the left, it becomes the even function of Figure 16.22b. 
The symmetry about a vertical line through the middle 
of the positive or negative half-cycles is retained. A 
half-wave symmetric function that is also symmetrical 
about a vertical line through the middle of its positive 
or negative half-cycles is said to possess quarter-wave 
 symmetry. The square waves of Figures 16.15 and 16.16 
are examples of quarter-wave symmetric waveforms.

Since a quarter-wave symmetric waveform is also 
half-wave symmetric, the FSE of an odd, quarter-wave 
symmetric function consists of odd sine terms only, 
so that

 a0 = 0,   an = 0,  for all n,  bn = 0,  for even n

From Equation 16.57,
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Substituting t′ = T/2 − t, the second integral becomes
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Because each half-cycle of f(t) is symmetrical about 
its midline, f(T/2 − t′)  =  f(t′); sin(nω0T/2 − nω0t′)  = 
sin(nπ − nω0t′) = sin(nω0t′) when n is odd. Equation 16.59 
becomes
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(16.61)

Replacing the dummy integration variable t′ with t, 
the second integral becomes identical with the first, so 
that
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In other words, bn need only be evaluated over a quar-
ter period, from t = 0 to t = T/4. This is, in fact, because 
both f(t) and sinnω0t, with n odd, are symmetrical about 
the middle of the half-cycle from t = 0 to t = T/2.

Similarly, the FSE of an even, quarter-wave symmetric 
function consists of odd cosine terms only, so that

 a b n a nn n0 0 0 0= = =, ,for all for even  

Moreover, an for odd n need be evaluated over a quar-
ter period only:
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FIGURE 16.22
Quarter-wave symmetric periodic waveform.
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This can be proved in the same way as for bn in the 
case of an odd, quarter-wave symmetric function. 
Again, this is because both f(t) and cosnω0t, with n odd, 
are symmetrical about the middle of the half-cycle from 
t = −T/4 to t = T/4.

Symmetry properties are summarized in Table 16.1.

Primal Exercise 16.10

(a) Determine the average value of the periodic func-
tion f(t) in Figure 16.23 and (b) specify all the symmetry 
properties of the ac component of f(t).

Ans. (a) 1.5; (b) ac component is even, half-wave sym-
metric, and quarter-wave symmetric.

Example 16.5: Fourier Analysis of Triangular Waveform

It is required to determine the FSE of the triangular 
waveform of Figure 16.24.

Solution:

The function has zero average, is even, and possesses 
half-wave symmetry. It is also quarter-wave symmetric. 
Its FSE must contain odd cosine terms only. Over the 
interval 0 ≤ t ≤ T/4, ftr(t)  =  (4Am/T)(t − T/4). It follows 
from Equation 16.63 that
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TABLE 16.1

Summary of Symmetry Properties of Periodic Functions

Type of Symmetry bn an a0
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Figure for Primal Exercise 16.10.
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where using the exponential form makes the integration 
by parts somewhat simpler. It follows that
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In evaluating this expression, even values of n should not 
be used, because in applying Equation 16.64, we have 
already restricted n to be odd on account of half-wave 
symmetry. Hence,
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The FSE of f(t) is therefore
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Problem-Solving Tip

• When the Fourier coefficients an and bn are evalu-
ated using expressions that restrict the values of n, 
such as n being odd or even, only these restricted 
values should be used in deriving the individual 
coefficients an and bn.

Exercise 16.11

Derive the FSE of the triangular waveform of Figure 
16.24 when advanced by T/4, so that the origin is at the 
midpoint of the side of positive slope.

Ans.  f t
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n
n

n ttr
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n
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¥å8 1
22 2 0p
p wsin sin , where

n is odd.

Primal Exercise 16.12

Consider the periodic function of period 8  s in Figure 
16.25. (a) Determine a0; (b) remove the dc component and 
specify whether or not the ac component is half-wave 

symmetric by translating the negative half-cycle by 4 s 
so as to align it vertically with the positive half-wave; 
(c) specify whether the ac component is odd or even or 
quarter-wave symmetric; (d) specify the expression for 
determining an.

Ans. (a) 1; (b) ac component is half-wave symmetric; 
(c)  ac component is even and therefore quarter-wave 

symmetric; (d) a n t dt nn = ( )ò cos ,p / odd4
0

1

.

Primal Exercise 16.13

f1(t) and f2(t) are, respectively, the square and trian-
gular waveforms shown in Figure 16.26, each hav-
ing an amplitude of 1 unit and zero average value. 
(a) Determine the component of ( f1(t) +  f2(t)) having a 
frequency of 3π/2 rad/s. (b) Are f1(t) and f2(t) quarter-
wave symmetric? (c) Is the sum ( f1(t) + f2(t)) half-wave 
symmetric?

Ans. (a) −0.42cos1.5πt; (b) yes; (c) no.

16.4  Derivation of FSEs from 
Those of Other Functions

16.4.1  Addition/Subtraction/Multiplication

Concept: The FSEs of some functions can be derived from 
FSEs of other functions having the same period, through addi-
tion, subtraction, or multiplication.

This is illustrated by the following example.

0 4–4

f(t)

1

2

1 3–1–3
t, s

2–2 5 6 7 8–5–6–7–8

FIGURE 16.25
Figure for Primal Exercise 16.12.

t, s1 2–1–2

1

FIGURE 16.26
Figure for Primal Exercise 16.13.
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Example 16.6: Half-Wave and Full-Wave 
Rectified Waveforms

It is required to determine the FSE of (a) the half-wave 
rectified waveform of Figure 16.27a and (b) the full-
wave rectified waveform of Figure 16.27b.

Solution:

 (a) The given half-wave rectified waveform can be 
considered to be the product of a cosine func-
tion of amplitude A and a square pulse train of 
unity amplitude, both functions having the same 
period T (Figure 16.28). The FSE of the pulse train 
is that of Equation 16.40, with A = 1 and α = 1/2. 
The FSE of the cosine function is the function 
itself. Hence,
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   Multiplying each term of the FSE of the pulse 
train by cosω0t and using the trigonometric iden-
tity cosαcosβ = (1/2)[cos(α − β) + cos(α + β)],
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   The FSE contains a dc component A/π, a fun-
damental component A/2, and even harmonics as 
cosine terms, as to be expected for an even function.

 (b) The FSE of the full-wave rectified waveform of 
Figure 16.27b can be derived by considering it as 
the sum of a half-wave rectified waveform of ampli-
tude 2A and the function –Acosω0t (Figure 16.29). 
During the interval −T/4 ≤  t ≤ T/4, the  negative 
half-cycle of –Acosω0t subtracts from the positive 
half-cycle of the half-wave rectified waveform hav-
ing twice the magnitude, resulting in a positive 
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Figure for Example 16.6.
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Figure for Example 16.6.
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half-cycle of amplitude A, as in Figure 16.27. During 
the interval T/4 ≤ t ≤ 3T/4, the positive half-cycle 
of –Acosω0t simply fills the empty half-cycles of the 
half-wave rectified waveform, as required in the 
full-wave rectified waveform. The same is true for 
the other half-cycles in Figure 16.29.

   From Equation 16.68, with A replaced by 2A,
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   Adding –Acosω0t cancels the Acosω0t term and 
gives the FSE for full-wave rectified waveform:

f t
A A

t t

t

fw

n

( ) = + -æ
è
ç

+ - +
-( ) +

2 4 1
3

2
1

15
4

1
35

6
1

0 0

0

1

p p
w w

w

cos cos

cos �
44 1

2 1 2 3
2 0

n
n t n

-
+

ö

ø
÷ = ¼cos , , , ,w �

 
(16.70)

  where n = 1 refers to the first term, n = 2 refers to 
the second term, etc.

   Note that ω0 in Equation 16.70 is that of cosω0t, 
which is also the fundamental frequency of the 
half-wave rectified waveform. The fundamental 
frequency of the full-wave rectified waveform is 
in fact 2ω0. If this is denoted by w0¢, Equation 16.70 
becomes
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   The FSE now contains both odd and even har-

monics of the fundamental frequency  ¢w0.  The 
 full-wave rectified waveform can also be derived 
in alternative ways (Problem P16.30).

Simulation: The half-wave and full-wave rectified wave-
forms are generated from a sinusoidal waveform of 2 V 
amplitude and 50  Hz frequency. The VSIN source is 
entered as in Figure 16.30, with a phase angle of 90° so 
as to obtain a cosine function as in Figure 16.27. The half-
wave rectified waveform is obtained by applying the sinu-
soidal voltage to a voltage limiter, available in PSpice from 
ABM library as the part LIMIT. The default settings of the 
limits are 0 and 10, which means that only voltages in the 

range 0 to 10 V will be allowed through the limiter. The 
negative half-cycles of the sinusoid are therefore removed 
and only the positive half-cycles will appear at the output 
of the limiter. This output is labeled ‘hw’ in Figure 16.30.

The full-wave rectified waveform is obtained by 
applying the sinusoidal voltage to the ABS part from the 
ABM library. The output of this module is the absolute 
value of the input, so that the negative half-cycles of the 
sinusoid are “inverted” and become positive half-cycles, 
as required for the full-wave rectified waveform. The 
output of the ABS module is labeled ‘fw’ in Figure 16.30.

The Fourier analysis is performed as described in 
Example 16.4. Time Domain (Transient) is selected for 
Analysis type, and 60m is entered for ‘Run to time’, 0 
for ‘Start saving data after’, and 10u for ‘Maximum step 
size’. In the new Transient File Output Options window, 
under ‘Perform Fourier Analysis’, 50 is entered for ‘Center 
Frequency’, 6 for ‘Number of Harmonics’, and ‘V(hw), 
V(fw)’ for ‘Output variables’. After the simulation is run, 
select Trace/Fourier and then Trace/Add V(hw) and Trace/
Add Trace V(fw), and expand the x-axis by selecting Plot/
Axis settings and define an x-axis range of 0 to 350 Hz. 
The plot of Figure 16.31 is displayed. Considering the 
amplitude of the Fourier components for the half-wave 
rectified waveform, shown dashed, the magnitudes of the 
successive peaks correspond to the calculated magnitudes 
of the terms in Equation 16.68 of 0.6366, 0.4244, 0.08488, 
and 0.03638, all in volts. The magnitudes of the successive 
peaks of the full-wave rectified waveform correspond to 
the calculated magnitudes of the terms in Equation 16.70 
of 1.2732, 0.8488, 0.1698, and 0.07276, all in volts. The out-
put file gives the same magnitude values. The positive 
nonzero harmonics have a phase angle of nominally +90°, 
whereas the negative nonzero harmonics have a phase 
angle of nominally −90°. These ±90° phase angles give the 
cosine terms in the FSEs, as in the source VSIN.

Primal Exercise 16.14

Derive the FSE of the half-wave and full-wave rectified 
waveforms by applying Equations 16.19 to 16.21.
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FIGURE 16.30
Figure for Example 16.6.
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Primal Exercise 16.15

Consider a periodic half-sinusoid f(t) of period T > π/2, 
defined as f(t) = cost, −π/2 ≤ t ≤ π/2, and f(t) = 0 for the 
remainder of the period. (a) Determine a0, an, and bn of 
the FSE of f(t), in terms of n and ω0, as applicable and 
(b) verify that the FSE reduces to Equations 16.68 and 
16.71 in the case of a half-wave waveform and a full-
wave waveform, respectively.
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(b) ω0 = 1  rad/s for the half-wave rectified waveform, 
and ω0 = 2 rad/s for the full-wave rectified waveform.

Primal Exercise 16.16

Derive the FSE of the half-wave rectified and full-wave 
rectified waveforms when delayed by a quarter period 
of the supply so that they start as sinω0t functions.
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where ¢ =w w0 02 .

Primal Exercise 16.17

Determine (a) Cn for the full-wave rectified waveform in 
Figure 16.32a and (b) C1 for the modified full-wave recti-
fied waveform in Figure 16.32b.
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16.4.2  Differentiation/Integration

Concept: The FSE of a given periodic function can be differ-
entiated or integrated term by term. The result is the FSE of a 
periodic function that is the derivative or integral of the given 
function, except that integrating the dc component destroys 
the periodicity of the function.

This follows quite simply from differentiating or integrat-
ing both sides of the FSE. When a periodic function having 
a dc component is differentiated, the dc component van-
ishes and the resulting function is periodic with zero aver-
age. But when a periodic function having a dc component 
is integrated, the integral of the dc component increases lin-
early with time, which destroys the periodicity of the func-
tion, although the integrated ac component is still periodic.

Example 16.7: Derivation of FSE through Integration

It is required to obtain the FSE of the triangular wave-
form of Figure 16.24 as the integral of the delayed square 
waveform of Figure 16.14a.

Frequency
0Hz 50Hz 100Hz 150Hz 200Hz 250Hz 300Hz 350Hz

0V

0.5V

1.0V
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1.5V

(300.000,72.763m)
(200.000,84.892m)

(200.000,169.784m)

(100.000,848.927m)

(100.000,424.464m)

(50.000,1.0001)

(50.000,780.693n)

(0.000,1.2734)

(0.000,636.698m)

(300.000,36.382m)

FIGURE 16.31
Figure for Example 16.6.
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Solution:

Consider the delayed square waveform of Figure 16.14a, 
whose FSE is given by Equation 16.44. Integrating this 
FSE gives
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(16.72)

where the constant of integration C′ is the average 
value of the function. The RHS of Equation 16.72, with 
C′ = 0, is identical to ftr(t) (Equation 16.66), bearing in 
mind that the peak-to-peak amplitude of the triangu-
lar wave equals the area under one half-cycle of the 
square wave. Thus,

 2 /2A A Tmtr msq= ´( ) (16.73)

Hence,
 
4 4 4 8
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pw pw p
= ´ =  as in Equation 16.66.

Simulation: The simulation is based on the square wave 
of Figure 16.14a having Am = 2 V, with zero average, and 
T = 2 s. The source VPULSE is used having the param-
eters shown in Figure 16.33. The source voltage is applied 
as the input to integrating module INTEG from the ABM 
library. If the waveform of Figure 16.13 is integrated start-
ing at t = 0, the resulting triangular waveform is always 
positive, that is, its ‘sits’ on the horizontal axis. To have 
a zero average, an initial value of −Amtr should be used 
in the integration, where Amtr is, from Equation 16.73, 
2 × (2/2)/2 = 1. Hence, −1 is entered as the IC for the inte-
gration, as shown in Figure 16.33. The resulting square 
and triangular waveforms are shown in Figure 16.34.

The Fourier analysis is performed as described in the 
preceding examples, the amplitude of the harmonic com-
ponents being shown in Figure 16.35. The magnitudes 
of the successive peaks of the square waveform, shown 
dashed, correspond to the calculated magnitudes of the 
terms in Equation 16.44 of 2.5465, 0.8488, 0.5093, 0.3638, 
and 0.2829. The magnitudes of the successive peaks of 
the triangular waveform correspond to the calculated 
magnitudes of the terms in Equation 16.66 of 0.8106 V, 
90.06 mV, 32.42 mV, 16.54 mV, and 10.10 mV. Note that 
the harmonics of the triangular waveform attenuate 
much more rapidly than those of the square waveform 
because they vary as 1/n2 rather than 1/n.

Example 16.8: Fourier Simulation 
of Piece-Wise Linear Waveforms

It is required to obtain the FSE of the periodic waveform 
of Figure 16.36 analytically and by simulation, to dem-
onstrate the simulation of triangular, trapezoidal, and 
other piecewise-linear, periodic waveforms.
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FIGURE 16.34
Figure for Example 16.7.
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Solution:

The equations of the three line segments are f(t)  =  t, 
0 ≤  t ≤ 1; f(t) = 0.5(t + 1), 1 ≤  t ≤ 3; and f(t) = 2(−t + 4) , 
3 ≤ t ≤ 4. It follows that
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As a check, all terms in nω0 should cancel out, because 
the harmonics should decrease as 1/n2, since the 

function is continuous but its first derivative is not, as 
discussed in Section 16.5.

Substituting ω0 = 2π/4 = π/2,

C
n

e e e

n
e

n
jn j n j n

jn

= - + + -( )

= - + +

- - -

-

1
8

2 5 4

1
2

6

2
0
2

2 3 2 2

2 2
2

w

p

p p p

p

/ /

/ 55

1
2

6 2 5 3 2 2 5 3

3 2

2 2

e

n

n n j n n

j n-( )
=

´ - + + - +

p

p

p p p p

/

cos cos sin sin/ / / /22( )éë ùû .  

It follows that a
n

n nn = - + +( ) =1
6 2 5 3 22 2p

p pcos cos/ /  
-6 2 2/ for oddn np .

b
n

n nn = +( ) =1
2 5 3 2 02 2p

p psin sin/ /  for n even. 

 Sub stituting values of n, the following Fourier coeffi-
cients are obtained:

For n = 1, a1 = −6/π2, b1 = −4/π2, c1
22 13 0 7306= =/p . , 

θ1 = tan−1(−2/−3) = −146.3°.

For n = 2, a2 = −3/π2, b2 = 0, c2 = 3/π2 = 0.3040, θ2 = 0.

For n = 3, a3 = −2/3π2, b3 = 4/9π2, c3
22 13 9 0 0812= =/ p . , 

θ3 = tan−1(2/−3) = 146.3°.

For n = 4, a4 = 0, b4 = 0, c4 = 0, θ4 is undefined.

For  n = 5,  a5 = −6/25π2, b5 = −4/25π2,  c5
22 13 25 0 0292= =/ p . , 

θ5 = tan−1(−2/−3) = −146.3°.

For n = 6, a6 = −1/3π2, b6 = 0, c6 = 1/3π2 = 0.0338, θ6 = 0.

For n = 7, a7 = −6/49π2, b7 = 4/49π2, c7
22 13 49 0 0149= =/ p . , 

θ7 = tan−1(2/−3) = 146.3°. Note that the sixth harmonic is 
of larger amplitude than the fifth harmonic.
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(2.5000,32.432m)
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(1.5000,90.079m)

(500.000m,810.674m)

(500.000m,2.5468)

(4.5000,
10.013m)

(3.5000,16.549m)

FIGURE 16.35
Figure for Example 16.7.
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Figure for Example 16.8.
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Simulation: The periodic waveform is generated in 
two ways. The first, illustrated in Figure 16.37a, utilizes 
two VPULSE sources having the parameters indicated. 
V1 generates a periodic, trapezoidal waveform, where 
the trapezoid in each period has a short base of 2  s, a 
long base of 4 s, a time-to-rise of 1 s, and a time-to-fall 
of 1 s. V2 generates a periodic, triangular waveform that 
is delayed by 1 s with respect to the trapezoid and has 
a base of 3 s, a height of 1 s, a time-to-rise of 2 s, and a 
time-to-fall of 1 s. Adding these two waveforms results 
in the periodic waveform of Figure 16.36.

The second method, illustrated in Figure 16.37b, uses the 
periodic, piecewise-linear source VPWL_RE_FOREVER 
from the source library. The source parameters are entered 
in the FIRST_NPAIRS field as coordinate pairs for each of 
the four corners, as indicated in Figure 16.37b.

The simulation is performed as described in the previ-
ous examples. The plot of the amplitudes of the Fourier 
components is shown in Figure 16.38 and is in agree-
ment with the calculated values.

16.5  Concluding Remarks on FSEs

16.5.1  Rate of Attenuation of Harmonics

FSEs are theoretically infinite series. In practice, a 
periodic waveform is truncated, that is, approxi-
mated by a finite number of terms of the FSE, to 
any desired degree of accuracy. The more rapidly 
the magnitudes of the harmonics decrease with the 
order of the harmonic, the fewer are the number of 
terms of the FSE that have to be included to obtain a 
given degree of accuracy. The rate of attenuation of 
harmonics is related to the degree of “smoothness” 
of the function:

Concept: The smoother the function, the more rapidly the 
harmonics decrease in magnitude.

To apply this concept, it is necessary to have some 
measure of the smoothness of a function. One such 
measure is obtained by successively differentiating 
the function to determine the order of the derivative 
that first becomes discontinuous, that is, shows a jump 
in value during every period. In the case of a square 
wave, for example, the function itself is discontinuous, 
twice in every period. The derivative of order 0, that 
is, the function itself is said to be discontinuous. The 
sawtooth waveform is also discontinuous, once every 
period. A triangular waveform such as that of Figure 
16.24 is continuous at the corners of the triangle, but 
the slope suddenly changes at these corners. In other 
words, the first derivative of the triangular waveform 
is a square wave and is discontinuous. Similarly, the 
half-wave and full-wave rectified waveforms are 
continuous but their first derivatives are not. In such 
cases, the first derivative or derivative of order 1 is 
discontinuous.

Frequency
0Hz 1.0Hz 2.0Hz

0.4V

0.8V

1.2V

cn

(1.7500,14.912m)
(1.5000,33.776m)

(1.2500,29.227m)

(1.0000,2.4692f)

(750.000m,81.187m)

(500.000m,303.982m)

(250.000m,730.682m)

(0.000,1.1251)

(2.0000,
2.4702f)

FIGURE 16.38
Figure for Example 16.8.
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It can be shown that if the mth derivative of a peri-
odic function is discontinuous, with all the derivatives 
of lower order being continuous, the magnitudes of the 
harmonics decrease approximately as 1/nm + 1 ,  m = 0 , 1 , 
2 ,  …, the derivative of order 0 being the function itself. 
Thus, in the case of the square wave, the function is dis-
continuous, so that m = 0, and the harmonics decrease as 
1/n. In the case of a triangular waveform, the first deriv-
ative is discontinuous, m = 1, and the nth harmonic is 
proportional to 1/n2. Whereas the aforementioned state-
ment holds exactly for the square and triangular waves, 
it holds approximately for other functions. For example, 
the relative magnitudes of the harmonics of the pulse 
train decrease as sin(αnπ)/n (Equation 16.40), so the 1/n 
is multiplied by a sine function. In the case of the half-
wave and full-wave rectified waveforms (Equations 
16.68 and 16.70), the magnitude decreases as 1/(4n2 − 1). 
This property is useful for checking the FSE of a given 
periodic function.

16.5.2  Application to Nonperiodic Functions

A nonperiodic function that satisfies Dirichlet’s condi-
tions over a given interval can be represented over this 
interval by a Fourier series. It is convenient to choose 
this interval to be half a period of a periodic function 
and to assume that the periodic function is odd or even. 
If the periodic function is considered odd, its FSE will 
consist of sine terms only, whereas if the periodic func-
tion is considered even, its FSE will consist of cosine 
terms only. This is illustrated by Problem P16.19.

16.5.3  Shifting Horizontal and Vertical Axes

Shifting the time axis up or down affects the dc com-
ponent of the FSE without affecting the ac component. 
Shifting the vertical axis to the right or left (1) affects 
odd–even symmetry, without affecting half-wave or 
quarter-wave symmetry, that is, sine or cosine terms 
may be introduced in the FSE or removed from it, but 
if the periodic function is half-wave symmetric, only 
odd harmonics will be present, and (2) modifies the 
phase angles of the ac components, without affect-
ing their magnitudes and without affecting the dc 
component.

16.6  Circuit Responses to Periodic Functions

Concept: The steady-state response of an LTI circuit to a 
periodic signal is the sum of the responses to each component 
acting alone.

This follows readily from the principle of superpo-
sition (Section 5.1), which applies to all LTI systems. 

Consider a general periodic function vI(t) of the form of 
Equation 16.4:
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If vI(t) is applied to an LTI circuit (Figure 16.39), vI(t) 
can be represented as the series connection of ideal 
voltage sources, each source representing a term in the 
FSE. From superposition, the output is the sum of com-
ponents, each component being due to one source act-
ing alone, with all the other sources set to zero, that is, 
replaced by short circuits.

Since the ac components of the input are sinusoids, 
the sinusoidal steady-state output due to each of these 
components can be determined by phasor analysis. 
Suppose vI of Equation 16.74 is applied to the circuit of 
Figure 16.40a. Figure 16.40b shows the circuit in the fre-
quency domain for the nth harmonic, where VIn is the 
input phasor VIn∠θIn, VOn is the output phasor VOn∠θOn, 
and the impedance of the capacitor at the frequency nω0 
is 1/jnω0C2. From voltage division,
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FIGURE 16.39
Periodic function applied to an LTI circuit.
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FIGURE 16.40
(a) Periodic waveform applied to an RC circuit and (b) the circuit in 
the frequency domain.
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The magnitude and phase angle of the nth harmonic 
in the output are
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For ω0 = 0, the circuit is a resistive voltage divider, and 
the dc component is
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By superposition, the output is the sum of the dc and 
ac components given by Equations 16.76 and 16.77 for 
n = 1, 2, 3, …. In the time domain,
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Example 16.9: Response of RC Circuit 
to a Periodic Input

It is required to determine the output voltage vO(t) in Figure 
16.41 when the input voltage is the square waveform of 
Figure 16.14a, with Am = 5 V, T = 2 ms, R = 1 kΩ, and C = 1 μF.

Solution:

The FSE of the input voltage is given by Equation 16.44, 
with Am = 5 V. According to Equation 16.76, with R2 → ∞, 
R1 = R, and C2 = C, the nth harmonic of the output has 
a magnitude that is 1 1 1 10

2 2 2/ /+ ( ) = +n CR nw p  
times that of the corresponding input component and 
lags this component by tan−1nπ, where CR = 1 ms and 
ω0 = 2π × 0.5 = π krad/s. The FSE of the output can there-
fore be expressed as

 

v t
n t

n n
nO

n

n( ) = -( )
+ ( )

=
=

¥
-å20

11 3
5

0

2

1

p
w b

p
b p

, ,
,...

sin
, tan

 

(16.79)

In general, the output waveform can be approxi-
mated to any desired degree of accuracy by adding a 
sufficient number of terms from the FSE of Equation 
16.79. However, it is possible in this case to obtain an 
“exact” expression for the output waveform in the 
steady state as the repetitive transient charging and 
discharging of the capacitor through a resistor. The 
procedure is as follows.

In the steady state, let the minimum vO(t) be VOmin at 
an arbitrary time t = 0 and at t = T, and let the maxi-
mum vO(t) be VOmax at t = T/2 (Figure 16.42). During 
the interval 0 ≤ t ≤ T/2, the capacitor charges from an 
initial value VOmin toward a final value of +5 V. From 
Equation 11.57,

 v t V e t TO O
t RC( ) = + -( ) £ £-5 5 0 2min
/ , /  (16.80)

At t = T/2 = 1 ms and with RC = 1 ms, vO = VOmax, and 
Equation 16.80 gives

 V V e t TO Omax min ,= + -( ) £ £-5 5 0 21 /  (16.81)

During the interval T/2  ≤  t  ≤  T, the capacitor dis-
charges from an initial value VOmax toward a final value 
of −5 V. From Equation 11.57,

 v t V e T t TO O
t T RC( ) = - + +( ) £ £- -( )5 5 22

max
/ / , /  (16.82)

At t = T = 2 ms and with RC = 1 ms, vO = VOmin, and 
Equation 16.82 gives

 V V e t TO Omin max ,= - + +( ) £ £-5 5 0 21 /  (16.83)

Solving Equations 16.81 and 16.83 gives VOmax  = 
−VOmin = 5(e − 1)/(e + 1) = 2.3106 V.

Note that if (t – T/2) in Equation 16.82 is replaced by t, 
the half-wave between T/2 and T is shifted by T/2 to the 
left. With VOmax = VOmin, the RHS of Equation 16.82 is the 
negation of the RHS of Equation 16.80, which implies 
that vO(t) is half-wave symmetric.
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FIGURE 16.41
Figure for Example 16.9.
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FIGURE 16.42
Figure for Example 16.9.
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Simulation: The simulation is based on the square wave 
of Figure 16.14a having Am = 5 V, with zero average, and 
T = 2 ms. The source VPULSE is used having the param-
eters shown in Figure 16.43. The input and output wave-
forms shown in Figure 16.44 are obtained by entering in 
the simulation profile for Time Domain (Transient) anal-
ysis 20 m for ‘Run to time‘, 1u for ‘Maximum step size’, 

and 10 m for ‘Start saving data after’ in order to allow 
time for the initial transient to die down and the circuit 
to approach a steady state. vOmax and vOmin are read from 
the simulation as 2.3115 and 2.3053  V, respectively, in 
agreement with the calculated values.

The Fourier analysis is performed as described in the 
preceding examples, the amplitudes of the Fourier com-
ponents being shown in Figure 16.45. The input volt-
age is the same waveform as in Example 16.4 and has 
the same amplitudes (Figure 16.15). The amplitudes of 
the successive peaks of the output waveform are those 
given by Equation 16.79, the calculated magnitudes for 
the successive peaks being 1.9310 V, 0.2239 V, 80.893 mV, 
41.313 mV, and 25.002 mV.

The output file gives the following table for the output 
voltage:

Fourier Components of Transient Response V(VO)
dc Component = 4.999902E−03
Harmonic Frequency, Fourier Normalized Phase, Normalized
No. Hz Component Component deg Phase, deg

1 5.000E+02 1.931E+00 1.000E+00 −7.252E+01 0.000E+00
2 1.000E+03 1.572E−03 8.140E−04 8.687E+00 1.537E+02
3 1.500E+03 2.239E−01 1.160E−01 −8.447E+01 1.331E+02
4 2.000E+03 7.933E−04 4.108E−04 3.836E+00 2.939E+02
5 2.500E+03 8.089E−02 4.189E−02 −8.724E+01 2.754E+02
6 3.000E+03 5.298E−04 2.744E−04 1.967E+00 4.371E+02
7 3.500E+03 4.131E−02 2.139E−02 −8.863E+01 4.190E+02
8 4.000E+03 3.976E−04 2.059E−04 8.508E−01 5.810E+02
9 4.500E+03 2.500E−02 1.295E−02 −8.955E+01 5.631E+02
10 5.000E+03 3.181E−04 1.648E−04 3.580E−02 7.252E+02

Total Harmonic Distortion = 1.258014E+01 percent

1u

1k

TD = 0

TF = 1n
PW = 1m
PER = 2m

V1 = –5

TR = 1n

V2 = 5

vi vo

0

FIGURE 16.43
Figure for Example 16.9.
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Figure for Example 16.9.
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From Equation 16.79, the calculated values of the 
phase angle −βn for the odd ac components are −72.34°, 
−83.94°, −86.36°, −87.40°, and −87.97°, respectively, in 
near agreement with the values in the table. Note that 
the phase angles in the fifth column of the table of 
Fourier  components in PSpice are for a sine function 
and not a cosine function.

Exercise 16.18

Show that Cn of vO(t) of Example 16.9 evaluated over the 

interval 0 ≤ t ≤ T/2 is 2
1 0

V
n

j
jn CR

m

p w
-

+
æ

è
ç

ö

ø
÷ for n odd and 

zero for n even, in agreement with Equation 16.79.

16.7  Average Power and rms Values

Concept: In an LTI circuit, components of different frequen-
cies do not interact, and the total average power is the sum of 
the average powers due to each component acting alone.

To justify this, consider a periodic input voltage vI(t) 
of the form

 
v t V V n tI
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n vn( ) = + +( )
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¥
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0cos w q
 

(16.84)

Let this voltage be applied to two terminals of an LTI 
circuit. The input current iI(t) at these terminals in the 
steady state is also periodic, of the same frequency, and 
can be expressed as

 
i t I I n tI
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(16.85)

Assuming iI(t) to be in the direction of a voltage drop 
vI(t), the instantaneous power input to the circuit is

 p v iI I I=  (16.86)

The average power input to the circuit is

 
P

T
v i dtI I

T

= ò1
0  

(16.87)

To illustrate the basic concepts involved, assume that 
the FSEs of vI(t) and iI(t) consist of a dc component and 
two ac components. Thus,

 v t V V t V tI v v( ) = + +( ) + +( )0 1 0 1 2 0 22cos cosw q w q  (16.88)

and

 i t I I t I tI i i( ) = + +( ) + +( )0 1 0 1 2 0 22cos cosw q w q  (16.89)

The instantaneous power is
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(16.90)

Each of the first three terms in Equation 16.91 is 
the product of a voltage  and a current of the same 
 frequency: dc, fundamental, and second harmonic. 
All the remaining terms are products of terms of dif-
ferent frequencies. The four terms that contain the 

Frequency

0Hz 0.5KHz 1.5KHz 2.5KHz 3.5KHz 4.5KHz
0V

2.0V

4.0V

6.0V

cn

8.0V

(3.5000K,909.439m)
(2.5000K,1.2733)(1.5000K,2.1222)(500.000,1.9311)

(500.000,6.3666)

(4.5000K,707.304m)

(4.5000K,25.000m)
(3.5000K,41.312m)(1.5000K,223.912m)

(2.5000K,80.895m)

FIGURE 16.45
Figure for Example 16.9.
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product of a dc term and an ac component, namely, 
V0I1cos(ω0t  +  θi1), V0I2cos(2ω0t  +  θi2), V1I0cos(ω0t  +  θv1), 
and V2I0 cos(2ω0t + θv2), integrate to zero over a period. 
For example,

 

V I t dt
V I
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(16.91)

The two product terms of an ac component of 
one frequency and an ac component of another fre-
quency, namely, V1I2 cos(ω0t + θv1) cos(2ω0t + θi2) and 
V2I1 cos(2ω0t + θv2) cos(ω0t + θi1), also integrate to zero 
over a period. Thus, using the trigonometric iden-
tity cosαcosβ =  (1/2)[cos(α − β) + cos(α + β)], the term 
V1I2 cos(ω0t  +  θv1)cos(2ω0t  +  θi2)  =  (1/2)[cos(ω0t  +  θi2 − 
θv1) + cos(3ω0t + θi2 + θv1)]. Each of these terms integrates 
to zero over a period, as in Equation 16.91.

Only the three terms in Equation 16.90, each of which 
is the product of a voltage and a current of the same 
frequency, do not integrate to zero over a period. Let 
us evaluate the average power associated with each of 
these frequencies. The average power associated with 
the dc terms is
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(16.92)

Using the aforementioned trigonometric identity, the 
average power associated with the fundamental fre-
quency is
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where the second term in the integrand evaluates to 
zero as in Equation 16.91.

Similarly, the average power associated with the sec-
ond harmonic is
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(16.94)

It follows that the total average power is
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(16.95)

where a sinusoidal voltage or current of amplitude Yn 
has an rms value of Yn/ 2  (Section 8.3).

This result can be readily generalized to the case of 
vI(t) and iI(t) given by Equations 16.84 and 16.85, respec-
tively. The same procedure leads to the conclusion that
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(16.96)

It is seen from Equation 16.96 that the average power 
is due only to components of voltage and current of the 
same frequency. The average power of each frequency 
component is given by the product of the rms voltage, 
the rms current, and cos(θvn − θin), the cosine of the phase 
difference between the voltage and current sinusoids of 
the same frequency. Multiplying by cos(θvn − θin) ensures 
that the average power is due the components of volt-
age and current that are in phase. Thus, if the voltage 
and current of a certain frequency component nω0 are 
in phase, as in the case of the voltage across a resistor 
and the current through it, θvn = θin, cos(θvn − θin) = 1, and 
average power dissipated is VnrmsInrms, in accordance 
with Equation 8.29. On the other hand, if the voltage and 
current are 90° out of phase, as in the case of the voltage 
across a capacitor or inductor and the current through it, 
θvn − θin = ±90°, cos(θvn − θin) = 0, and the average power 
is zero, in accordance with Equations 8.33 and 8.37.

It should be noted that the instantaneous power p(t) 
is a function of all the ac components of the signal, 
including the components of different frequencies and 
the components of frequency 2nω0, such as the 4ω0t 
term in Equation 16.94. However, only components of 
the same frequency contribute to the average power. Thus, 
in Figure 16.46, for example, the instantaneous power 
p varies with time in a manner that depends on all the 
terms present in the product of voltage and current. At 
any instant t1, the instantaneous power has a value p1 
that depends on the variation of p(t) with t. The aver-
age power P is such that over a period T, the area above 
the line P is the same as the area below the line P. This 
average power depends only on the voltage and current 
components of the same frequency.

It should be noted that when more than one indepen-
dent source of the same frequency is applied to an LTI 
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circuit, the voltages and currents due to the individual 
sources interact with one another and are superposed, 
but the average powers due to these sources do not 
superpose, because the sum of squares of voltages or cur-
rents is not equal to the square of the sum, as explained 
in Section 5.1. However, when the various sources are 
of different frequencies, the voltages and currents due 
to the individual sources do not interact, that is, each 
response retains its individual identity, so that the aver-
age powers due to the sources of different frequency can 
be added together, in accordance with Equation 16.96. 
Superposition applies in this case to voltages, currents, 
and the average power.

16.7.1  rms Value

It is of interest to determine the rms value of a periodic 
waveform f(t). By definition, Frms, the rms value of f(t), 
is given by

 
F

T
f t dt

T

rms = ( )éë ùûò1 2
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(16.97)

In other words, as its name implies, the rms value is 
obtained by squaring the given function, evaluating the 
mean or average of the square over a period, and then 
taking the square root of the mean. Assuming f(t) to be 
given by Equation 16.4,
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When the sum between the square brackets is squared, 
it will contain terms that are the products of different 
frequencies as well as squared terms. For example, if the 
series is c0 + c1cos(ω0t + θ1) + c2cos(2ω0t + θ2), the square is

c c t c t c c t

c c
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2
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2 2
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(16.99)

As explained in connection with Equation 16.90, 
the last three terms in Equation 16.99 integrate to 
zero over a period T, leaving only the squared terms. 
Hence, when the terms between the square brackets in 
Equation 16.98 are squared, only the squared individ-
ual terms need be retained. Equation 16.98 can then be 
expressed as
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(16.100)

Using the trigonometric identity, cos2α = (1/2)
(1 +  cos2α) (Appendix B), Equation 16.100 becomes
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(16.101)

The terms cos2(nω0t  +  θn) integrate to zero over a 
period, so that
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or
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Recall that cn is the amplitude of the nth harmonic, 
so cn

2 2/  is the square of the rms value of this harmonic. 
By definition, the dc value is the same as the rms 
value. The summation in Equation 16.103 is over all 
the ac components of the FSE of the periodic  function. 
According to Equation 16.103, the following concept 
applies:

Concept: The rms value of a periodic function is the square 
root of the sum of the squares of the rms values of the indi-
vidual components of the FSE.

In terms of a and b coefficients (Equation 16.5), 
Equation 16.103 can be expressed as
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If a periodic voltage v(t) is applied across a resis-
tor R, the rms current component Inrms corresponding 
to a voltage component Vnrms is Inrms  =  Vnrms/R, with 
θin = θvn. Substituting for Inrms in Equation 16.96 and using 
Equation 16.102,
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FIGURE 16.46
Instantaneous and average power.
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where Vrms is the rms value of the periodic voltage v. 
When a single voltage of rms value Vrms is applied to a 
resistor R, the average power dissipated in R is V Rrms/2 . 
When a periodic voltage of rms value Vrms is applied to a 
resistor R, the average power dissipated in R is given by 
exactly the same expression, V Rrms/2 , in accordance with 
Equation 16.105, where Vrms is given by Equation 16.104.

Similarly, in terms of current,
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where Irms is the rms value of the periodic current 
through R.

If a periodic waveform f(t) is expressed analytically, 
it is usually much simpler to determine its rms value 
from direct application of Equation 16.97 rather than 
from its Fourier coefficients (Equation 16.98). Consider, 
for example, the half-wave rectified waveform of Figure 
16.27a given by Acosω0t, −π/2  ≤  ω0t  ≤  π/2, and zero 
over the rest of the period. The mean of its square over a 
period, which is the square of the rms value, is given by
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The rms value is therefore A/2. The dc component is 
A/π (Equation 16.68). According to Equation 16.103, the 
rms value of a periodic function is the square root of the 
sum of the square of the dc component and the square of 
the rms value of the ac component of the periodic func-
tion. It follows that
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where (HWR)ac-rms is the rms value of the ac component 
alone. Hence,
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Example 16.10 rms Value of Triangular Waveform

It is required to determine the rms value of the periodic 
triangular waveform f(t) shown in Figure 16.47 and 
deduce the rms value of the ac component.

Solution:

For 0 ≤ t ≤ τ, f(t) = (A/τ)t. The square of this waveform is 
(A/τ)2t2 and the area under the curve is

 

A
t dt

A A
t t

t tt æ
è
ç

ö
ø
÷ = æ

è
ç

ö
ø
÷ =ò

2

0

2
2 3 2

3 3  
(16.110)

For τ ≤ t ≤ T, the area under the curve of the squared 
function can be more easily determined by noting that 
this area is the same as that for f1(t) in Figure 16.48. By 
analogy with Equation 16.110, the area under the square 
function is A2(T − τ)/3, τ ≤ t ≤ T. The total squared area for 
one period of f(t) is the sum A2τ/3 + A2(T − τ)/3 = A2 T/3. 
The mean is A2/3, and the rms value is A/ 3 . Because it 
is independent of τ, this result applies to any triangular 
waveform that varies between 0 and A and repeats con-
tinuously without interruption. It applies, for example, 
to a sawtooth waveform having τ = 0, or τ = T.

Since the variation of f(t) over a period consists of 
straight-line segments, the dc or average value of f(t) is 
half the amplitude, which is A/2. If the rms value of the ac 

component is denoted by Fac ‐ rms, then 
A A
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3 2
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This gives F A
A A

ac-rms = - = =1
3

1
4 12 2 3

. That is, the rms 

value of the ac component of the FSE of the triangular 
function is one-half the rms value of the function.

Primal Exercise 16.19

(a) By inspection, what is the rms value of the full-wave 
rectified waveform of Figure 16.27b? (b) Determine the 
rms value of the periodic waveform shown in Figure 16.49.

Ans. (a) A/ 2 , the same as a sinusoid of amplitude A, 

because the squared function is the same; (b)
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Figure for Example 16.10.
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Primal Exercise 16.20

Determine τ in Figure 16.50 if the rms value of the peri-
odic voltage shown is 5 V.

Ans. 1.5 s.

Primal Exercise 16.21

Determine A and τ in Figure 16.51 so that the average 
value of f(t) is 1 and its rms value is 3.

Ans. A = 9, τ = 2/9 s.

Primal Exercise 16.22

f(t) in Figure 16.52 is a periodic waveform of period 
4 s, its ac component is quarter-wave symmetric, with 
f(t) = 6 + kt2, 0 < t ≤ 1, where k is such that the rms value 
of f(t) is 8. Determine the rms value of the ac component 
of |f(t)| when delayed by 1 s.

Ans. 5.92.

Learning Checklist: What Should 
Be Learned from This Chapter

• A periodic function f(t) is defined by the relation 
f(t) = f(t + nT) for any t within the period T, where 
n is any positive or negative nonzero integer.

 1. The period T is defined, like that of a sinu-
soidal function, as the time interval between 
successive repetitions of the same full range 
of values of the periodic function. The recip-
rocal of T is the fundamental frequency of 
the periodic waveform, f0 Hz. It follows that 
ω0T = 2π.

• Given the four functions cosmω0t, sinmω0t, 
cosnω0t, and sinnω0t, where m and n are inte-
gers, the integral of the product of any two of 
these functions over a period T = 2π/ω0 is zero, 
except the products cos2nω0t and sin2nω0t, hav-
ing m = n, in which case the integral is T/2. The 
zero value of the integral of the product of dif-
ferent frequencies is based on the fact that the 
average of any harmonic over the period of the 
fundamental is zero.

• According to Fourier’s theorem, a periodic 
function f(t) can be expressed, in general, as an 
infinite series of cosine and sine functions in 
an FSE: f t a a n t b n tn n n( ) = + å +( )=

¥
0 1 0 0cos sinw w , 

where n is a positive integer and a0, an, and bn 
are constants, known as Fourier coefficients, 
that depend on f(t).

 1. The sum of the two terms 
(ancosnω0t  +  bnsinnω0t) represents the nth 
harmonic, where n  =  1 represents the 
fundamental.

 2. a0 is the average or dc component of 
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 3. The cosine and sine terms of the FSE are the 
ac component of f(t), where an and bn are 

given by a
T
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twice the average of f(t)cosnωt over a period, 

and b
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the average of f(t)sinnωt over a period.
• The FSE can be expressed in the alternative trigo-
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• The FSE can be expressed in exponential form as
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• The plot of |Cn| against nω0 is the amplitude 
spectrum of f(t) and is an even function of nω0. 
The plot of ∠Cn against nω0 is the phase spec-
trum of f(t) and is an odd function of nω0.

• If a periodic waveform f(t) is delayed by td, θn 
is reduced by nω0td  =  2πn(td/T). Conversely, 
if f(t) is advanced by td, θn is increased by 
nω0td = 2πn(ta/T).

• The FSE of an even periodic function does not 
contain any sine terms; its Fourier coefficients 
can be evaluated over half a period:
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• The FSE of an odd periodic function does not 
contain an average term nor any cosine terms; 
its Fourier coefficients can be evaluated over 
half a period:

 

a a n

b
T

f t n tdt

n

n

T

0

0
0

2

0

4

= =

= ( )ò

for all and,

sin
/

w
 

 1. The ac component of a periodic function 
may be odd, but the periodic function itself 
may be neither odd nor even because of a 
dc component.

• In a half-wave symmetric waveform, if either 
half-cycle or half-wave is displaced hori-
zontally by T/2 toward the other half, the 
two half-waves are aligned vertically and 
are symmetrical with respect to the horizon-
tal axis. Mathematically, f(t) =  − f(t + T/2) or 
f(t) =  − f(t − T/2), 0 ≤ t ≤ T/2.

 1. The FSE of a half-wave symmetric  periodic 
func tion does not contain an average term or 
any even harmonics; its Fourier coefficients can 
be evaluated over half a period: a0 = 0, an = 0 = bn 

for n even, and a
T

f t n tdtn

T

= ( )ò4
0

0

2

cos
/

w ,
 

b
T

f t n tdtn

T

= ( )ò4
0

2

0

/

sin w , for n odd.

 2. The ac component of a periodic function 
may have odd harmonics only, but the peri-
odic function itself may not be half-wave 
symmetric because of a dc component.

• A half-wave symmetric function that is also 
symmetrical about a vertical line through the 
middle of its positive or negative half-cycles is 
said to possess quarter-wave symmetry. Such 
a function can be made either odd or even by 
shifting the function in time.

 1. If the function is odd,  b T
f t n dtn

T

= ( )ò8
0

0

4

sin
/

w  
for n odd, bn = 0 for n even, a0 = 0, and an = 0 
for all n.

 
2.

 
If the function is even, 

 
a

T
f t n dtn

T

= ( )ò8
0

0

4

cos
/

w
 

for n odd, an = 0 for n even, a0 = 0, and bn = 0, 
for all n.

 3. If the function is neither odd nor even, an 
and bn are nonzero for n odd and are given 
by the preceding expressions.

• The FSE of some periodic waveforms can be 
derived from those of other periodic waveforms 
through addition, subtraction, multiplication, 
differentiation, or integration.

• The FSE of a given periodic function can be 
differentiated or integrated term by term. The 
result is the FSE of a periodic function that is 
the derivative or integral of the given func-
tion, except that integrating the dc component 
destroys the periodicity of the function.

• The smoother the function, the more rap-
idly the harmonics decrease in magnitude. 
Consequently, if the mth derivative of a peri-
odic function is discontinuous, with all the 
derivatives of lower order being continuous, 
the magnitudes of the harmonics decrease 
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approximately as 1/nm+1, m = 0 , 1 , 2 ,  … , the 
derivative of order 0 being the function itself.

• Shifting the time axis up or down affects the 
dc component of the FSE without affecting 
the ac component. Shifting the vertical axis 
to the right or left (1) affects odd–even sym-
metry, without affecting half-wave or quarter-
wave symmetry, and (2) modifies the phase 
angles of the ac components, without affecting 
their magnitudes and without affecting the dc 
component.

• The steady-state response of an LTI circuit to a 
periodic signal is the sum of the responses to 
each component acting alone.

• In an LTI circuit, components of different fre-
quencies do not interact, and the total average 
power is the sum of the average powers due to 
each component acting alone.

• The rms value of a periodic function is the 
square root of the sum of the squares of the rms 
values of the individual components, bearing 
in mind that a dc value is the same as the rms 
value.

 1. If a periodic waveform f(t) is expressed ana-
lytically, it is usually much simpler to deter-
mine its rms value from the definition of 
this value, that is, by squaring the function, 
deriving the average of this square, and tak-
ing the square root.

Problem-Solving Tips

 1. Remember that ω0T = 2π.
 2. When the period has a simple geometric 

form, a0 can be easily determined by divid-
ing the area over the period by the period T 
or by determining the shift of the horizontal 
axis that would result in the area enclosed by 
the function above the new horizontal axis is 
the same as the area enclosed by the function 
below this axis.

 3. Whenever feasible, check if the form of the FSE 
makes sense as a rough approximation to the 
given periodic function.

 4. When the Fourier coefficients an and bn are eval-
uated using expressions that restrict the values 
of n, such as n being odd or even, only these 
restricted values should be used in deriving the 
individual coefficients an and bn.

 5. The first step in Fourier analysis is to ascertain 
if the function possesses any type of symmetry. 

If the function has a nonzero average, this aver-
age should be removed to see if the function 
becomes odd or half-wave or quarter-wave 
symmetric.

Problems

Verify solutions by PSpice simulation.

Fourier Analysis

P16.1 Verify the following properties of odd and even 
functions:

 1. The product of two odd functions is an even 
function.

 2. The product of an odd function and an even func-
tion is an odd function.

 3. The product of two even functions is an even 
function.

 4. The sum or difference of two odd functions is an 
odd function.

 5. The sum or difference of two even functions is an 
even function.

 6. The sum or difference of an odd function and an 
even function is neither odd nor even.

P16.2 Determine the period of each of the following func-
tions: (a) f(t) = 5 + 10cos100πt + 5cos200πt + 2cos400πt; 

(b) g t
t t t t

t
( ) = -cos sin sin cos

sin
100 300 100 300

200
p p p p

p
.

 Ans. (a) 20 ms; (b) function is not periodic.

P16.3 Given the two functions (a) f(t) = cos(100πt)sin(200πt) 
(b) g(t) = cos2(100πt)sin2(200πt), show that f(t) and g(t) 
are periodic, determine their periods, and derive their 
FSEs.

 Ans. (a) 20 ms, 0.5sin(100πt) + 0.5sin(300πt); (b) 10 ms, 
0.25 + 0.125cos(200πt) − 0.25cos(400πt) − 0.125cos(600πt).

P16.4 Determine a0, a5, and b5 for the periodic function shown 
in Figure P16.4. Obtain a5 by applying both Equations  
16.20 and 16.63. Note that the latter applies to the ac 
component only.

 Ans. a0 = 1.5, a5 = 1.15, b5 = 0.

P16.5 The current through a 1 μF capacitor is 2cos2(100πt) mA, 
where t is in s. Determine the period of the voltage 
across the capacitor.

 Ans. Voltage is nonperiodic.

t, ms

f(t)

105
7.52.5

6

–3

FIGURE P16.4 
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P16.6 A periodic voltage is represented by the expansion 

v t V en n
j nt( ) = å =-¥

¥ 200p  and has the Vn magnitude spec-
trum shown in Figure P16.6. Determine the average 
value and the fundamental frequency of v(t).

 Ans. 5, 100 Hz.

P16.7 Verify that the amplitude spectrum shown in 
Figure P16.7 is the FSE of the following function: 

f t t t t( ) = + +
( )

+
( )

+
1
2

4 4

3
3

4

5
52 0 2 0 2 0p

w
p

w
p

wcos cos cos .�  

What can be said about the discontinuities of the function?

 Ans. Function is continuous, its first derivative is 
discontinuous.

P16.8 Given f(t) = 2cos(100πt) + 3cos(300πt) + 6cos(500πt) + 
9sin(300πt), determine the coefficients of the exponen-
tial FSE of f(t).

 Ans. C1  =  C−1  =  1, C3  =  1.5 − j4.5, C−3  =  1.5  +  j4.5, 
C5 = C−5 = 3.

P16.9 Specify the type of symmetry of the periodic function 
shown in Figure P16.9 and characterize the coefficients 
an and bn of its FSE.

 Ans. Quarter-wave symmetric and odd; an = 0 for all n, 
bn = 0 for even n and nonzero for odd n.

P16.10 Given the periodic function f(t) shown in Figure P16.10, 
determine the amplitude of the third harmonic.

 
Ans.

 

80
3 2p

.

P16.11 Two periodic functions of period 6  s are defined 
by f(t) = −t, −3 ≤ t ≤ 0, and f(t) = t, 0 ≤ t ≤ 3; g(t) = 1, 
0 < t < 3, and g(t) = −1, 3 < t < 6. Determine the ratio of 
the amplitude of the third harmonic in f(t) to that in g(t).

 Ans. 1/π.

P16.12 Derive the FSE of the function shown in Figure P16.12.

 
Ans. a0 = 0 = an for all n.

 
b

n
n

n= + -( )( )æ
è
ç

ö
ø
÷

+2 1
1 2 1

1

p
.

P16.13 Determine a5 for the periodic voltage shown in 
Figure P16.13.

 Ans. 0.

n
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P16.14 Derive the FSE expansion of the periodic function 
shown in Figure P16.14.

 
Ans.

 
f t

n
n t

n
n t

n n
( )= - -

=

¥

=

¥å å6
16 8
2 21 3 5 1 2 3p

p
p

pcos sin
, , ,... , , ...

P16.15 Derive the FSE of a periodic trapezoidal waveform 
defined over a period 0–2 as f(t) = t + 2, 0 < t < 1, and 
f(t) = 0 elsewhere in the period.

 
Ans. C0 = 2.5,

 
C

e
n

j
e

n
n

jn jn

=
-

+
-é

ë
ê

ù

û
ú

- -1
2

1 3 2
2 2

p p

p p
.

P16.16 (a) Derive the first three terms of the trigonometric 
FSE of the periodic function i(t) A shown in Figure 
P16.16; (b) repeat (a) when i(t) when advanced or 
delayed by 2 s.

 
Ans. (a) i t t t( ) = - +( )1 5

4
2 22. cos cos

p
p p/ A; (b) 1 5. +

  
4

2 22p
p pcos cost t/ A-( ) .

P16.17 Given a full-wave rectified waveform of period T as 
shown in Figure 16.27b, except that because of dis-
symmetry in the rectifier circuit, the half-sinusoids 
are not all of the same amplitude but alternate with 

amplitudes of 12 and 10 V. Derive the FSE, assuming 
that the sinusoid centered at the origin has a an ampli-
tude of 12 V.

 Ans. 
22 44

3
2

44
15

4
44
35

60 0 0 0p
w

p
w w w+ + - +cos cos cos cost t t t

+ +
-( )

-
+ = ¼

+

� �
1 44

4 1
2 1 2 3

1

2 0

n

n
n t ncos , , ,w  

P16.18 Derive the FSE of the function shown in Figure 16.20.

 
Ans.

 
C

A
n

j
A
n

n
m m= - -

2
2 2p p

P16.19 A function is defined over half a period by et , 0 < t < 1. 
Derive the FSE if the function is (a) even, (b) odd.

 Ans. (a) a0  =  e − 1, a
e
n

n =
-( )

+
2 1
1 2 2p

 for even n, and 

a
e
n

n = -
+( )

+
2 1
1 2 2p

 for odd n. 

 (b) a0 = 0, b
n e

n
n = -

-( )
+

2 1
1 2 2

p
p

 for even n, and b
n e

n
n =

+( )
+

2 1
1 2 2

p
p

 

for odd n.
P16.20 Determine the magnitude and phase angle of the 

fundamental component of the periodic function 
f(t) shown in Figure P16.20, where f(t)  =  sin(2πt), for 
0 ≤ t ≤ 0.25 s, and f(t) = 0.5sin(2πt), for 0.25 ≤ t ≤ 0.5 s.

 Ans. 0.75, zero phase angle of the sine term.

P16.21 The periodic function shown in Figure P16.21 is 
described by f(t) = 3 + sint, 0 ≤ t ≤ π, and f(t) = −2 − sint, 
π ≤ t ≤ 2π. Determine the average value of f(t) and the 
fundamental component.

 Ans. a0 = 1.317 V, a1 = 0, b1 = 3.183 V.

P16.22 v in Figure P16.22 is a periodic function of period π 
described by v(t) = 10 sint, 0 ≤  t < π/2, and v(t) = 0, 
π/2  <  t  ≤  π. Determine (a) the average value of v(t), 
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(b) a3 and b3, (c) the rms value of the ac component of v 
and (d) power dissipated in a 10 Ω resistor to which v 
is applied.

 Ans. (a) 10/π V; (b) a3 = −10/π, b3 = 10/π; (c) 3.86 V; (d) 
2.5 W.

P16.23 Derive the FSE of the periodic function shown in 
Figure P16.23, defined as

 f(t) = cos(t + π) − 2, −π < t < −π/2
 f(t) = −cost + 3, −π/2 < t < +π/2
 f(t) = cos(t − π) − 2, π/2 < t < π

 
Ans. a0 = 0.5, an = 0 for even n, and

 
a

n
n

n =
10

2p
p

sin  for 

odd n.

P16.24 (a) Derive the first three terms of the FSE of f(t) in 
Figure P16.24, where f(t) = 4 + sin2t, −π/2 < t < π/2 and 
f(t) = −4 + sin2t, −π ≤ t < −π/2 and π/2 < t ≤ π; (b) deter-
mine these terms when f(t) is advanced by a quarter 
period.

 Ans. (a) (16/π) cost +  sin2t − (16/3π) cos3t; (b) −(16/π) 
sint –  sin2t − (16/3π)sin3t.

P16.25 (a) Derive the FSE of the waveform of Figure P16.25 
by direct evaluation. (b) Show that if it is added to 
a delayed and negated version, the result agrees 
with Equation 16.66. (c) Indicate how the FSE can be 
obtained as the product of a rectangular pulse train of 
unit height (Figure 16.8) and a triangular waveform 
derived from that of Figure 16.22.

 
Ans. a0 = A/4,

 
a

A
T n

n A
n

n
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n = 1, 2, 3, ….

P16.26 (a) Derive the FSE of the waveform of Figure P16.26 
by direct evaluation. (b) Indicate how the FSE can be 
obtained as the product of a rectangular pulse train 
of unit height (Figure 16.8) and a sawtooth waveform 
derived from that of Figure 16.5.

 
Ans. C0 = A/4,

 
C

A
n

n j
A

n
n = -( ) +

2
1

22 2p
p

p
cos

P16.27 Derive the FSE of the waveform of Figure P16.27 in 
two ways: (a) directly and (b) as the product of a rect-
angular pulse train of unit height (Figure 16.9) and a 
reversed sawtooth waveform derived from that of 
Figure 16.8b.

 
Ans. C0 = A/4,

 
C

A
n

n j
A

n
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22 2p
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P16.28 (a) Show that if the FSE of Problem P16.26 is combined 
with the negated FSE of Problem P16.27, the FSE of 
the sawtooth waveform of Figure 16.5 is obtained. 
(b)  Derive the FSE of Problem P16.26 from that of 
Problem P16.25 and that of a rectangular pulse train of 
amplitude A and period T.

P16.29 Derive the FSE of the waveform of Figure P16.29 in 
two ways: (a) direct evaluation of coefficients and 
(b) from that of its derivative.

 
Ans. C0 = 6, C

n
n

j
n

n = - æ
è
ç

ö
ø
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æ
è
ç

ö
ø
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è
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1
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2 22
0
2w

p p
cos sin .

P16.30 Obtain the FSE of a full-wave rectified waveform in two 
ways: (a) as the sum of two half-wave rectified wave-
forms, with one waveform shifted by half a period with 
respect to the other waveform, and (b) as the product of 
a square wave of zero average and cosω0t.

P16.31 Derive the FSE of the waveform of Figure P16.31 in 
two ways: (a) direct evaluation of coefficients and (b) 
as the sum of two shifted rectangular pulse trains.

 
Ans. a0 = 1/4,

 
a

n
n n

n

n

=
( )

=
-( ) +( )sin

/p
p p

/2 1
3 2

 for odd n and 

zero for even n, b
n

n =
9
p

 for odd n, and
 
1 1

2 2+ -( ) +( )n

n

/

p
 for 

even n.

P16.32 A periodic function of period 1  s is defined as 

f t t
t( ) = -2
2

3 , - £ £
1
2

1
2

t . Determine how the magni-

tudes of the harmonics vary with the order n of the 
harmonic?

 Ans. As 1/n3.

P16.33 Express the function of Figure 16.47 as a Fourier series 
in both exponential and trigonometric forms, given 
that A = 3 units, T = 4 s, and τ = T/4. Verify that the 
harmonics decrease at a rate of 1/n2 and that the func-
tion becomes odd if advanced by 0.5 s and the dc value 
removed.

 
Ans.
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a0 = 1.5, a
n

n
n

n =
æ
è
ç

ö
ø
÷ -

æ

è
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8
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1
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2 2 2 2p
p

p
cos , n = 1, 3, 5, 7, 

etc., a
n

n = -
16
2 2p

, n = 2, 6, 10, 14, etc., and an = 0, n = 4, 8, 

12, 16, etc.,
 
b

n
n

n =
æ
è
ç

ö
ø
÷ =

8
2

02 2p
p

sin  for even n,
 
b

n
n =

8
12 2p
, 

n = 1, 5, 9, 13, etc., and b
n

n = -
8
2 2p

, n = 3, 7, 11, 15, etc.

P16.34 Derive the FSE of the periodic triangular waveform of 
Figure P16.34. Show that it can be made that of an even 
function or an odd function by a shift in time.

 
Ans.

 
f t

n
n

t
n

( ) = -( )
=

¥å 16
4

12 21p
p

cos .

P16.35 Given a half-wave symmetric function f(t), half a 
period of which is shown in Figure P16.35, determine 
the coefficients of the FSE up to and including the fifth 
harmonic, neglecting higher harmonics, and assuming 
that the function can be approximated by f(π/6) = 0.6, 
f(π/3) = 1.9, f(π/2) = 3.3, f(2π/3) = 4, and f(5π/6) = 3.3.

 Ans. a1 = −1.1024, a3 = 0.6460, a5 = 0.4564, b1 = 3.4065, 
b3 = 0.2, b5 = 0.0935.
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P16.36 The first period of the periodic function f(t) is shown 
in Figure P16.36. Determine (a) C0, C1, C2, and C3; (b) 
derive the amplitude and phase angle of the third har-
monic component of f(t).

 
Ans. (a) C0  =  0, C j1

1 3
= -
p p

, C2  =  0, C j3
1

3
1

= - -
p p

; 

(b)
 
0.67A cos(3ω0t + α), where α = tan−1(−3) = 108.34°.

P16.37 vSRC1(t) and vSRC2(t) are the periodic functions shown in 
Figure P16.37. Determine τ so that vO(t) is periodic.

 Ans. 1.25 s.

Responses to Periodic Inputs

P16.38 A voltage v(t) = cosω0t + 2sin2ω0t is applied to a circuit 
that gives an output vO = v + v2. Determine the FSE of 
the output.

 Ans. 2 5 5 63 4 2 06 2 76 00 0. cos . . cos .+ - °( ) + - °( ) +w wt t   
2 3 2 40 0sin cosw wt t- .

P16.39 The output vO of a nonlinear network is related to the 
input vo by the power relation: v v v vO i i i= + +5 0 5 0 12 3. . . 
If vi(t) = 4sin2000πt, determine the magnitude of each 
term of the Fourier expansion of the output. Does the 
output possess half-wave symmetry? Why not?

 Ans. vO(t)  =  4  +  24.8sin2000πt – 4cos4000πt − 
1.6sin6000πt V; no, because of the dc and the second 
harmonic cosine term.

P16.40 A current i =  i1 +  i2, where i1(t) = 10cos(100πt) A and 
i2(t) = cos(300πt) A, is applied to an impedance (3 − j4)  Ω 
at the frequency of 100π rad/s. Determine the ratio 

|V2|/|V1|, where V1 and V2 are the voltages across the 
impedance due to i1 and i2, respectively.

 Ans. 0.066.

P16.41 The current through a 1 H inductor is the periodic 
triangular waveform of Figure P16.41, with T = 1/2π. 
Determine the amplitude of the fundamental compo-
nent of the voltage across the inductor.

 Ans. 16 V.

P16.42 The current waveform of Figure P16.41 is applied to 
a 2 Ω resistor in parallel with a very large capacitor. 
Determine the voltage across the capacitor.

 Ans. 1 Vdc.

P16.43 The periodic voltages vSRC1(t) and vSRC2(t) are applied to 
the circuit shown in Figure P16.43. Determine the volt-
age across the capacitor.

 Ans. 1 Vdc.
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P16.44 The periodic voltage vSRC(t) is applied to the circuit 
shown in Figure P16.44. Determine vO(t).

 
Ans.
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P16.45 The triangular pulse train of Figure 16.22 is applied as 
the input vI(t) to the circuit of Figure P16.45. Determine 

vO(t). Show that if ωCR ≪ 1, v CR
dv
dt

O
I® , and vO 

becomes the square pulse train of Figure 16.13 with an 
appropriate amplitude.
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P16.46 vSRC(t) in Figure P16.46 is the full-wave rectified wave-
form of Figure 16.27b having T = 1/50 s and an ampli-
tude of 50 V. The purpose of the LC filter is to attenuate 

the ac components of vSRC(t), leaving a near-dc voltage 
across the 4 kΩ load. Determine the first four nonzero 
terms in the FSE of vO and compare with those of vSRC(t).

 Ans. The relative rates of attenuation of the first three 
ac terms are 0.14, 0.033, and 0.014, respectively.

P16.47 Repeat Problem P16.46 assuming that vSRC(t) is a 
square wave 50 V peak to peak, 25 V average value, 
and T = 1/50 s. Compare with the results of Problem 
P16.46.

 Ans. The relative rates of attenuation of the first three 
ac terms are 0.80, 0.059, and 0.02, respectively.

P16.48 The sawtooth waveform of Figure 16.5 is applied to the 
circuit of Figure P16.48, where C is a very large capaci-
tor. Determine the first five terms in the FSE of vO(t), 
assuming A = 5 V and ω = 106 rad/s. What is the effect 
of C?

 Ans. The magnitudes and phase angles are, respec-
tively, 16  mV, 90.38°; 1.8  mV, 90.13°; 0.74  mV, 90.08°, 
0.41  mV 90.06°; and 0.26  m, 90.05° to block the dc 
component.

P16.49 A triangular current source having the waveform of 
Figure 16.24, with Am = 10 mA and ω = 105  rad/s, is 
applied to the circuit of Figure P16.49. Determine the 
first three terms in the FSE of vO.

 Ans. vO(t)  =  85.1cos(ω0t − 85.8°)  +  3.03cos(3ω0t − 
89.7°) + 0.651cos(5ω0t − 89.8°) V.

P16.50 vSRC(t) in Figure P16.50 is the triangular waveform of 
Figure 16.24. Determine the first three terms of vO(t), 
assuming ω = 1 rad/s and Am = 10 V.

 Ans. vO(t)  =  4.37cos(ω0t  +  158.5°)  +  0.34cos(3ω0t  + 
130.2°) + 0.085cos(5ω0t + 116.9°) V.
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Power and rms Values

P16.51 Determine the average power dissipated in a resistance 
of 2 Ω if a voltage of 32sin(3t)cos2(t/2) V is applied 
across the resistor.

 Ans. 96 W.

P16.52 Given f(t)  =  5  +  10cos100πt  +  5cos200πt  +  2cos400πt, 
(a)  determine the rms value of f(t); (b) if f(t) is an 
approximation of a periodic voltage that dissipates 
90 W in a 1 Ω resistor, determine the % error in real 
power involved in the approximation.

 Ans. (a) 9.46 V; (b) 0.56%.

P16.53 Given f(t) = 20cos(103t + 90°) + 4cos(3 × 103t − 90°) + 
cos(5 × 103t + 90°) + 0.2 cos(7 × 103t − 90°), (a) deter-
mine the rms value of the signal; (b) specify whether or 
not the signal is even or odd and whether or not it has 
half-wave symmetry. Repeat (a) and (b) for the same 
signal but with the phase angles of the components 
negated.

 Ans. (a) 14.44; (b) odd and half-wave symmetric; 
(a) and (b) remain the same after the phase angles are 
negated.

P16.54 The voltage across two given terminals of a circuit is 
v(t) = 5sin(t) + 10sin(3t) V. The current input at these 
terminals, in the direction of a voltage drop, is i(t) = 
7sin(2t)  +  50sin(8t) A. Determine the average power 
absorbed by the circuit.

 Ans. 0.

P16.55 The voltage across two given terminals of a circuit is 
v(t) = 4sint + 5cos2t + 10sin4t V. The current input at 
these terminals, in the direction of the voltage drop, is 
i(t) = 6sint + 8cos5t + 12sin8t A. Determine (a) the rms 
value of v, (b) the rms value of i, and (c) the average 
power delivered to the network at the given terminals.

 Ans. (a) 8.40 V; (b) 11.04 A; (c) 12 W.

P16.56 The voltage across two given terminals of a circuit is v
(t) = 15 + 400cos(500t) + 100sin(1500t) V. The current 
input at these terminals, in the direction of the voltage 
drop, is i(t) = 2 + 5sin(500t + 60°) + 3cos(1500t − 15°) A. 
Determine (a) the average power delivered to the cir-
cuit, (b) the rms value of v, and (c) the rms value of i.

 Ans. (a) 934.85 W; (b) 291.93 V; (c) 4.58 A.

P16.57 A full-wave rectified waveform of 5 V amplitude and a 
frequency of 1 kHz is applied to a 5 Ω resistor in series 
with a parallel combination of another 5 Ω resistor and 
a 1 F capacitor. Determine the average power dissi-
pated in the circuit.

 Ans. 1.487 W.

P16.58 The voltage across two given terminals of a circuit is 
v(t)  =  2  +  2cos(1000t)  +  cos(2000t) V. The current at 
these terminals, in the direction of a voltage rise, is 
i(t)  = 1  +  sin(1000t)  +  0.5sin(2000t) A. Determine the 
average power delivered or absorbed by the circuit.

 Ans. 2 W delivered.

P16.59 A voltage (5sin2t − 6) V is applied to a 5 Ω resistor. 
Determine the average power dissipated in the resistor.

 Ans. 9.7 W.

P16.60 The voltage applied across a 1 Ω resistor is expressed 
in exponential form of an FSE as ej100πt + (2 + j4)ej200πt + 
(3 + j9)ej300πt  V , n > 0. Determine the energy dissipated 
in the resistor in the interval 1/50 to 2/50 s.

 Ans. 4.44 J.
P16.61 A voltage 5sinω0t V applied to a given resistor dissi-

pates 5 W. Determine the power dissipated in the same 
resistor when the applied voltage is (a) a full-wave 
voltage and (b) a half-wave rectified voltage, both hav-
ing the same amplitude of 5 V.

 Ans. (a) 5 W; (b) 2.5 W.

P16.62 The voltage applied across a 5 Ω resistor is 

v t
nt

nn
( ) = -

=

¥å1
500

21

cos
V. Determine the power 

dissipated in the resistor using the first four nonzero 
terms.

 Ans. 0.31 W.

P16.63 The current through a coil having a resistance of 1 Ω 
and an inductance of 10 mH consists of a fundamental 
and a third harmonic. The rms current through the coil 
is 5 A and the rms voltage cross the coil is 20 V. If the 
frequency of the fundamental is 300 rad/s, what are 
the rms values of the fundamental and third harmonic 
components of the coil current and voltage?

 Ans. I1 2 5 11 3= . / A, I3 = I3 2 5 3= . / A , V1 2 5 110 3= . / V, 
and V3 2 5 82 3= . / V.
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P16.64 A voltage v(t) = 100 + 50sin(500t) + 25sin(1500t) V is 
applied across a coil having an inductance of 20 mH 
and a resistance of 5 Ω. Determine (a) the coil current 
i(t) and (b) the average power dissipated in the coil.

 Ans. (a) i(t) = 20 + 4.47sin(500t − 63.4°) + 0.822sin(1500t − 
80.54°) A; (b) Approx. 2052.0 W.

P16.65 A periodic waveform of 240 V rms has 20% 3rd har-
monic content, 5% 5th harmonic content, and 2% 
7th harmonic content, all the percentages being with 
respect to the fundamental. Determine the rms values 
of the 3rd and 7th harmonics.

 Ans. 47 V and 4.7 V.

P16.66 A current i(t) = 2 + 3sinω0t – 2sin2ω0t A is applied to a 
3 Ω resistor in parallel with a 1 H inductor. Determine 
(a) the average power dissipated in the circuit and (b) 
the change in the average power when i(t) is advanced 
or delayed by 2 s.

 Ans. (a) 6.04 W; (b) no change.

P16.67 Each source in Figure P16.67 is 15cos(10t) V, and 
the power dissipated in the middle resistor is 50  W. 
Determine the power dissipated in this resistor if the 
frequency of one of the sources is doubled.

 Ans. 25 W.

P16.68 Determine the power dissipated in the circuit of Figure 
P16.68 if vSRC1(t) = 10cost and vSRC2(t) = 10cos3t.

 Ans. 50.7 W.

P16.69 Determine the rms value of i(t) in Figure P16.69.

 Ans. 11.87 A.

P16.70 A voltage v t t t( ) = +( ) + ( + )400 2 180 2 31 3sin sinw q w q V 
is applied to a series RLC circuit having R = 60 Ω. At 
the frequency of the third harmonic, the reactances of 
L and C have equal magnitudes, and the ratio L/C is 
900 Ω2. Determine the rms current in the circuit.

 Ans. 5 A.
P16.71 Determine the rms value of the voltage waveform 

shown in Figure P16.71.

 Ans. 2 55 3/ V.

P16.72 The periodic voltage shown in Figure P16.72 is applied 
across a 10 Ω resistor. Determine the average power 
dissipated in the resistor.

 Ans. 8.8 W.

P16.73 The periodic current whose first period is shown in 
Figure P16.73 is applied to a 5 Ω resistor. Determine 
the average power dissipated in the resistor.

 Ans. 10 W.

P16.74 Determine the rms value of the periodic function 
shown in Figure P16.74.

 Ans. 1.29.

P16.75 Determine the rms value of the voltage shown in 
Figure P16.75 over the time interval (0, 5) s.

 Ans. 0.86.

P16.76 f2(t) in Figure P16.76 is the same function f1(t) lowered 
by 1 unit. Which function has the larger rms value?

 Ans. f1(t).

–
+

– + – +

2.5 mH4

40cos(100  t) 50sin(200  t)

i

20 V

FIGURE P16.69 

–
+

–
+

1 1

1

FIGURE P16.67 

–

+
1

1 H1 F

–

+vSRC1 vSRC2

FIGURE P16.68 

t, ms
10 40

10

v(t), V

50

–10

100

FIGURE P16.71 

t, ms
1

10

v(t), V

–10

8

–8
63

FIGURE P16.72 



Responses to Periodic Inputs 515

P16.77 The periodic current shown in Figure P16.77 is described 
over a period as

 i(t) = 6 + sin2t A, 0 ≤ t ≤ π
  = −4 + sin2(t − π) A, π ≤ t ≤ 2π.
 Determine the rms value of i(t).

 Ans. 5.15 A.

P16.78 The periodic voltage vSRC is applied as shown in Figure 
P16.78. Determine the average power dissipated in the 
circuit.

 Ans. 4.17 W

P16.79 The half-wave rectified waveform of Figure 16.27a, 
with A = 10 V and f = 50 Hz, is applied to the circuit 
of Figure P16.79. Determine the average power dissi-
pated in the circuit.

 Ans. 1.83 W.

P16.80 A periodic voltage having the waveform of Figure 
P16.25, with A = 8 V and T = 1 s, is applied to a coil hav-
ing a resistance of 4 Ω and an extremely large induc-
tance. Determine the average power dissipated in the 
circuit.

 Ans. 1 W.

Design Problems

P16.81 vI(t) in Figure P16.81 is a rectangular pulse train (Figure 
16.9) of 1 V amplitude, with T = 10 ms and τ = 2 ms. 
Select the largest R and smallest C that will satisfy the 
following requirements: (i) the dc component in vO 
should not be attenuated by more than 10% of that in vI 
and (ii) the magnitude of the fundamental in vO should 
not exceed 2% of the dc component.

 Ans. R = 100 kΩ, C = 1.5 μF.
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P16.82 Figure P16.82 illustrates a capacitor-input filter that 
is commonly used to obtain a nominally dc voltage 
from a full-wave rectified waveform (Figure 16.27b) 
vI(t). C is an electrolytic capacitor, which has a large 
capacitance, and is polarized by the dc voltage across 
it. In the approximate analysis of the filter, the gov-

erning equations are V V
v

DC m
r= -

2
,
 

v
I

fC
r

DC=
2

, with 

VDC = RLIDC, where Vm is the peak voltage of the input, 
vr is the peak-to-peak ripple in the load voltage, and f is 
the frequency of the supply from which vI is derived. It 
is required to have VDC = 12 V across a load resistance 
RL = 20 Ω, with f = 50 Hz, and vr not exceeding 5% of 
VDC. Determine (a) Vm, (b) C, and (c) the rms value 
of  the ac component of vr, assuming vr has a nearly 
 triangular waveform.

 Ans. (a) 12.3 V; (b) 10,000 μF; (c) 100 3 173= mV .

P16.83 An LC filter (Figure P16.46) is to be used to supply a 
100 Ω resistive load from a full-wave rectified wave-
form (Figure 16.27b) of 15 V amplitude derived from a 
50 Hz supply. Determine C if L = 0.1 H and the ampli-
tude of the first ac component of vO is not to exceed 
about 3.5% of the dc component.

 Ans. 508 μF.

Probing Further

P16.84 Consider the square pulse train of Figure 16.14a whose 
FSE is given by Equation 16.44. Assume that Am = 1 and 
ω0 = 1 rad/s. Using an appropriate computer program, 
plot the FSE expansion using an increasing number 
of harmonics. Observe that with the ninth harmonic, 
the waveform begins to look like a square wave. Note, 
however, that no matter how many harmonics you add 
(necessarily a finite number), there always remains a 
small overshoot and some damped oscillations follow-
ing the discontinuities. This is referred to as Gibb’s 
phenomenon.

P16.85 Generalize the result of Example 16.10 to the triangu-
lar waveform of Figure P16.85a having two triangles 
per period of equal amplitude A but arbitrary values 
of τ1, τ2, and τ3 within a period, where τ1 ≤ τ2 ≤ τ3. Show 
that the rms value is the same if one of the triangles 
is negative-going but of the same amplitude (Figure 
P16.85b). Deduce that the rms value of a function that 
alternates linearly between +A and −A a number of 
times is A/ 3 .

 Ans. rms value remains A/ 3 .
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Objective and Overview

Power calculations are generally straightforward but 
tedious because they involve complex voltages and cur-
rents. They are considerably facilitated by utilizing the 
concept of complex power. The real part of complex 
power is real, or average, power, whereas its imaginary 
part is the reactive power associated with energy storage 
elements. The usefulness of complex power stems from its 
conservation, which implies that real and reactive power 
can be summed branch by branch in any given circuit.

Energy storage elements alternately store energy 
and return this energy to the supply. The reactance 
of energy storage elements places added current and 
voltage burdens on the power system, which neces-
sitates sometimes adding capacitors that counteract 
the normally inductive reactances of power systems. 
Another important practical consideration is when a 
source inherently has a relatively large source imped-
ance. It is of interest in such cases to determine the load 
impedance that results in maximum power transfer to 
the load.

The chapter begins by discussing instantaneous 
power in resistors, inductors, and capacitors, followed 
by the more general case of a circuit that is a combina-
tion of these elements. This serves to define real power 
and reactive power and explain their nature. Complex 
power is then defined, its conservation justified in detail, 
and its usefulness in circuit analysis illustrated in power 
factor correction that counteracts the inductive reactive 
power in a circuit.

The rest of the chapter addresses the problem of maxi-
mum power transfer, first in the case of purely resistive 
circuits, followed by the more general case in terms of 
impedances and admittances of a source and a load. The 
conditions of maximum power transfer from a source to 
a load are examined, first without constraints and then 
subject to some constraints that may be encountered 
under certain conditions.

17.1  Instantaneous and Real Power

17.1.1  Resistor

Consider a voltage v(t) = Vmcos(ωt + θ) applied to a resis-
tor R (Figure 17.1a). The current through the resistor is 

i t I tm( ) = +( )cos w q , where Im = Vm/R. The instantaneous 
power dissipated in the resistor at any time t is

 
p t v t i t V I t

V I
tm m

m m( ) = ( ) ( )= +( ) = + +( )éë ùûcos2

2
1 2w q w qcos

 
(17.1)

as shown in Figure 17.1b. The instantaneous power varies 
at twice the supply frequency because power is propor-
tional to the square of v or i, so that the variation of power 
with time is the same during the positive half-cycles of v 
and i as during the negative half-cycles. p is never nega-
tive, since the resistor does not return power to the supply. 
If p is averaged over a full period, 2π/ω, the cosine term 
averages to zero, so that the average of p over a period is

 
P

V I V I
V Im m m m= = =

2 2 2
rms rms

 
(17.2)

Equation 17.2 agrees with what was derived in 
Section 8.3. P is referred to as the real, or average, power. 
It represents electric energy that is converted to another 
form of energy, which in this case is heat if R represents 
a heating element. In general, real power could represent 
conversion to another form of energy, if R, for example, rep-
resents a lamp. The expression “real power” will be used 
in this chapter rather than “average power” to emphasize 
that real power is the real part of complex power.

Equation 17.1 is expressed in terms of P as

 p t P t( ) = + +( )éë ùû1 2cos w q  (17.3)

It is seen that P is both the magnitude of the real power 
and the amplitude of the alternating component of the 
instantaneous power of frequency 2ω rad/s. According to 
Equation 17.3, the maximum value of p is 2P.
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Real, Reactive, and Complex Power
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FIGURE 17.1
Instantaneous power for an ideal resistor. (a) Resistor connected to 
a sinusoidal source and (b) variation of voltage, current, and power 
with time.
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Primal Exercise 17.1

A current of 5cos100πt A flows through a 4 Ω resistor. 
Determine (a) the real power dissipated in the resistor 
and (b) the amplitude of the alternating component of 
the instantaneous power and its frequency.
Ans. (a) 50 W; (b) 50 W, 200π rad/s.

17.1.2  Inductor

If the voltage v(t) = Vmcos(ωt + θ) is applied across an 
inductor L (Figure 17.2a), the current through the induc-
tor is i(t)  =  Imcos(ωt  +  θ − 90°)  =  Imsin(ωt  +  θ), where 
Im  =  Vm/ωL (Section 8.3). The instantaneous power 
absorbed by the inductor at any time t is

 

p t v t i t V I t t

V I
t

m m

m m

( ) = ( ) ( ) = +( ) +( )

= +( )

cos sin

sin

w q w q

w q
2

2
 

(17.4)

as shown in Figure 17.2b. When p is positive, the 
inductor actually absorbs power and stores it as 
energy in the magnetic field. When p is negative, the 
inductor delivers power, thereby returning the stored 
energy to the source. The real power is zero, so that 
as much power flows in one direction as in the oppo-
site direction and no power is dissipated. p varies at 
twice the supply frequency because it is the product 
of v and i, so that p is positive when v and i are both 
positive or both negative, and p is negative otherwise.

By analogy with the case of the resistor, Equation 17.4 
is expressed as

 p t Q tL( ) = +( )sin2 w q  (17.5)

 
Q

V I V I
V IL

m m m m= = =
2 2 2

rms rms
 

(17.6)

QL is referred to as the reactive power in the case of 
an inductor. It is the amplitude of the power that is 
alternately absorbed in the inductor and returned to 
the  supply. In this sense, reactive power is confined 
to  the electric circuit and is not available outside the 
circuit. Because of its different nature, the unit of Q 
is not a watt but a volt-ampere reactive, abbreviated 
as VAR.

17.1.3  Capacitor

Similarly, if the voltage v(t) = Vmcos(ωt + θ) is applied 
across a capacitor C (Figure 17.3a), the current through 
the capacitor is i(t) = Imcos(ωt + θ + 90°) = −Imsin(ωt + θ), 
where I CVm m=w  (Section 8.3). The instantaneous power 
delivered to the capacitor at any time t is

 

p t v t i t V I t t

V I
t

m m

m m

( ) = ( ) ( ) = - +( ) +( )

= - +( )

cos sin

sin

w q w q

w q
2

2  (17.7)

as shown in Figure 17.3b. When p is positive, the 
capacitor actually absorbs power and stores it as 
energy in the electric field. When p is negative, the 
capacitor delivers power, thereby returning the stored 
energy to the source. The real power is zero, so that as 
much power flows in one direction as in the opposite 
direction and no power is dissipated. p varies at twice 
the supply frequency, as explained for the case of an 
inductor.

Similar to the case of the inductor, Equation 17.7 can 
be expressed as

 p t Q tC( ) = +( )sin2 w q  (17.8)

 
Q

V I V I
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m m m m= - = - = -
2 2 2
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(17.9)
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FIGURE 17.2
Instantaneous power for an ideal inductor. (a) Inductor connected to 
a sinusoidal source and (b) variation of voltage, current, and power 
with time.
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with time.



Real, Reactive, and Complex Power 519

where QC is again a reactive power equal to the ampli-
tude of the power that is alternately stored in the capaci-
tor and returned to the source. Note that the reactive 
power is positive for an inductor and negative for a 
capacitor.

Primal Exercise 17.2

A current 2cosωt flows through a 1  mH  inductor  in 
series  with a 1 mF capacitor. Determine Q for  (a) 
the inductor and (b) the capacitor, assuming ω  = 
2000 rad/s; (c) calculate the series reactance and ver-
ify that Q for this reactance is the algebraic sum of the 
reactive power in (a) and (b).
Ans. (a) 4 VAR; (b) −1 VAR; (c) series reactance is 1.5 Ω 
inductive, Q = 3 VAR.

Primal Exercise 17.3

Repeat Primal Exercise 17.2 assuming ω = 500 rad/s.
Ans. (a) 1 VAR; (b) −4 VAR; (c) series reactance is 1.5 Ω 
capacitive, Q = −3 VAR.

Primal Exercise 17.4

(a) Determine the voltages across the inductor and 
capacitor vL(t) and vC(t) in Primal Exercise 17.2; (b) verify 
that the phasor sum VL + VC is the phasor representation 
of vL(t) + vC(t).
Ans. (a) −4sin2000t V, sin2000t V.

17.1.4  General Case

We will now generalize the preceding discussion to 
a circuit that consists of resistors as well as inductors 
and capacitors, in the sinusoidal steady state. Let v be 
the voltage applied to the terminals of such a circuit 
‘N’, and let i be the current entering these terminals in 
the direction of the voltage drop v (Figure 17.4a). The 
instantaneous power delivered to the circuit is

 p vi=  (17.10)

In general, the power p is partly dissipated in the resis-
tors of the circuit and partly stored in the energy storage 
elements. If v(t) = Vmcos(ωt + θv) and i(t) = Imcos(ωt + θi)

 p t V I t tm m v i( ) = +( ) +( )cos cosw q w q  (17.11)

as shown in Figure 17.4b. If the circuit is inductive, 
θv > θi, that is, the current lags the voltage, as assumed 
in Figure 17.4, for the sake of illustration. On the other 
hand, if the circuit is capacitive, θi > θv, that is, the cur-
rent leads the voltage. Since the circuit contains, in gen-
eral, both resistors and energy storage elements, p has 
a nonzero average, because of power dissipation in the 
resistors, and p is negative over part of the cycle because 
of the power returned to the supply by the energy stor-
age elements, as in Figures 17.2 and 17.3.

Figure 17.4c illustrates the phasor diagram for v and 
i as phasors: V = Vm∠θv and I =  Im∠θi, with θv > θi, as 
assumed. Let us resolve V into two components: a com-
ponent VP that is in phase with I and a component VQ 
that is in phase quadrature with I. The magnitude of VP 
is Vm, the magnitude of V multiplied by cos(θv − θi), and 
its phase angle is θi, the same as that of I. In the time 
domain, VP is

 v t V tP m v i i( ) = -( )éë ùû +( )cos cos ]q q w q  (17.12)

The magnitude of VQ is Vm multiplied by sin(θv − θi), 
and its phase angle is θi, + 90° (Figure 17.4c). In the time 
domain, VQ is
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Multiplying vP from Equation 17.12 by i and denoting 
the product as pP,
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FIGURE 17.4
Instantaneous power for an LTI circuit. (a) Sinusoidal excita-
tion applied to a circuit ’N’, (b) variation of voltage, current, and 
power with time, and (c) voltage phasor diagram resolved into two 
components.
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Since vP is the component of voltage that is in phase 
with i, pP represents the instantaneous power dissipated 
in the resistances in the circuit. If pP is averaged over 
a full period, the cos2(ωt  +  θi) term averages to zero, 
leaving the average of pP as the constant term (VmIm/2) 
cos(θv − θi). This is the real power P in the general case, 
so that Equation 17.14 can then be written as

 p t P tP i( ) = + +( )éë ùû1 2cos w q  (17.15)

where

 
P

V I
V Im m

v i v i= -( ) = -( )
2

cos cosq q q qrms rms
 

(17.16)

It is seen that Equation 17.15 is of the same form as 
Equation 17.3 and that when the circuit ‘N’ is purely 
resistive, θv  =  θI, and P in Equation 17.16 reduces to 
P in Equation 17.2. On the other hand, θv − θI = +90° 
for a purely inductive circuit and θv − θI = −90° for a 
purely capacitive circuit. In either case, P  =  0, since 
no power is dissipated in a purely reactive circuit. 
It follows that the general expression for real power 
is given by Equation 17.16 and involves cos(θv  − θI), 
which accounts for the component of voltage that is in 
phase with the current.

Multiplying vQ from Equation 17.13 by i and denoting 
the product as pQ,

 

p t v i V I t t

V I

Q Q m m v i i i

m m
v

( ) = = - -( ) +( ) +( )

= - -

sin sin cos

sin

q q w q w q

q
2

qq w q

q q w q

w

i i

m m
v i i

t

V I
t

Q

( ) +( )

= -( ) +( ) + °éë ùû

=

sin

sin cos

cos

2

2
2 90

2 tt i+( ) + °éë ùûq 90
 

(17.17)

where

 
Q

V I
V Im m

v i v i= -( ) = -( )
2

sin sinq q q qrms rms
 

(17.18)

Again, Equation 17.18 is of the same form as Equations 
17.5 and 17.8. For a purely inductive circuit, q qv i- = °90 , 
and Equation 17.18 reduces to Equation 17.6, whereas for 
a purely capacitive circuit, q qv i- = - °90 , and Equation 
17.18 reduces to Equation 17.9. For a purely resistive 
circuit, θv  =  θI, so Q  =  0, since a resistive circuit does 
not store electric or magnetic energy. It is seen that the 
general expression for Q is given by Equation 17.18 and 
involves sin(θv − θI), which accounts for the component 
of voltage that is in phase quadrature with the current. 

Again, Q is positive for an inductive reactance (θv > θI) 
and is negative for a capacitive reactance (θv < θI).

The preceding results can be summarized as follows:

Summary: When v is the voltage across the terminals of a 
circuit consisting of resistors, inductors, and capacitors and 
i is the current entering these terminals in the direction of a 
voltage drop v, the instantaneous power p = vi is pulsating 
at a frequency that is twice that of v and i. The real power 
dissipated in the resistors is P, the average of the product of i 
and the component of v that is in phase with I; P = VrmsIrms 
cos(θv − θi), where P is also the amplitude of the alternating 
component of the product of i and the component of v that is 
in phase with i. The reactive power, representing the energy 
that is alternately stored in the energy storage elements and 
returned to the rest of the circuit, is the product of i and the 
component of v that is in phase quadrature with i. The reac-
tive power is purely alternating, is of zero  average, and has 
an amplitude of Q  =  VrmsIrmssin(θv − θi). When the circuit 
is inductive, θv  >  θI, so Q is positive. When the circuit is 
 capacitive, θv < θI, so Q is negative.

From conservation of power, the power input at every 
instant is the algebraic sum of the power dissipated in 
the resistances and the power stored as energy in energy 
storage elements at that instant. In other words,

 p p pP Q= +  (17.19)

This is illustrated in Figure 17.5, where pP has an aver-
age P and an alternating component Pcos2(ωt  +  θi). 
pQ  is purely alternating and of amplitude Q and leads 
the alternating component of pP by 90°, assuming the 
circuit is inductive. At any instant of time t1, p is the alge-
braic sum of pP and pQ.

If both sides of Equation 17.19 are divided by i,

 v v vP Q= +  (17.20)

In other words, at any instant of time, v is the alge-
braic sum of vP and vQ. In the frequency domain, V is the 
phasor sum of VP and VQ (Figure 17.4c).

Example 17.1 illustrates real and reactive power in an 
RL circuit.

–  i
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pP

pQ

p

t1
 t

FIGURE 17.5
Instantaneous, real, and reactive power in the time domain.
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Exercise 17.5

Show that Equations 17.19 and 17.20 are satisfied by 
applying trigonometric identities to (a) (vP + vQ), where 
vP and vQ are given by Equations 17.12 and 17.13, respec-
tively, and (b) (pP + pQ), where pP and pQ are given by 
Equations 17.14 and 17.17, respectively.

Exercise 17.6

Given that pP(t)  =  P[1  +  cos2(ωt  +  θi)] and pQ(t)  = 
−Qsin2(ωt  +  θi), show that the maximum and mini-
mum values of the instantaneous power p are given by

 p P P Q p P P Qmax min= + + = - +2 2 2 2and  (17.21)

Example 17.1: Real and Reactive 
Power in an Inductive Circuit

Consider a voltage v(t) = 100cos(1000t + 30°) V applied 
to a 30 Ω resistor in series with a 40 mH inductor (Figure 
17.6a). It is required to examine the real and reactive 
powers in the circuit.

Solution:

ωL  =  1000  ×  0.04  =  40 Ω. In terms of the phasor volt-

age V
 
and the phasor current I, I

V= = Ð °
+

= Ð
Z j

i
100 30
30 40

2 q
 

where
 
θi  =  30° − tan−1(4/3)  =  −23.13° (Figure 17.6b). 

In the time domain, i(t)  =  2cos(1000t − 23.13°) A, and 
vR(t)  =  Ri  =  60cos(1000t − 23.13°) V, where vR(t) is the 
component of v in phase with i (vP in Equation 17.12). 
vL(t) = Ldi/dt = −80sin(1000t − 23.13°) V, = 80cos(1000t − 
23.3° + 90°) V and is the component of v that leads i by 
90° (vQ in Equation 17.13). Note that v = vR + vL (Exercise 
17.7). As phasors, VR = 60∠θi V and VL = 80∠(θi + 90°) V, 
so that VR + VR = V, as in Figure 17.6b.

It should be carefully noted that the real power dissi-
pated in the resistor is, from Equation 17.2, P = VRrms × 
Irms = (60 × 2)/2 = 60 W in terms of the voltage across the 

resistor and current through it. But in terms of the voltage 
and current at the terminals of the circuit, P = Vrms × Irms 
cos(θv − θi), where (θv − θi)  =  tan−1(4/3), so that 
cos(θv − θi) = 3/5 and P = (100 × 2/2) × (3/5) = 60 W, 
as it should be. The instantaneous power dissipated in 
the resistor is, from Equation 17.15: 60[1  +  cos2(ωt − 
23.13°), the maximum instantaneous power dissipation 
being 120 W.

From Equation 17.18, and in terms of the voltage and 
 current at the terminals of the circuit, Q = VrmsIrms sin(θv − θi) = 
(100 × 2/2) × (4/5) = 80 VAR, where sin(θv − θi) = 4/5, 
since tan(θv − θi) = 4/3. In terms of the current and volt-
age across the inductor, Q  =  VLrmsIrms  =  (80  ×  2/2)  = 
80 VAR, as it should be. From Equation 17.18, v i tQ ( ) = 
80 2 1000 23 13 90cos . .t - °( ) + °éë ùûVAR

It is instructive to determine Q from the instantaneous 
energy stored in the inductor. This energy is at any 
instant: w t Li LI tm i( )=( ) =( ) +( )1 2 1 22 2 2/ / cos w q . The instan-
taneous reactive power in the inductor pL is dw/dt. It fol-
lows that p t LI t tL m i i( )=- ( ) +( ) +( )( )=1 2 2 2/ cos sinw w q w q  
-( ) +( )=( ) +( )+ °éë ùû1 2 2 1 2 2 902 2/ sin / cos .w w q w w qLI t LI tm i m i   The 
amplitude 1 2 2/( )wLIm is Q=( )´ ´ ´ =1 2 1000 0 04 4 80/ . VAR .

Problem-Solving Tip

• When working with power, it is convenient to 
express voltages and currents as rms values.

Exercise 17.7

Show that v = vR + vL in Example 17.1.

Primal Exercise 17.8

Repeat Example 17.1 with the inductor replaced by a 
25 μF capacitor.
Ans. P = 60 W, Q = −80 VAR.

17.2  Complex Power

17.2.1  Complex Power Triangle

P and Q are the amplitudes of purely alternating quan-
tities, namely, Pcos2(ωt + θi) and Qcos[2(ωt + θi) + 90°], 
respectively (Equations 17.15 and 17.18). Since these 
components are sinusoidal functions of time having the 
same frequency 2ω, they can be represented as phasors 
on an Argand diagram. As real power, P is drawn with 
zero phase angle, along the real axis, and Q is drawn 
with a phase angle of 90°, for an inductive reactance 
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FIGURE 17.6
Figure for Example 17.1.
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(Figure 17.7), and with a phase angle of −90° for a capac-
itive reactance. The phasor sum is

 S P Q P Q= + = + j  (17.22)

where |P| = P = VrmsIrms cos(θv − θi) and |Q| = Q = VrmsIrms 
sin(θv − θi). S is the complex power having a magnitude 
|S| = S = P Q2 2+  = VrmsIrms and a phase angle of (θv − θi). 
The magnitude S is referred to as the apparent power. 
The unit of S is the volt-ampere (VA). Although P, Q, 
and S are of the nature of phasors, they are not com-
monly referred to as such and are not drawn on the 
same diagram as voltage and current phasors, because 
they have twice the frequency.

It follows from Figure 17.7 that S can be expressed as

 S V Irms rms= Ð -( ) = Ð ´ Ð- =V I V Iv i v irms rms rms rmsq q q q *
 

(17.23)

where Irms
*  is the conjugate of Irms, having a magnitude 

Irms and phase angle −θi. Multiplication of Vrms by Irms
*  in 

Equation 17.23 is necessary in order to have the phase 
angle of S equal to (θv − θi). Note that it is usually more 
convenient in power calculations to express magnitudes 
of voltages and currents as rms values.

Having defined complex power and expressed it in 
terms of voltage and current in Equation 17.23, the next 
step is to express complex power in terms of current 
and impedance. To do so, it is convenient to consider a 
circuit ‘N’ consisting of resistors, capacitors, and induc-
tors. Let the input impedance Z looking into the termi-
nals of the circuit be represented as a series combination 
of resistance R and reactance X (Figure 17.8a), so  that 

Z = R + jX. Let Vrms = ÐV vrms q  be the voltage at the input 
terminals of ‘N’ and Irms = ÐI irms q  be the input current 
in the direction of the voltage drop Vrms. It follows that 
Z = Vrms/Irms, so that the phase angle of Z is (θv − θi). 
Moreover, substituting Vrms = ZIrms in Equation 17.23,

 S rms rms= = Ð ´ Ð- = = +Z ZI I ZI RI jXIi iI I* rms rms rms rms rmsq q 2 2 2
 

(17.24)

where the product of Irms and its complex conjugate is 
the real quantity equal to the square of the magnitude 
Irms. It follows from Equation 17.24 that

 P RI Q XI= =rms rms
2 2and  (17.25)

The impedance triangle is shown in Figure 17.8b. 
Multiplying the sides of the triangle by Irms

2  gives RI Prms
2 =  

for the base, XI Qrms
2 =  for the height, and Z I Srms

2 =  for 
the hypotenuse, in accordance with Equations 17.24 
and 17.25. It is seen that the complex power triangle of 
Figure 17.7 is simply a scaled version of the impedance 
triangle, the scaling factor being Irms

2 . Moreover, Vrms = 
VR + VX = RIrms +  jXIrms, where VR = RIrms is the com-
ponent of Vrms in phase with Irms and VX = jXIrms is the 
component of Vrms in phase quadrature with Irms.

Complex power can equally well be expressed in 
terms of voltage and admittance, rather than current and 
impedance. To do so, we consider the input admittance 
Y  =  G  +  jB at the input terminals of circuit ‘N’, rather 
than the input impedance Z (Figure 17.9). It follows that
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(17.26)

The admittance diagram is shown in Figure 17.9b, 
where B is negative for the assumed inductive reactance 
(θv > θi). S may be expressed as
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(17.27)

|P| = Vrms Irms cos(  v –   i)

|Q| =
Vrms Irms sin(  v –   i)|S| = V rm

s 
I rm

s Q
S

Pv –   i

FIGURE 17.7
Complex power triangle.
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Complex power in a series circuit. (a) Circuit ̀ N’ represented by a resis-
tance and reactance in series and (b) impedance triangle for circuit `N’.
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where the conjugate complex of the product of two 
 complex quantities is equal to the product of the com-
plex conjugate of each quantity. Thus, if the two com-
plex quantities are expressed as Aeja and Be jb , their 
complex conjugates are Ae j- a  and Be j- b . Their product 
is ABej a b+( ) , whose complex conjugate ABe j- +( )a b  is the 
product of Ae j- a  and Be j- b . Substituting Y* = G − jB,

 S = ( ) = -G jB V GV jBV– rms rms rms
2 2 2

 (17.28)

which gives

 P GV Q BV= = -rms rms
2 2and  (17.29)

The complex power triangle of Figure 17.7 is thus 
a scaled version of the admittance triangle, with B 
inverted, and a scaling factor of Vrms

2 . Complex power 
relations are summarized in Table 17.1.

Primal Exercise 17.9

(a) Determine P, QL, QC, and S delivered by the source 
and absorbed by the load impedance in Figure 17.10; 
verify that S = VI*; and (b) represent P, QL, QC, and S on 
a phasor diagram.
Ans. (a) P = 1∠0° W, QL = 0.5∠90° VAR, QC = 1∠−90° 
VAR, S = Ð- °0 5 5 26 6. . VA.

Primal Exercise 17.10

Repeat Primal Exercise 17.9 for the circuit that is the 
dual of that of Figure 17.10. Note that the circuit of 
Figure 17.10 is capacitive, but its dual is inductive.
Ans. (a) P = 1∠0° W, QC = 0.5∠−90° VAR, QL = 1∠+90° 
VAR, S = Ð °0 5 5 26 6. . VA.

Primal Exercise 17.11

Determine the reactive power absorbed by the inductor 
and the capacitor in Figure 17.11.
Ans. QL = 5 VAR, QC = −10 VAR.

Primal Exercise 17.12

Determine C in Figure 17.12 if the complex power deliv-
ered by the source is −j5 kVA, with ω = 1 krad/s.
Ans. 1.5 mF.

17.2.2  Conservation of Complex Power

We will argue in this subsection that complex power is 
conserved because its real and imaginary parts, P and 
Q, are each conserved in any given circuit. Before doing 
so, let us clarify what exactly is meant by conserva-
tion of power in a circuit. Recall from the discussion in 
Chapters 1 and 2 that conservation of power in a circuit 
under dc conditions means that the power delivered by 
sources in the circuit is equal to the power dissipated in 
the resistors in the circuit at every instant. This power is 
real power.

TABLE 17.1

Complex Power Relations

 S VIrms== ++P jQ = *

 Series Connection Parallel Connection

Z = R + jX Y = G + jB

S ZIrms
2 Y V V Z* / *rms rms

2 2=

P RIrms
2 GVrms

2

Q XIrms
2 -BVrms

2

4

j20.5 0° A
rms

–j4

FIGURE 17.10
Figure for Primal Exercise 17.9.
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FIGURE 17.11
Figure for Primal Exercise 17.11.
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FIGURE 17.12
Figure for Primal Exercise 17.12.
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The circuit of Figure 17.8 is illustrated in Figure 17.13 
in the time domain, where the reactance X is repre-
sented by an inductance L for the purpose of illustration. 
Conservation of power means that at every instant, the 
power delivered by the source is equal to that absorbed 
by the load, so that power is conserved in the circuit as a 
whole at every instant. Since instantaneous power in the 
sinusoidal steady state is given by Equation 17.19, we 
can express conservation of power at every instant as

 p p p pPS QS P Q+ = +L L (17.30)

The LHS in Equation 17.30 is the instantaneous power 
delivered by the source, and the RHS is the instan-
taneous power absorbed by the load, both in accor-
dance with Equation 17.19. The question is whether (1) 
Equation 17.30 necessitates that pPS = pPL and pQS = pQL 
or (2) that pPS can be different from pPL and pQS different 
from pQL as long as Equation 17.30 is satisfied. In the lat-
ter case, suppose that, for the sake of argument, pPS > pPL 
and pQS < pQL. This means that more real power pPS is 
supplied by the source than is absorbed by the load and 
that the load converts some of this real power to reac-
tive power pQL so as to satisfy Equation 17.30. However, 
this is physically impossible, because real and reactive 

powers are very different in nature. Real power is power 
expended in a load, such as that dissipated in a resis-
tor, whereas reactive power is power associated with 
the magnetic energy stored in inductors and the electric 
energy stored in capacitors. Real power is useful power 
that can be converted to other forms of energy, such as 
heat, light, and mechanical energy, and that is available 
outside the circuit. Reactive power is power that flows 
back and forth between the source and energy storage 
elements, with zero average, and is not available outside 
the circuit. It must be concluded, therefore, that in satis-
fying Equation 17.30, the real powers pPS and pPL must be 
equal and the reactive powers pQS and pQL must be equal. 
Mathematically, if the averages of both sides of Equation 
17.30 are taken over a period, then
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(17.31)

Since the averages of the reactive powers pQS and pQL 
are zero, the averages of pPS and pPL are equal. But the 
average of real power is also the amplitude of its alter-
nating component (Equation 17.15). This means that if 
the averages of pPS and pPL are equal, then pPS = pPL, and 
in turn pQS = pQL.

The same conclusion can be reached in the frequency 
domain, with some additional inferences. Consider that 
VSRC rms is applied as in Figure 17.14a to a resistance R1 
alone. The load absorbs a real power P1 = |VSRC|2/R1, 
and the source delivers an equal real power PS1  =  P1. 
Suppose an inductance L is added in parallel with R1 
(Figure 17.14b). P1 does not change because it depends 
on |VSRC|, which has not changed. The inductor absorbs 
a reactive power QL  =  −BL|VSRC|2  =  |VSRC|2/ωL. 
The source must supply a reactive power QSL  =  QL, 
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FIGURE 17.13
Conservation of power in the time domain.
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in  accordance with conservation of power at every 
instant. It is seen that

 P Q P QS SL L1 1+ = +  (17.32)

Equation 17.32 is the counterpart of Equation 17.30 in 
the frequency domain.

Next, consider that a resistance R2 is added in series 
with R1 and L (Figure 17.4c) and that VSRC is changed 
to VSRC¢ , such that Vab = VSRC remains the same, that is, 
¢VSRC = R2IS  +  Vab. P1 and QL do not change, since Vab 

has not changed, but the load connected to the source 
now absorbs an additional real power P2 = |IS|2R2. The 
source must therefore supply an additional real power 
PS2  =  P2, in accordance with conservation of power at 
every instant. Equation 17.32 now becomes

 P Q P P Q PS S S L1 1 2 1 2+ + = + +  (17.33)

Let a capacitance C be added in series with R2 (Figure 
17.4d) and let VSRC¢  be changed to VSRC²  such that Vab and 

IS remain the same, that is, VSRC² = + +( )V Iab SR j C2 1/w . 
P1, QL, and P2 do not change, since Vab and IS have not 
changed. The load connected to the source now absorbs 
an additional reactive power QC = XC|IS∣2 = −∣IS∣2/ωC. 
The source must deliver an additional reactive power 
QSC = QC, in accordance with conservation of power at 
every instant, so that

 P Q P Q P QS S L C+ = + + +1 2  (17.34)

where PS = PS1 + PS2 = P1 + P2, and QS = QSL + QSC = QL + QC.
According to Equation 17.34, real power P and reac-

tive power Q are conserved, as in Equation 17.30 in the 
time domain. In addition, the preceding argument illus-
trates a very useful feature of complex power analysis, 
namely, that P and Q can each be added branch by 
branch across the circuit. Thus, as one proceeds from 
right to left in Figure 17.14d, P1 of R1 is added to QL of 
the inductor, to P2 of R2, and to QC of the capacitor to 
obtain the complex power absorbed by these elements. 
By conservation of power, this is also the power deliv-
ered by the source.

Since P and Q are separately conserved in any given 
circuit, their complex sum, S = P + jQ, must also be con-
served. In summary,

Summary: In any circuit in the sinusoidal steady state, reac-
tive power is conserved in the circuit as a whole, because each 
energy storage element alternately absorbs and returns to the 
supply the same energy during each half period of the supply. 
Real power is conserved in the circuit as a whole, because it is 
an average power, and the average of reactive power is zero, so 
that the sources in the circuit must supply this average power. 
With each of  P and Q conserved, their sum S is conserved.

Concept: Real and reactive powers can each be summed branch 
by branch in a given circuit. The total sum of each, over all 
branches of the circuit, including sources, is zero, in accordance 
with conservation of real and reactive powers.

Note that in summing real and reactive powers, real 
power and inductive, reactive power are considered 
positive if absorbed by any given passive circuit ele-
ment or subcircuit, whereas capacitive, reactive power 
is considered negative if absorbed. As always, power 
delivered is the negative of power absorbed.

Example 17.2: Application of Complex Power

Two loads ‘L1’ and ‘L2’ are connected across a 1000 0Ð °V rms 
supply (Figure 17.15a). ‘L1’ absorbs real power of 40 kW 
and reactive, inductive power of 30 kVAR, whereas ‘L2’ 
absorbs real power of 80  kW and reactive, inductive 
power of 60 kVAR. The loads are fed through a power line 
having a resistance of 0.1 Ω and a reactance of 0.5 Ω. It is 
required to determine the voltage VSRC.

Solution:

The real powers of ‘L1’ and ‘L2’ are added together 
to give 120  kW, and their reactive powers are added 
together to give 90 kVAR lagging, that is, inductive. The 
complex power triangle at terminals ‘ab’ is shown in 
Figure 17.15b. Thus, S S= + = Ð °´120 000 90 000 1 000 0, , , *j I , 

which gives IS
* , ,

,
.=

+
= Ð °

120 000 90 000
1 000

150 36 9
j

 A. Hence, 

IS = Ð150  – 36.9oA.
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FIGURE 17.15
Figure for Example 17.2.
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The real power absorbed by the 0.1 Ω resistance is 
0 1 150 2 252. .´( ) = kW, and the reactive power absorbed 
by the 0.5 Ω reactance is 0 5 150 11 252. .´( ) = kVAR. The 
total real power at the inputs of the supply terminals is 
122.25 kW, and the total reactive power is 101.25 kVAR. 
The complex power at these terminals is therefore 
S  =  122,250  +  j101,250 = 158 734 39 6, .Ð ° = Ð ´VSRC qV  
ISRC* .= Ð ´ Ð °VSRC vq 150 36 9 . Hence, VSRC = Ð °1058 2 7. V.

The real power delivered by the source is 122.25 kW. 
It is the sum of the real power dissipated in the line 
resistance and in loads ‘L1’ and ‘L2’. The reactive power 
delivered by the source is 101.25 kVAR. It is also the sum 
of the inductive reactive power in the line reactance and 
in the two loads. Real and reactive power are conserved in 
the system as a whole.

Problem-Solving Tip

• In a series circuit, it is convenient to derive powers as 
P RI R= =rms

2 2Irms  and Q XI X= =rms
2 2Irms , whereas 

in a parallel circuit it is convenient to derive powers 
as P GV G= =rms

2 2
Vrms  and Q BV B= - = -rms

2 2Vrms . 
Note  that only magnitudes are involved in these 
relations and not phase angles.

17.3  Power Factor Correction

Concept: Reactive power, although it averages to zero over 
a cycle, generally increases the voltage and current require-
ments of a load.

A series reactance increases the voltage needed for 
delivering a required real power to a load. This is seen 
in Figure 17.8a, where the real power delivered to the 
load is P RI= rms

2 . In the presence of a series reactance X, 
a larger voltage across the series combination is required 
for a given Irms and hence a given P. Similarly, a par-
allel reactance increases the current needed for deliv-
ering a required real power to a load. In Figure 17.9a, 
the real power delivered to the load is P GV= rms

2 . In the 
presence of the susceptance B, a larger current through 
the parallel combination is required for a given Irms and 
hence a given P. In the presence of both series and paral-
lel reactive elements, as is generally the case with real-
life loads, both a larger voltage and a larger current are 
required for delivering a given real power to the load. 
This places an additional burden on the power system 
supplying the load. A larger current requires a greater 
current-carrying capacity of the supply conductors, and 
a larger voltage requires a higher degree of insulation of 
these conductors.

The contribution of the reactive elements relative to 
the resistive, or power-consuming, elements is indi-
cated by the phase angle (θv − θi), where cos(θv − θi) is 
the power factor (abbreviated p.f.) and sin(θv − θi) is the 

reactive  factor. For a purely resistive load, the p.f. is 
unity. Since the p.f. is the same for a positive (θv − θi) 
as for a negative (θv − θi), these two cases are distin-
guished by adding the attribute “lagging” or “lead-
ing,” respectively. For example, for a purely inductive 
load, θv − θi = 90°, and the p.f. is zero lagging, whereas 
for a purely capacitive load, θv − θi = −90°, and the p.f. 
is zero leading. In practice, ac loads generally have a 
lagging p.f., mainly due to ac motors as well as the 
inductances associated with transformers and ballasts 
of fluorescent lights. The p.f. may be as low as 0.8 lag-
ging or less, particularly during motor starting. A low 
p.f. is undesirable because of the additional current and 
voltage burdens placed on the supply, as explained pre-
viously. In the case of large loads, the additional costs 
involved can be quite considerable, so that some mea-
sures are taken to improve the p.f.. This power factor 
correction is achieved by adding capacitive reactance 
to counteract the inductive reactance of the load. The 
reactive power due to inductance is positive, whereas 
the reactive power due to capacitance is negative. By 
adding the proper value of capacitance, the net reactive 
power can be reduced to zero, thereby achieving a unity 
power factor.

Example 17.3: Power Factor Correction

Assuming a supply frequency of 50 Hz, determine the 
capacitance that must be added in parallel with the 
loads of Figure 17.15 of Example 17.2 so as to make 
the p.f. unity at the load terminals ‘ab’. Determine the 
effect of this capacitance on the supply current and 
voltage.

Solution:

The reactive power at terminals ‘ab’ was found in 
Example 17.2 to be 90 kVAR. The reactive power of the 
added capacitor must be −90 kVAR. The value of capac-
itance is determined using Equation 17.29, Q BV= - rms

2 , 
where Q = −90 kVAR, B = 2πfC, and Vrms = 1000 V. This 
gives C = 286.5 μF.

The total reactive power at terminals ‘ab’ is now zero. 
Hence, S= = Ð °´120 000 1000 0, *IS. This gives IS* = Ð °120 0 A. 
The real power absorbed by the 0.1 Ω resistance 
is 0 1 120 1 442. .´ ( ) = kW, and the reactive power absorbed 
by the 0.5 Ω reactance is 0 5 120 7 22. .´( ) = kVAR. The total 
real power at the source terminals is 121.44 kW and the 
total reactive power is 17.2 kVAR. The complex power 
at these terminals is therefore S = + =121 440 7 200, ,j  
121 653 3 4 120 0, . *Ð ° = Ð ´ = Ð ´ Ð °VSRC q qV S vVIS . Hence, 
VSRC = Ð °1014 3 4. V rms.

The p.f. at the load was initially 120/150 = 0.8. By cor-
recting it to 1, the source current was reduced from 150 to 
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120 A and the source voltage was reduced by a relatively 
small amount in this case, from 1058 to 1014 V rms, due 
to the reduced voltage drop across the line impedance.

Problem-Solving Tip

• The relation S Vrms rms= I*  is in terms of magnitudes 
S V Irms rms= , or S = VrmsIrms, independent of phase 
angles.

Primal Exercise 17.13

The load ‘L’ in Figure 17.16 absorbs 30 kW and 9 kVAR 
inductive. C is such that the p.f. is unity. Determine (a) IS 
and (b) C, assuming the frequency is 1 krad/s.
Ans. (a) 300∠0° A or 100∠0° A; (b) 100 μF, 0.9 mF.

Primal Exercise 17.14

A load absorbs 10(1 − j) kVA. It is required to change 
the p.f. to unity. Determine the reactance that must be 
added (a) in series with the load, assuming a load cur-
rent of 10 Arms, or (b) in parallel with the load, assum-
ing a load voltage of 100 V rms.
Ans. (a) +100 Ω; (b) +1 Ω.

Exercise 17.15

Determine (a) the capacitance that must be added in par-
allel with the loads of Example 17.2 so as to make the p.f. 
unity at the source terminals, assuming a frequency of 
50 Hz and (b) the new values of source current and voltage.

Ans. (a) 309 5. ;mF  (b) 120 22 3 45 1010 2 3 45. . ; . . .Ð ° Ð °A V

17.3.1  Power Measurements

Since S V V Irms rms rms rms= =I* , the apparent power |S| at 

any location is determined by measuring Vrms  and Irms  at 
that location by means of an ac voltmeter and an ac amme-
ter, respectively. To measure the real power, a wattmeter 

is used. The wattmeter has two coils, a current coil and a 
voltage coil with ± polarity markings. The current coil is 
connected like an ammeter, so that the load current flows 
through it. The voltage coil is connected across the load 
terminals, like a voltmeter. When the polarities of the two 
coils with respect to I and V are as indicated in Figure 
17.17, the wattmeter reads the power absorbed, P = VrmsI
rmscos(θv − θi). If the polarity of either coil is reversed, the 
wattmeter gives a negative indication. Knowing P and 
|S|, Q and the p.f. readily follow from the complex power 
triangle. Ideally, the voltage coil draws no current and the 
 voltage across the current coil is zero.

Primal Exercise 17.16

In Example 17.2, a wattmeter is used to measure the 
total real power delivered to the combined load. If the 
voltage terminal of the wattmeter is connected through 
a 20:1 voltage step-down transformer, and the current 
coil is connected through a 10:1 current step-down 
transformer, with normal polarities maintained, deter-
mine the wattmeter reading. If the voltage and current 
at the load terminals are measured to be 1000 V and 
150 A, respectively, determine the power factor of the 
combined load.

Ans. 600 0 8W; . .

17.4  Maximum Power Transfer

A matter of practical importance is to transfer maximum 
power to a load from a given source of specified open-
circuit voltage and source impedance, under steady-
state conditions. Before considering the general case, we 
will start with the purely resistive case.

17.4.1  Purely Resistive Circuit

In Figure 17.18, a dc source having an open-circuit 
voltage VSRC and a source resistance Rsrc supplies a 
resistive load RL. The ideal voltage source and source 
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Figure for Primal Exercise 17.13.
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resistance could represent, in general, TEC of a circuit 
connected to RL.

The load current is IL = VSRC/(Rsrc + RL), and the power 
transferred to RL is

 
P R

V
R R

R

R R
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src L
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src L
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+
æ

è
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ø
÷ =

+( )

2

2
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(17.35)

With VSRC and Rsrc constant, it is required to determine 
RL that maximizes PL. If dPL/dRL is derived and set to 
zero, it is found that PL is maximum for RL given by

 R RLm src=  (17.36)

When Equation 17.36 is satisfied, the source and load 
resistances are said to be matched. The voltage across 
RL  is VLm  =  VSRC/2, the current is ILm  =  VSRC/2Rsrc, and 
the power transferred to the load is P V RLm SRC Lm= 2 4/ . 
Figure 17.19 shows the source characteristic and load line, 
as previously derived in connection with Figure 3.29. 
The power VLmILm transferred to the load is repre-
sented by the area of the rectangle OAQB. This area 
is a maximum when Equation 17.36 is satisfied. Any 
other load such as ¢RL or ¢¢RL results in a rectangle of 
smaller area.

Figure 17.20 illustrates the various power relations in 
the circuit under conditions of maximum power trans-
fer. The source characteristic and load line are the same 

as in Figure 17.19, and the power delivered to the load 
is the area of the rectangle OAQB, as in Figure 17.19. 
The power dissipated in Rsrc is V RSRC Lm

2 4/ , the same as 
that transferred to the load, since the resistances and 
currents are equal. It is represented by the area of the 
rectangle ACDQ. The total power delivered by the ideal 
voltage source vSRC is V RSRC Lm

2 2/ , represented by the area 
of the rectangle OCDB.

It should be emphasized that the condition of maxi-
mum power transfer applies to the case where VSRC and 
Rsrc are kept constant and RL is varied. If RL is kept con-
stant and Rsrc is varied, the results are quite different. It 
is seen from Figure 17.20 that if RL is kept equal to RLm, 
the load line OE remains the same. If Rsrc is reduced to 
¢Rsrc, the source characteristic is represented by the line 

CF. The load current increases to ¢ >I IL Lm, the load volt-
age increases to ¢ >V VL Lm, and the power transferred to 
the load is represented by the area ¢ ¢V IL L of the rectangle, 
which is larger than the area of the rectangle OAQB. In 
the limit, if Rsrc  =  0, the source characteristic becomes 
the horizontal line CE. All of VSRC is applied to RLm, 
IL = VSRC/RLm, and the power transferred is V RSRC Lm

2 / , cor-
responding to the area of the rectangle OCEG. Hence, 
given a source having a specified open-circuit voltage 
VSRC, maximum power is transferred to the load when 
Rsrc = 0.

When the source has a small internal resistance, the 
condition for maximum power transfer is generally 
not of practical interest. For example, in the case of 
a 12  V battery having a source resistance of 0.04 Ω, 
maximum power transfer occurs when the load is 
unrealistically small at 0.04 Ω. The battery current 
under these conditions is 12/0.08 = 150 A, which will 
most likely damage the battery. The normal battery 
load is much larger than 0.04 Ω. On the other hand, 
consider a transistor  amplifier having an output resis-
tance of 100 Ω and required to drive a loudspeaker of 
nominal resistance  8  Ω. Maximum  power transfer is 
of  practical interest in this case and is usually imple-
mented in practice using an audio transformer.

Rsrc

RL

IL

+

–
VSRC

+

–

VL

FIGURE 17.18
Maximum power transfer in a resistive circuit.
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Primal Exercise 17.17

Consider a load connected to a source having an open-
circuit voltage of 12 V and a source resistance of 50 Ω. 
Determine (a) the load resistance for maximum power 
transfer, (b) the power delivered to the load, and (c) the 
power dissipated in the source resistance.

Ans. (a) 50 Ω, (b) 0.72 W; (c) 0.72 W.

Example 17.4: Maximum Power 
Transfer in Resistive Circuit

It is required to determine the value of RL that should 
be connected between terminals ‘ab’ in Figure 17.21a for 
maximum power transfer.

Solution:

We need only determine RTh looking into terminals ‘ab’. 
RLm for maximum power transfer is then equal to RTh. To 
determine RTh, we apply a test source VT between termi-
nals ‘ab’ with the 4 V source set to zero, and determine 
IT (Figure 17.21b). It is seen that I Vb T´ = - -1 10 4 . On the 
output side, KCL gives 20 10 1004´ + =- V I VT T T/ . It fol-
lows that V I R RT T Th Lm/ = = = 125 kW.

Simulation: We can determine RTh using dc sweep as 
was done in Example 4.1. Instead we will demonstrate 
PSpice’s parametric sweep feature that allows des-
ignating the value of a circuit component as a global 
parameter, which can then be varied continuously 
or for some discrete values. The circuit is entered as 
shown in Figure 17.22, with a power probe added to 
R3. To use parametric sweep with R3, double click on 

the default resistance value displayed, which invokes 
the Display Properties window. In the Value field, enter 
a chosen designation enclosed in curly brackets, which 
tells PSpice that this is a parameter. In the present 
example, {R_val} is entered. The next step is to declare 
{R_val} a global parameter. Place the part PARAM from 
the SPECIAL library; this shows on the schematic as 
PARAMETERS: When this word is double-clicked, the 
Property Editor spreadsheet is displayed. Click on the 
New Column button to display the Add New Column 
dialog box. Enter R_val in the Name field and any 
value, say 1k, in the Value field. A new column R_val is 
added to the spreadsheet with the entry 1k. To have this 
displayed on the schematic, click on the Display button 
and choose Name and Value in the Display Properties 
dialog box. R_val = 1k appears under PARAMETERS, 
as shown in Figure 17.22.

To run the simulation, select DC Sweep in the 
Simulation Settings dialog box. Under Sweep vari-
able, choose Global parameter and enter R_val for 
‘Parameter name’. Under Sweep type choose Linear and 
enter 50 k for ‘Start value’, 250 k for ‘End value’, and 
100 for ‘Increment’. It may be necessary to try different 
ranges of values of R_val before identifying the range 
that shows a maximum. When PSpice is run, the plot 
of Figure 17.23 is displayed. Click on the cursor button 
and select Trace/Cursor/Max. The cursor reading gives 
125.000K, 200.000. Thus, RLmax = 125 kΩ, and the maxi-
mum power transferred is 200 W. If the power probe is 
not used, the plot of Figure 17.23 is displayed by adding 
the trace W[R3] to the schematic page.

It should be noted that parametric sweep can also be 
implemented under ac conditions using the source VAC 
instead of VDC and AC Sweep instead of DC Sweep.

Problem-Solving Tip

• When only the condition for maximum power 
transferred is required, without the value of this 
power, it is only necessary to determine RTh, or 
ZTh, or YN, as the case may be, without determin-
ing VTh.
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Exercise 17.18

Verify by analysis that the maximum power transferred 
in Example 17.4 is 200 W.

Exercise 17.19

The total power delivered by the source VSRC 
varies with RL in accordance with the relation 
P V I V R RSRC SRC L SRC src L= = +( )2 / . Because this power var-
ies with RL, maximum power dissipation in RL does not 
in general coincide with minimum power dissipation in 
Rsrc, and conversely. Determine RL and the power dissi-
pated in RL and Rsrc when the power dissipated in Rsrc is 
(a) maximum and (b) minimum.

Ans. (a) R P P V RL L src src src= = =0 0 2, , / ; (b) RL  =  ∞, PL  =  0, 
Psrc = 0.

17.4.2  Source and Load Impedances

The condition for maximum power transfer will be 
generalized next to the case of source or load imped-
ances under steady-state sinusoidal conditions. Let VSRC 
and Zsrc = Rsrc + jXsrc represent, in general, TEC as seen 
from terminals ‘ab’ of a given circuit connected to a load 
ZL  =  RL  +  jXL (Figure 17.24). The current phasor IL is 
given by
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(17.37)

Assuming that VSRC and hence IL are expressed as rms 
values, the power transferred to RL is
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(17.38)

We wish to determine the condition that maximizes 
PL, assuming that Vsrc, Rsrc, and Xsrc are fixed, whereas RL 
and XL are variable. If RL and XL can be varied indepen-
dently, without restriction, it is clear that, with RL fixed, 
PL is maximum for XL given by

 X XLm src= -  (17.39)

With this condition satisfied, Equation 17.38 reduces 
to Equation 17.35. PL is maximum when Equation 17.36 
is satisfied, that is, RLm = Rsrc. Combining this condition 
with that of Equation 17.39 gives the condition for maxi-
mum power transfer as

 Z ZLm src= *  (17.40)

where Zsrc
*  is the complex conjugate of Zsrc. When 

Equation 17.40 is satisfied, XL is equal in magnitude but 
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Figure for Example 17.4.
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Maximum power transfer in terms of impedances.
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opposite in sign to Xsrc, so that the two reactances cancel 
out. With the additional condition that RLm = Rsrc, maxi-
mum power is transferred to RL.

What would be the condition for maximum power 
transfer if RL and XL can again be varied independently, 
but their range of variation is restricted, so that Equation 
17.40 cannot be satisfied? It is clear from Equation 17.38 
that under these conditions, with RL fixed, PL is maximum 
when (Xsrc + XL) is as small as possible. With (Xsrc + XL) 
considered constant, the condition for maximum power 
transfer can be determined by deriving dPL/dRL from 
Equation 17.38 and setting it to zero. This gives

 R R X XLm src L src= + +( )2 2

 (17.41)

If RL cannot be made equal to this value, then a value of RL 
as close to it as possible will give maximum power transfer.

Another case of interest arises from the use 
of a transformer with ZL. The load impedance 
Z ZL L L= Ðq  reflected to the primary side is ideally 

Z Z N N ZLp Lp L p s L L= Ð = ( ) Ðq q/
2

, where Np and Ns are 
the number of turns of the primary and secondary wind-
ings, respectively. It follows that Z N N ZLp p s L= ( )/

2
. 

The effect of an ideal transformer is to vary ZL  by the 
square of the turns ratio, (Np/Ns)2, while the phase angle 
remains constant. To derive the condition for maximum 
power transfer under these conditions, when |ZL| is 
varied in Figure 17.24, we substitute in Equation 17.38 
R ZL L L= cosq , X ZL L L= sinq , R Zsrc src src= cosq , and 
X Zsrc src src= sinq  to obtain

 
P V

Z

Z Z Z Z
L src

L L

L L src src L L src src

=
+( ) + +(

2
2

cos

cos cos sin sin

q

q q q q ))2

 
(17.42)

where the only variable on the RHS is ZL . Deriving 
dP
d Z

L

L  
and setting it equal to zero gives for the condition

 
of maximum power transfer

 Z ZLm src=  (17.43)

The various conditions for maximum power transfer 
are summarized in Table 17.2. Note that Equation 17.43 
is consistent with Equation 17.40.

Primal Exercise 17.20

Determine RL and C in Figure 17.25 for maximum power 
transfer to RL, assuming RL and C can be varied indepen-
dently without restriction, with ω = 100 krad/s.
Ans. RL = 100 Ω, C = 1 nF.

Primal Exercise 17.21

Determine RL in Figure 17.26 for maximum power trans-
fer to it and calculate this power.
Ans. 8 Ω, 12.5 W.

Primal Exercise 17.22

If X in Figure 17.27 can be varied between 5 and 10 Ω, 
determine the value of X that results in maximum power 
transfer to the load and calculate this power, assuming 
vSRC = 5sin(200t + 45°) V.
Ans. 10 Ω, 0.52 W.

TABLE 17.2

Conditions for Maximum Power Transfer

Allowed Variation
Condition for Maximum 

Power Transfer

RL and XL can be varied 
independently without 
restriction.

RLm = Rsrc and XLm = −Xsrc

RL is fixed but XL can be 
varied.

XLm = −Xsrc

XL is fixed but RL can be 
varied.

R R X XLm src L src= + +( )2 2

RL and XL can be varied 
independently over a 
restricted range.

XLm as close to −Xsrc as possible, RLm as 

close to R X Xsrc L src
2 2
+ +( )  as possible

ZL  can be varied, while 
∠θL is constant.

Z ZLm src=

–

+
vSRC

0.1 H

C

RL

100

FIGURE 17.25
Figure for Primal Exercise 17.20.
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Figure for Primal Exercise 17.21.
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Primal Exercise 17.23

A voltage source having a source impedance of 
(15 + j60) Ω is connected to a load (RL + jXL), where RL 
and the magnitude of XL can each be varied indepen-
dently in the range 10–50 Ω. Determine RL for maxi-
mum power transfer to the load.
Ans. 18.03 Ω.

Primal Exercise 17.24

Determine a of the transformer in Figure 17.28 so that 
maximum power is transferred to the inductive load, 
and calculate this power. Note that there are no dot 
markings on the transformer because these are  irrelevant 
to the condition for maximum power transfer.

Ans. 3 5; .W

Example 17.5: Maximum Power Transfer 
in Terms of Impedances

Given the circuit of Figure 17.29, it is required to deter-
mine the condition for maximum power transfer, and the 
power transferred to RL, under the following conditions:

 1. Both RL and XL are variable independently.
 2. RL is fixed at 35 Ω and XL is variable.
 3. XL is fixed at −50 Ω and RL is variable.
 4. RL is fixed at 35 Ω, XL is fixed at −50 Ω, and the 

 transformer can be selected to have any desired 
turns ratio.

Solution:

The first step is to derive TEC looking into terminals ‘ab’ 
toward the source and reflect TEC to the secondary side.

When terminals ‘ab’ are open-circuited, it follows from 

voltage division that 
VTh = Ð

+
= +( )140 0

2
2 2

70 1� j
j

j
 V 

rms. With the source set to zero, the impedance looking 

into terminals ‘ab’ is Z
j

j
jTh = +

´
+

= +6
2 2

2 2
7 W. Reflecting 

TEC to the secondary side, it becomes a voltage source 
of 70 1 5 350 1 350 2 45+( )´ = +( ) = Ð °j j  V rms in series 
with (7 + j) × 25 = 175 + j25 Ω (Figure 17.30).

 (a) If both RL and XL can be varied independently, the 
condition for maximum power transfer is given 
by Equation 17.40: RLm = 175 Ω and XLm = −25 Ω. 

The power transferred to RLm is 
350 2

4 175
350

2

´
= W .

 (b) If RL = 35 Ω and XL is variable, maximum power 
transfer occurs when XLm  =  −25 Ω as in (a). The 

power transferred to RL is 
350 2 35

175 35
194 4

2

2

( ) ´
+( )

= . W.

 (c) If XL = −50 Ω and RL is variable, the condition for 
maximum power transfer is given by Equation  

17.41:  RLm= ( ) + -( ) =175 25 50 176 82 2
. W. The mag-

nitude of the current is 
350 2

175 176 8 252 2+( ) + ( )
=

.
 

1.4 A rms, and the power transferred to RLm is 

1 4 176 8 348 22. . .( ) ´ = W.
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+
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FIGURE 17.27
Figure for Primal Exercise 17.22.
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 (d) If RL is fixed at 35 Ω and XL is fixed at −50 Ω, 

ZL = ( ) + ( ) =35 50 61 02 2 . W. The magnitude of 

ZTh is 49 1 7 1+ = . W. The turns ratio, instead of 1:5, 

should be 
1

61 0
7 1

:
.
.

, or 1:2.94, which is nearly 1:3. 

TEC reflected to the secondary side will be a source 
of magnitude 70 2 3 300´ @  V rms in series with 
a resistance of 7 3 632´( ) = W and a reactance of 
1 3 92´( ) = W. The magnitude of the current is 

300

35 63 9 50
2 8

2 2+( ) + -( )
= .

 
Arms, and the power 

transferred to RL is 2 8 35 274 42. .( ) ´ = W.

Note that the power transferred in (a), when both RL 
and XL can be varied independently, is larger than in all 
other cases.

Problem-Solving Tip

• The maximum power transferred to a load when 
RL and XL of a series-connected load can be varied 
independently is larger than the maximum power 
transferred when RL and XL are constrained in 
some manner. The largest maximum power trans-
ferred is V RTh Thrms

2 4/ , where RLm of the load for 
maximum power transfer equals RTh.

17.4.3  Admittance Relations

Let ISRC and Ysrc represent, in general, NEC as seen from 
terminals ‘ab’ of a given circuit connected to a load 
YL = GL + jBL, as in Figure 17.31. The circuit is the dual 
in form of that of Figure 17.24. The voltage phasor VL is

 
V IL SRC=

+
= Ð

+( ) + +( )
1

Y Y
I

G G j B Bsrc L

src src

src L src L

q

 
(17.44)

Assuming that VL is expressed as an rms value, the 
power transferred to GL is

 
P G I

G

G G B B
L L src

L

src L src L

= =
+( ) + +( )

VL
2 2

2 2

 
(17.45)

Equation 17.45 is the dual of Equation 17.38. The 
 conditions for maximum power transfer are those of 
Figure 17.24 with admittances, conductances, and sus-
ceptances replacing impedances, resistances, and reac-
tances, respectively:

 Y YLm src= *  (17.46)

 G G B BLm src L src= + +( )2 2

 (17.47)

 Y YLm src=  (17.48)

Example 17.6: Maximum Power Transfer 
in Terms of Admittances

Given the circuit of Figure 17.32, it is required to deter-
mine the condition for maximum power transfer, and 
the power transferred to RL, assuming the following:

 (a) Both RL and X are variable independently.
 (b) Both RL and X are variable independently but only 

over the range 30–50 Ω each.
 (c) If RL is fixed at 30 Ω and X is variable, what is the 

condition for minimum power dissipated in Rsrc 
and how much is this power?

Solution:

 (a) Let us convert the source and its imped-
ance to its NEC. Norton’s source current is 

I
j

N = Ð °
+

= Ð °
Ð °

= Ð- °30 0
10 10

30 0
10 2 45

1 5 2 45.
 

A rms.
 

Norton’s admittance is Y
j

j
N =

+
=

-
-1

10 10
10 10

200  
1

20 20
-

j
S. The circuit becomes as shown in 

Figure 17.33.
According to Equation 17.46, maximum power 

is transferred to the load when Bm  =  −BN and 

GLm = GN. The first condition gives - - + =1
20

1
20

1
0

X
, 

Ysrc YL VL
ISRC

+

–

a

b

FIGURE 17.31
Maximum power transfer in terms of admittances.

–

+

10 j10

30 0° V

Rsrc
jXsrc

j20 –jXRL

FIGURE 17.32
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from which Xm = 10 Ω. The  second condition gives 

G GL src= = 1
20

S, or RL  =  20  Ω. Under these condi-

tions, the current in GL is 
IN

2
1 5

2
= .

, and the power 

transferred to GL is 
1 5

2
1 45

2
22 5

2
.

.æ
è
ç

ö
ø
÷ = =
GLm

W.

 (b) The total susceptance is - - + = - +1
20

1
20

1 1
10

1
X X

. 

For maximum power transfer, this should be 
as close to zero as possible, which means that X 
has its smallest positive value, which is 30 Ω. 
Under these conditions the total susceptance 

is
 
- +æ
è
ç

ö
ø
÷ = -

1
10

1
30

1
15

.
 

GLm for maximum power 

transfer is then given by Equation 17.47 as 

GLm = ( ) + ( ) =1 20 1 15 1 12
2 2

/ / / S. The value of GL 
nearest to this is 1/30 S. Maximum power is trans-
ferred under these conditions when RL and X are 
30 Ω each.

To find the maximum power transferred, we 
note that the circuit reduces under these condi-
tions to that shown in Figure 17.34. The admit-

tance Yx of the combination is - + +æ
è
ç

ö
ø
÷ =

j
15

1
20

1
30  

 

- +æ
è
ç

ö
ø
÷ =

-
= Ð

j j
15

1
12

5 4
60

41
60

– tan–10.8. The voltage
 

Vx =
1
Yx

IN, so,
 
V Ix N= =1

1 5 2
60
41Yx

.  and the 

power transferred to GL is GL|Vx|2 = 13.2 W.
 (c) If RL is fixed and X is variable, minimum power 

is dissipated in Rsrc when the current in this resis-
tor is a minimum. With the source reactance fixed, 
the current in Rsrc is a minimum when the imped-
ance of the parallel combination is a maximum, 

that is, when the admittance YL is a minimum. This 

occurs when - + =1
20

1
0

X
 or X = 20 Ω. The  circuit 

reduces to that of Figure 17.35. The  current is 

I = Ð
+ +

=
+

30 0
10 30 10

3
4

�

j j
, and

 
I = 3

17
A. The power

 

dissipated in Rsrc is 
Rsrc I

2 9
17

10 5 3= ´ = . W.

Simulation: The schematic is shown in Figure 17.36, 
using the source VSIN, in order to display variation with 
respect to time. The amplitude is set as 30 2 42 4264= . V 
and the frequency as ω = 1 krad/s (f = 159.155 Hz). The 
source inductance is 10 mH to give a reactance of 10 Ω. 
Under conditions of maximum power transfer, as deter-
mined in (a), the reactance of the load is 20 Ω in paral-
lel with −10 Ω, which gives a load reactance of −20 Ω, 
corresponding to a capacitance of 50  μF at 1 krad/s. 
Note that the load impedance is a resistance of 20 Ω 
in parallel with a capacitive reactance of 20 Ω, which 
gives a phase angle of θv − θi = −45°, the current lead-
ing the voltage by 45°. The simulation is run using Time 
Domain (Transient) analysis, with a ‘Run to time’ of 
20 m, a ‘Start saving data after’ of 10 m, to allow for the 
initial transient to die down, and a ‘Maximum step size’ 
of 1u. The instantaneous power delivered to the load 
is displayed by selecting Trace/Add trace and entering 
V(vo)*I(L1), since the current through the inductor is 
the same as that through the R2-C1 load. The real and 
reactive powers are displayed by entering V(vo)*I(R2) 
and V(vo)*I(C1), respectively. The power plots appear 
in Figure 17.37.

Using the cursor, the peak of pP is 45.000, which gives 
P = 22.5 W, as determined in (a) for the maximum power 
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Figure for Example 17.6.
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transferred to the load. Since the phase angle of the load 
is 45°, Q is also 22.5 VAR. Cursor max gives pQ = 22.499. 
The maximum of p is read as 54.320 and the minimum 
as −9.3198, corresponding, respectively, to calculated 

 values of P P Q+ +2 2  and P P Q- +2 2  (Equation 17.21).

Problem-Solving Tip
• The maximum power transferred to a load when 

GL and BL of a parallel-connected load can be varied 
independently is larger than the maximum power 
transferred when GL and BL are constrained in some 
manner. The largest maximum power transferred 
is I GN Nrms

2 4/ , where GLm of the load for maximum 
power transfer equals GN.

Learning Checklist: What Should 
Be Learned from This Chapter

• When v is the instantaneous voltage across the 
terminals of a circuit consisting of resistors, 
inductors, and capacitors and i is the instanta-
neous current entering these terminals in the 
direction of a voltage drop v, the instantaneous 
power absorbed is p  =  vi and is pulsating at a 
frequency that is twice that of v and i. The real 
power dissipated in the resistors is P = VrmsIrms × 
cos(θv − θi), where P is also the amplitude of the 
alternating component of the product of i and 
the component of v that is in phase with i. The 
reactive power, representing the energy that is 
alternately stored in the energy storage elements 
and returned to the rest of the circuit is the prod-
uct of i and the component of v that is in phase 
quadrature with i. The reactive power is purely 

alternating, of zero average, and has an ampli-
tude of Q = VrmsIrmssin(θv − θi). When the circuit 
is inductive, θv > θI, so Q is positive. When the 
circuit is capacitive, θv < θI, so Q is negative.

• Complex power S is the phasor sum of P and 
Q: S = P + Q. It is = V Irms rms

* , where Irms is in the 
direction of a voltage drop Vrms.

• The complex power absorbed by an impedance 
Z is ZIrms

2 , where the real power dissipated in R 
is P RI= rms

2  and the reactive power absorbed by 
X is Q XI= rms

2 .

• The complex power absorbed by an admittance 
Y is Y V* rms

2 , where the real power dissipated is 
P GV= rms

2  and the reactive power absorbed by B 
is Q BV= - rms

2 .

• In any circuit in the sinusoidal steady state, reac-
tive power is conserved in the circuit as a whole, 
because each energy storage element alternately 
absorbs and returns the same energy during 
each half period of the supply. Real power is 
conserved in the circuit as a whole, because it 
is an average power, and the average of reactive 
power is zero, so that the sources in the circuit 
must supply this average power. With P and Q 
conserved, their phasor sum S is conserved.

• Real, reactive, and complex powers can each be 
summed branch by branch in a given circuit, 
with the total sum of each, over all branches of 
the circuit, equal to zero.

 1. In summing real and reactive powers, real 
power and inductive, reactive power are 
considered positive if absorbed by any 
given passive circuit element or subcircuit, 

Time
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–40W
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40W

80W

p
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pQ

FIGURE 17.37
Figure for Example 17.6.
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whereas capacitive, reactive power is con-
sidered negative if absorbed. Power deliv-
ered is the negative of power absorbed.

• Reactive power, although it averages to zero 
over a cycle, generally increases the voltage and 
current requirements of a load.

• cos(θv − θi) is known as the power factor (p.f.). 
It is the cosine of the angle between imped-
ance and resistance in the impedance triangle, 
or between complex power and real power in 
the complex power triangle. The p.f. is unity for 
a pure resistance, is zero lagging for a purely 
inductive reactance, and is zero leading for a 
purely capacitive reactance.

• The p.f. can be brought to unity by adding 
capacitance to counteract the normally induc-
tive reactance of the load.

• If a source of open-circuit voltage VSRC and 
source resistance Rsrc is connected to a load RL, 
maximum power is transferred from the source 
to the load when RLm  =  Rsrc. The maximum 
power transferred is (VSRC)2/4RLm.

• If a source of open-circuit voltage VSRC and 
source impedance Zsrc is connected to a load 
ZL  =  RL  +  j XL and RL and XL can be varied 
independently without restriction, maximum 
power is transferred from the source to the load 
when Z ZLm src= * , where Zsrc*  is the conjugate of 
Zsrc. If RL and XL can be varied independently, 
but only over a restricted range, maximum 
power is transferred when XL + Xsrc is as small 
as possible and RL is as close as possible to 

R X Xsrc L src
2 2+ +( ) . If |ZL| can be varied, as 

when a transformer is used, maximum power 
is transferred when |ZLm| = |Zsrc|. Similar rela-
tions apply if admittances are used instead of 
impedances.

 1. Similar relations apply for admittances, 
where resistance is replaced by con-
ductance and reactance is replaced by 
susceptance.

Problem-Solving Tips

 1. When working with power, it is convenient to 
express voltages and currents as rms values.

 2. In a series circuit, it is convenient to derive powers 
as P RI R= =rms

2 2
Irms = and Q XI X= =rms

2 2
Irms , 

whereas in a parallel circuit it is convenient 
to derive powers as P GV G= =rms

2 2
Vrms  and 

Q BV Brms= - = -2 2
Vrms . Note that magnitudes 

are involved in these relations and not phase 
angles.

 3. The relation S V Irms rms= *  is in terms of magni-
tudes S V Irms rms= , or S = VrmsIrms, independent 
of phase angles.

 4. When only the condition for maximum power 
transferred is required, without the value of this 
power, it is only necessary to determine RTh, or 
ZTh, or YN, as the case may be, without deter-
mining VTh.

 5. The maximum power transferred to a load 
when RL and XL of a series-connected load can 
be varied independently is larger than the max-
imum power transferred when RL and XL are 
constrained in some manner. The largest maxi-
mum power transferred is V RTh Thrms

2 4/ , where 
RLm of the load for maximum power transfer 
equals RTh.

 6. The maximum power transferred to a load 
when GL and BL of a parallel-connected load can 
be varied independently is larger than the max-
imum power transferred when GL and BL are 
constrained in some manner. The largest maxi-
mum power transferred is I GN Nrms

2 4/ , where 
GLm of the load for maximum power transfer 
equals GN.

Problems

Verify solutions by PSpice simulation.

Complex Power

P17.1 If v(t) = 80cos(100t) V and i(t) = −30sin(100t − 30°) A, 
determine (a) the instantaneous power and (b) the 
average power.

 Ans. (a) 600 + 1200cos(200t + 60°) W; (b) 600 W.

P17.2 Determine the impedance of a load that absorbs 
20 kVAR at 0.6 p.f. lagging when the current through 
the load has a magnitude of 50 Arms.

 Ans. 6 + j8 Ω.

P17.3 The conjugate of the complex power delivered by a 
current source is 400 − j400 VA. If the source current is 
10∠45° rms, determine the rms voltage across the source.

 Ans. 40 2 90Ð °V .

P17.4 A load that absorbs a complex power of 5 + j10 VA is 
connected in parallel with a load that absorbs 20 W at 
a lagging power factor 0.8. Determine the phase differ-
ence between the voltage across the parallel combina-
tion and the current through it.

 Ans. Voltage leads current by 45°.
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P17.5 An impedance 4 + j4 Ω is connected in parallel with an 
impedance of 12 + j6 Ω. If the input reactive power is 
1000 VAR, determine the real power absorbed.

 Ans. 1210.5 W.

P17.6 Two impedances 9.8∠−78° Ω and 18.5∠21.8° Ω are 
connected in parallel and the combination is connected 
in series with an impedance 5∠53° Ω. If the circuit is 
connected across a 100 Vrms source, determine the real 
power delivered by the source.

 Ans. 980.0 W.

P17.7 The capacitor in the circuit of Figure P17.7 absorbs 
−200 VAR. Determine the power dissipated in the 5 Ω 
resistor.

 Ans. 80 W.

P17.8 A load absorbs a complex power of 20  +  j15 kVA at 
a voltage of 200∠50° Vrms and a frequency of 60 Hz. 
Determine the value of the capacitance that should be 
added across the load to correct the power factor to 
unity.

 Ans. 994.7 μF.

P17.9 An impedance 2 + j4 Ω is connected in parallel with a 
resistance R. Determine R so that the p.f. of the combi-
nation is 0.9 lagging.

 Ans. 3.2 Ω.

P17.10 Two inductive loads of 0 88. kW , 0.8 p.f., and 1.32 kW, 
0.6 p.f., are connected across a 220 Vrms, 50 Hz supply. 
(a) Calculate the total complex power of the loads and 
the supply current. (b) Determine the capacitance that 
should be connected in parallel with the loads to bring 
the p.f. to (i) unity and (ii) 0.9 lagging.

 Ans. (a) 2.2 + j2.42 kVA, 14.87∠−47.7° A; (b) (i) 159 μF, 
(ii) 89 μF.

P17.11 An electric motor draws 100 kW at 0.8 p.f. lagging from 
a 240 Vrms, 60 Hz supply. The motor is in parallel with 
another load of 0.1 + j0.4 Ω. Determine the value of the 
capacitance that should be added in parallel with the 
combination to raise the power factor to 0.95 lagging.

 Ans. 7.67 mF.

P17.12 A capacitor of −j30 Ω is connected in parallel with 
a load that absorbs 1200  W at 0.8 p.f. lagging and a 
voltage of 300  Vrms magnitude. The parallel combi-
nation is supplied through a line of 0.5 Ω resistance. 
Determine the power dissipated in this resistance.

 Ans. 32.5 W.

P17.13 An inductor of j5 Ω is connected in parallel with an 
impedance of 5 − j5 Ω. If the current to the parallel 
combination is 1∠0° Arms, determine the total reac-
tive power absorbed.

 Ans. 5 VAR.

P17.14 A load that absorbs 160 W at 0.8 p.f. lagging at a volt-
age of 200∠0° Vrms is connected in parallel with 
another load that absorbs 320 VAR at 0.6 p.f. lagging 
and with a capacitor chosen for unity p.f. across the 
whole combination. Determine the current drawn by 
this combination.

 Ans. 2∠0° Arms.

P17.15 A load that absorbs 15 kVA at 0.6 p.f. lagging is con-
nected in parallel with a load that absorbs 4.8 kW at 
0.8 p.f. leading, across a source of voltage 200∠0° Vrms 
and 50 Hz frequency. Determine the capacitance that 
should be connected in parallel with the loads so as to 
have a minimum magnitude of current supplied by the 
source.

 Ans. 0.67 mF.

P17.16 Three loads are supplied in parallel at 240 Vrms, 50 Hz. 
‘L1’ absorbs 240  W at 0.6 p.f. lagging, ‘L2’ absorbs 
200 VAR at 0.5 p.f. lagging, and ‘L3’ absorbs 100 VA at 
0 p.f. leading. Determine (a) the total apparent power, 
(b) the p.f., (c) the magnitude of supply current, (d) the 
parallel capacitance that raises the p.f. to unity, and 
(e) the resulting magnitude of supply current.

 Ans. (a) 550.2 VA; (b) 0.646 lagging; (c) 2.29  A; 
(d) 23.2 μF; (e) 1.48 A.

P17.17 Three loads are supplied in parallel at 500 Vrms. ‘L1’ 
absorbs 12 kW at 0.6 p.f. lagging, ‘L2’ absorbs 15 kW 
at unity p.f., and ‘L3’ absorbs 6 kVAR at 0.8 p.f. lead-
ing. The line has a resistance of 1 Ω and negligible reac-
tance. Determine (a) the rms magnitude of the source 
voltage, (b) the combined power factor of the load, and 
(c) the percentage of the real power delivered by the 
source that is absorbed by the loads.

 Ans. (a) 570.3∠−2° V; (b) 0.962; (c) 86.85%.

P17.18 Determine the reading of the wattmeter in Figure 
P17.18.

 Ans.  211.1 W.

P17.19 R1, L, R2, and C in Figure P17.19 are unknown. 
Load  1 absorbs a complex power of 100∠45° VA, 
and load 2 absorbs a complex power of 50∠–45° VA. 
Determine R1.

 Ans. 250 2  Ω.
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P17.20 Determine R and the rms magnitude of VSRC in 
Figure P17.20, given that each resistor absorbs 2 W and 
ω = 1000 rad/s.

 Ans. 25 Ω, 5 10 18 43Ð °. V.

P17.21 Determine the complex power delivered by the inde-
pendent current source in Figure P17.21 and verify that 
it equals the complex power absorbed in the rest of the 
circuit.

 Ans. −7.5 + j10 VA.

P17.22 Determine C in Figure P17.22 if the capacitor absorbs 
5 VAR and the frequency is 50 Hz. Derive the power 
absorbed by C from conservation of power in the 
circuit.

 Ans. 49.1 μF.

P17.23 Given that the complex power absorbed by the induc-
tive branch in Figure P17.23 is 12 + j16 VA, determine C 
so that the power factor at terminals ab is unity, assum-
ing ω = 1 rad/s.

 Ans. 0.2 F, or 0.8 F.

P17.24  Determine the reactance that must be placed in parallel 
with terminals ‘ab’ in Figure P17.24 so that the power 
factor is unity at these terminals.

 Ans. −j10/9 Ω.
P17.25 Given that the load ‘L’ in Figure P17.25 absorbs 100 kW 

at 0.8 p.f. lagging, determine C so that the p.f. at the 
source terminals is unity.

 Ans. 7/(8π) = 0.28 mF.

P17.26 ω, L, and C in Figure P17.26 are such that the power fac-
tor seen by the source is unity. Determine the power 
factor seen by the source if ω is doubled and C is 
halved, assuming IC = 5 Arms.

 Ans. 0.37 leading.

P17.27 Determine the complex power delivered by VSRC1 and 
VSRC2 in Figure P17.27 given that ‘L1’ absorbs 4 kW at a 
power factor of 0.6 lagging, ‘L2’ absorbs 3 kW at a power 
factor of 0.6 leading, and the complex power absorbed 
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by ‘L3’ is 12  +  j5 kVA. Assume that VSRC1  =  400∠0° 
Vrms and VSRC2 = 400∠90° Vrms.

 Ans. VSRC1 delivers 12.5 + j1.83 kVA and VSRC2 delivers 
6.5 + j4.5 kVA.

P17.28 In Figure P17.28, determine the instantaneous power, 
the real power, and reactive power delivered by the 
source, given that vSRC = 10cos106t.

 Ans. S = 25 + j100 VA, so P = 25 W and Q = 100 VAR.

P17.29 Determine the total complex power delivered by the 
two sources in Figure P17.29 if vSRC1 = 5cos(2t + 45°) V 
and vSRC2 = 5cos2t V.

 Ans. 2.93 + j1.46 VA.

P17.30 Determine the complex power delivered by each 
source in Figure P17.30.

 Ans. Power delivered by voltage source = j7.5 VA. 
Power delivered by current source = 0.5 − j8 VA.

P17.31 (a) A load ‘L1’ consisting of a 12 kΩ resistor in series 
with a 40 H inductor is connected in parallel with a 
load ‘L2’ consisting of a 75 nF capacitor in parallel with 
a resistor having a conductance of 40 μS, the frequency 
being 400  rad/s (Figure P17.31). If the 40 μS resistor 
dissipates a real power 4  kW, (i) determine the total 
complex power absorbed by ‘L1’ and ‘L2’, (ii) draw the 
power phasor diagrams for the two loads, and (iii) cal-
culate the p.f. of the combined load of ‘L1’ and  ‘L2’. 

(b) The voltage across ‘L1’ and ‘L2’ is kept the same as 
in (a), but a reactance X is connected between ‘L1’ and 
‘L2’ and the source, as shown. Determine (i) the value 
of X that results in a p.f. of unity at the source and 
(ii) the rms value of the source voltage.

 Ans. (a) (i) 7000 + j1000 VA, (iii) 0.99; (b) (i) −2000 Ω, 
(ii) 9900 V rms.

Maximum Power Transfer

P17.32 Determine RL in Figure P17.32 that will absorb maxi-
mum power and calculate this power.

 Ans. 10 Ω, 62.5 W.
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P17.33 Determine GL in Figure P17.33 for maximum power 
transfer and calculate this power.

 Ans. 0.1 Ω, 62.5 W.

P17.34 RL in Figure P17.34 is restricted to the range 1–5 Ω. 
Determine the value of RL that results in maximum 
power transfer to it and calculate the value of this 
power.

 Ans. 5 Ω, 4.13 W.

P17.35 Determine RL in Figure P17.35 for maximum power 
and calculate this power.

 Ans. 9 Ω, 13.44 W.

P17.36 Determine RL in Figure P17.36 for maximum power 
transfer and calculate this power.

 Ans. 10/3 Ω, 40.83 W.

P17.37 Determine RL in Figure P17.37 that satisfies the maxi-
mum power condition.

 Ans. 15 Ω.

P17.38 Determine a of the transformer in Figure P17.38 so that 
maximum power is transferred to the 200 Ω load, and 
calculate this power.

 Ans. a = 2, 2 W.

P17.39 Determine RL in Figure P17.39 for maximum power 
transfer and calculate this power.

 Ans. 16 Ω, 25 W.

P17.40 Determine RL in Figure P17.40 for maximum power 
transfer and calculate this power.

 Ans. 18 Ω, 8/9 W.

P17.41 Determine the frequency at which maximum power is 
dissipated in the 10 Ω resistor in Figure P17.41.

 Ans. 1 rad/s.
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P17.42 Determine RL in Figure P17.42 for maximum power 
transfer.

 Ans. 5 2  Ω.

P17.43 Determine ZL in Figure P17.43 for maximum power 
transfer, assuming iSRC = 3cos5000t A.

 Ans. 20 − j10 Ω.

P17.44 Determine ZL in Figure P17.44 for maximum power 
transfer and calculate this power.

 Ans. 8.123 − j3.785 Ω, 549.2 W.

P17.45 Determine ZL in Figure P17.45 for maximum power 
transfer and calculate this power.

 Ans. 5 − j5 Ω, 180 W.

P17.46 Determine ZL in Figure P17.46 for maximum power 
transfer.

 Ans. 1 − j2.5 Ω.

P17.47 Determine ZL in Figure P17.47 for maximum power 
transfer.

 Ans. 3 + j Ω.

P17.48 Determine ZL in Figure P17.48 for maximum power 
transfer and calculate this power.

 Ans. 0.8 − j0.4 Ω, 7.81 W.

P17.49 Determine RL in Figure P17.49 for maximum power 
transfer and calculate this power.

 Ans. 6.00 Ω, 4.67 W.

P17.50 Determine RL in Figure P17.50 for maximum power 
transfer.

 Ans. 1 5/ W.
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P17.51 Determine RL in Figure P17.51 for maximum power 
transfer and calculate this power.

 Ans. 50 Ω, 0.139 W.

P17.52 Determine RL in Figure P17.52 for maximum power 
transfer and calculate this power.

 Ans. 5/17 Ω, 90 W.

P17.53 Determine a and X in Figure P17.53 so that maximum 
power is transferred to the 1 kΩ resistor.

 Ans. a = 10, X = −16 Ω.

P17.54 Determine ZL in Figure P17.54 for maximum power 
transfer and calculate this power.

 Ans. 10 Ω, 1.25 W.

P17.55 Determine RL in Figure P17.55 so that it absorbs maxi-
mum power and calculate this power.

 Ans. 160/7 Ω, 20/7 W.

P17.56 Determine wM  in Figure P17.56 so that maximum 
power is absorbed by the 20W resistor and calculate 
this power.

 Ans. ωM = 20 2  Ω, 478 W.

P17.57 Determine RL in Figure P17.57 for maximum power 
absorption in it and calculate this power.

 Ans. 4.38 Ω, 1.25 W.
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P17.58 Determine a and RL in Figure P17.58 so that maximum 
power is transferred to RL.

 Ans. a = 2, 8 Ω.

P17.59 Determine ZL in Figure P17.59 for maximum power 
transfer to it and calculate this power.

 Ans. 2.4 − j0.8 Ω, 150 W.

P17.60 Determine a in Figure P17.60 so that maximum power 
is absorbed by the 20 Ω resistor and calculate this 
power.

 Ans. a = 2.54, 86.21 W.

P17.61 Determine X and RL in Figure P17.61 for maximum 
power transfer to RL and calculate this power.

 Ans. RL = 10 Ω, X = − 10 Ω, 0.8 W

P17.62 Determine ZL in Figure P17.62 for maximum power 
transfer and calculate this power.

 Ans. 8(1 + j2) Ω, 78.125 W.

P17.63 (a) Determine ZL in Figure P17.63 that results in maxi-
mum power absorption in ZL and calculate this power. 
(b) If ZL consists of a resistor in parallel with a capacitor, 
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determine the values of these elements that will result 
in maximum power absorption in ZL, and calculate this 
power.

 Ans. (a) 3.6  +  j1.8 Ω, 12.5  W; (b) C = 0, RL = 9 5/ W, 
11.8 W.

P17.64 (a) Determine YL in Figure P17.64 that results in maxi-
mum power absorption in YL and the value of this 
power. (b) If YL consists of a resistor in parallel with an 
inductor, what values of these elements will result in 
maximum power absorption in YL, and how much is 
this power?

 Ans. (a) 3.6 +  j1.8 S; 12.5 W; (b) L → ∞, GL = 9 5/ W, 
11.8 W.

P17.65 (a) Determine the turns ratio a in Figure P17.65 so that 
maximum power is transferred to the 10W resistor and 
calculate this power, assuming X = 30 Ω. (b) Assuming 
a = 2 and Rx = 10 Ω, determine X that results in maxi-
mum power absorption in Rx and calculate this power. 
(c) Assuming a  =  2 and X  =  15 Ω, determine Rx that 

results in maximum power absorption in this resistor 
and calculate this power. (d) Assuming a  =  2 and Rx 
and X are variables, determine Rx and X that will result 
in maximum power absorption in Rx and calculate this 
power.

 Ans. (a) 2.34, 1.18 W; (b) 80 29/ W, 3.19 W; (c) Rx = 25.96 Ω, 
3.53 W; (d) Rx = 664/29 Ω, X = 80/29 Ω, 3.77 W.

P17.66 (a) Determine the turns ratio a in Figure P17.66 so that 
maximum power is transferred to the 10 S resistor and 
calculate this power, assuming B = 30 S. (b) Assuming 
a = 2 and Gx = 10 S, determine B that results in maxi-
mum power absorption in Gx and calculate this power. 
(c) Assuming a  =  2 and B  =  15  S, determine Gx that 
results in maximum power absorption in this resistor 
and calculate this power. (d) Assuming a = 2 and Gx 
and B are variables, determine Gx and B that will result 
in maximum power absorption in Gx and calculate this 
power.

 Ans. (a) 2.34, 1.18 W; (b) 80/29 S, 3.19 W; (c) Gx = 25.96 Ω, 
3.53 W; (d) Gx = 664/29 Ω, B = 80/29 Ω, 3.77 W.

P17.67 A load RL + jXL is connected between terminals ‘ab’ in 
Figure P17.67, where RL can be varied between 0 and 
10 Ω and XL can be varied between ±5 Ω. Determine (a) 
the values of RL and XL that result in maximum power 
dissipated in RL and (b) the complex power absorbed 
by the load under these conditions.

 Ans. (a) XLm = −5 Ω, RLm = 10 Ω; (b) SL = 86.5 − j43.2 VA.

Design Problems

P17.68 An amplifier having an output resistance of 75 Ω 
drives a load of 300 Ω resistance and 1.5  mH induc-
tance at 1 MHz. Determine the transformer ratio and 
the capacitor that must be inserted in series with the 
amplifier output for maximum power transfer to the 
load.

 Ans. Transformer ratio 1:2, C = 2 nF.
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P17.69 An amplifier having an open-circuit voltage of 4 Vrms 
and an output resistance of 100 Ω supplies a load of 
25 Ω and 0.1 H inductance at 400  Hz. A capacitor is 
connected in series with the output of the amplifier in 
order to block the dc voltage at the output of the ampli-
fier. Select the capacitance so that maximum power is 
dissipated in the load, and determine this power.

 Ans. 1.58 μF, 25.6 mW.

P17.70 A generator supplies 400 kW at 0.8 pF lagging at the 
current rating of the generator. Determine the largest 
resistive load that can be added to the generator, with-
out exceeding the current rating of the generator, if the 
power factor is increased to unity, and calculate the 
capacitive kVAR required.

 Ans. 500 kW, −300 kVAR.
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Objective and Overview

The present chapter is concerned with responses to step 
and impulse inputs, which are the most basic exam-
ples of “sudden changes” applied to circuits. Impulse 
responses are fundamental to signals and systems anal-
ysis, including convolution and the Laplace transform, 
to be discussed in subsequent chapters.

The impulse response is introduced as a limiting case 
of a pulse response of a capacitor, after which the fun-
damental attributes of an impulse are presented. This 
is followed by a discussion of the step and impulse 
responses of single capacitors and series and parallel 
combinations of a capacitor and a resistor. The same 
procedure is applied to the step and impulse responses 
of single inductors and series and parallel combina-
tions of an inductor and a resistor. These cases are 
used to illustrate some important concepts concerning 
the responses of capacitors and inductors to sudden 
changes.

The chapter ends with a generalization of the concepts 
presented to circuits consisting of capacitors, inductors, 
and resistors.

18.1  Capacitor Response to Current Pulse

Consider a step current ISRC applied at t = 0 to a capacitor 
that is initially uncharged, as illustrated in Figure 18.1a. 
The current step implies that iSRC  =  0 for t  <  0, and 
iSRC = ISRC, for t > 0, so that the source current suddenly 
changes at t = 0 from 0 to ISRC. The voltage v across the 
capacitor is

 
v t

C
I dt

I t
C

SRC
SRC

t

( ) = + = ³ò1
0 0

0
, t

 
(18.1)

The voltage across the capacitor increases linearly 
with time at a rate ISRC/C as shown in Figure 18.1a.

Suppose a current pulse of amplitude ISRC that starts at 
t = 0 and ends at t a=  is applied to the uncharged capaci-
tor (Figure 18.1b). Initially, for t < a, the current pulse 
is indistinguishable from the current step of the same 
amplitude, which causes the voltage across the capaci-
tor to increase linearly at the same rate ISRC/C as before. 
At t a= , v  =  aISRC/C, since the charge delivered to the 
capacitor from t = 0 to t = a is aISRC, the area under the 
current pulse. The voltage is 1/C times this charge, that 
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is, aISRC/C. Just after t  =  a, the pulse ends, so that iSRC 
becomes zero, and the ideal current source acts as an 
open circuit. Since the capacitor is assumed ideal, the 
charge is maintained for t > a, and v remains at its value 
of aISRC/C at t = a.

Let the amplitude of the pulse be increased to ISRC¢  
and its duration reduced to a′ (Figure 18.1b), while 
keeping the area of the pulse the same, that is, a ISRC¢ ¢  = 
aISRC = charge delivered at the end of current pulse. For 
t < a′, dv dt I C I CSRC SRC/ / /= ¢ > . The change in v is steeper, 
but the final value of v remains the same because the 
charge transferred is the same. Thus, from Equation 18.1, 
the final value of v is a I C aI CSRC SRC¢ ¢( ) = ( )/ /  but is reached 
at a faster rate.

The question arises as to what shape of pulse will 
cause a step or instantaneous change in voltage across 
the capacitor, from 0 to aISRC/C at t  =  0 (Figure 18.2). 
This means that a′ → 0, so that the pulse width becomes 
infinitesimal. But if the current pulse is of infinitesi-
mal width, yet must deliver the same finite amount of 
charge aISRC or ¢ ¢a ISRC, then the pulse amplitude must 
tend to infinity so as to have a finite area. In other words, 
i = Cdv/dt → ∞ at t = 0, since dv/dt, the slope of the step 
function in Figure 18.2, is infinite at t = 0. We can also 
consider the pulses in Figure 18.1b to be of duration aΔ 
and height ISRC/Δ, so that the pulse area is aISRC, inde-
pendently of Δ. In the case of the pulse of width a and 
height ISRC, Δ = 1, whereas in the case of  the pulse of 
width a′ and height ISRC¢ , with a I aISRC SRC¢ ¢ = , Δ = a′/a.

If we now let Δ → 0, the current pulse of Figure 18.3 
becomes of infinitesimal width and of infinite height, 

as required to produce a step change in the voltage 
across the capacitor at t  =  0 in Figure 18.2. The area 
or charge remains aISRC so that the amplitude of the 
voltage step across the capacitor is aISRC/C. The pulse 
now becomes an impulse function or a Dirac delta 
function. Qualitatively, such a function is a pulse of 
infinitesimal duration and infinite amplitude but hav-
ing a finite area or strength, which is aISRC in this case. 
The impulse function will be considered in more detail 
in the  following section.

Primal Exercise 18.1

Determine the capacitor voltage as a function of time if a 
current of 5 mA is applied for 10 ms to a 10 μF, uncharged 
capacitor.
Ans. v rises to 5 V at 10 ms and remains at this value 
thereafter.

18.2  The Impulse Function

The impulse function is of fundamental importance in 
the theory of signals and systems, as will become appar-
ent from future discussions. Mathematically, the impulse 
function is not a function in the ordinary sense but is a 
singular, generalized function that has some rather pecu-
liar properties. Because the amplitude of the impulse 
goes to infinity, care must be exercised in dealing with 
infinities. Mathematically, this is avoided, where nec-
essary, by considering the finite area of the impulse, 
instead of its infinite amplitude, as will be illustrated in 
future discussions.

A unit impulse function at the origin is denoted by 
d t( ) and is formally defined such that

 
d dt dt t t( ) = ( ) = ¹

-¥

+¥

ò 1 0 0, with for
 

(18.2)

According to Equation 18.2, the area or strength of 
δ(t) is unity; hence, its designation as a unit impulse. 
Moreover, δ(t) is zero everywhere except at t = 0.

Figure 18.4 helps provide a “feel” for δ(t) to clarify its 
variation with respect to time and its relation to another 
important function, namely, the unit step function at 
the origin, u(t). In this figure, the interval between t = 0− 
and t = 0+ is greatly expanded, where t = 0− is the time 
just less than 0, and t = 0+ is the time just greater than 0 
(Figure 18.4). The following should be noted concern-
ing δ(t):

 1. δ(t) = 0, for t ≤ 0− and δ(t) = 0, for t ≥ 0+, so that 
δ(t) ≠ 0 only in the interval between t = 0− and 
t = 0+. In words, δ(t) is zero for t less than or equal 
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FIGURE 18.2
Step change in capacitor voltage.
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FIGURE 18.3
Current impulse.



Responses to Step and Impulse Inputs 549

to 0− and is also zero for t greater than or equal to 
0+, bearing in mind that t  =  0− and t  =  0+ are 
infinitesimally separated. In other words, δ(t) 
is concentrated at t  =  0. This is not as alien a 
concept as may appear at first sight, for it is cus-
tomary to consider charge or mass to be concen-
trated at a point. This means that a finite charge 
or mass extends over an infinitesimal distance 
only. The mass/unit distance or charge/unit 
distance is therefore an impulse at the point 
where the mass or charge is located. What is 
being considered here is an extension of this 
concept to voltages or currents that occur at a 
“point” in time.

 2. The time integral of δ(t) is the unit step func-
tion u(t) (Figure 18.4b), also known as the 
Heaviside step function. From Equation 18.2 
and Figure 18.4,
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  where the lower limit has been changed from 
−∞ to 0−, without changing the value of the 
integral, because, by definition (Equation 18.1), 
δ(t) = 0 between t = −∞ and t = 0−, so that no 
area is enclosed in this interval. Extending the 
upper limit to t ≥ 0+ would include the area of 
the unit impulse, so that the value of the inte-
gral becomes unity, again by definition of the 
unit impulse. Thus,
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t in Equation 18.4 can be extended to +∞, as 
in Equation 18.2, without changing the value of 
the integral, because δ(t) = 0 between t = 0+ and 
t = ∞, so that no additional area is included in 
this interval. Equations 18.3 and 18.4 define u(t), 
the unit step function at the origin as

 u t t u t t( ) = £ ( ) = ³- +0 0 1 0, ,for and for  (18.5)

In other words, u(0−)  =  0, and u(0+)  =  1. 
Equations 18.3 and 18.4 involving two values 
of the integral of δ(t), one for t ≤ 0− and one for 
t ≥ 0+ can be combined into a single expression 
using the definition of u(t) from Equation 18.5:

 
d t dt u t

t
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u(t) changes from 0 to 1 between t = 0− and 
t  =  0+, as illustrated in Figure 18.4b. Since 
t = 0− and t = 0+ are infinitesimally separated, 
u(t) is, strictly speaking, undefined at t  =  0, 
where it changes “instantaneously” from 0 to 1. 
However, u(t) can be interpreted as having a 
value of 1/2 at t = 0 (Problem P18.49). This is 
reminiscent of the Fourier series expansion for a 
periodic function having a step discontinuity, in 
which case, the FSE gives the average value of 
the function at the two ends of the discontinuity 
(Example 16.1).

 3. Differentiating both sides of Equation 18.6 with 
respect to time,
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du t
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(18.7)

  This makes sense intuitively, as the derivative of 
u(t) would be zero, for t ≤ 0− and for t ≥ 0+, where 
u(t) does not change with time and would tend 
to infinity at t  =  0 where u(t) changes instan-
taneously. Note that, strictly speaking, when 
a function is discontinuous at a certain value 
of time, as is u(t) at t = 0, the derivative at this 
instant is not defined, because it tends to infinity, 
and infinity is not precisely defined. However, 
δ(t) is a special type of infinity, of infinitesimal 
duration. Equations 18.6 and 18.7 define the 
relation between δ(t), the unit impulse at the 
origin and u(t), the unit step at the origin.

In order to avoid any possible confusion, 
it should be carefully noted that at t  =  0−, δ(t) 
has not yet occurred, and u(t) is still zero. At t = 0+, 
δ(t) is over, and u(t) = 1. In other words, δ(t) and 
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(t)

u(t)

(b)

(a)

FIGURE 18.4
Impulse function (a) and its relation to a step function (b).
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the change in u(t) are both confined to between 
t = 0− and t = 0+.

Conventionally, and in terms of t = 0, rather 
than t = 0− and t = 0+ as in Equation 18.5, u(t) is 
sometimes defined as

 u t t u t t( ) = < ( ) = ³0 0 1 0, ,for and for  (18.8)

It should be noted, however, that this defini-
tion can lead to ambiguities and inconsistencies 
in some cases (Problem P18.49). In analyzing 
circuits involving a sudden change, such as step 
or impulse inputs, or switching operations, it is 
more advantageous and much clearer to con-
sider the state of the circuit just before and just 
after the sudden change, that is, at t  =  0− and 
t = 0+ for a sudden change at t = 0. The definition 
of u(t) according to Equations 18.5 through 18.7 
is much better suited for such cases and is used 
exclusively in this book.

 4. As implied in Figure 18.4a, δ(t) is an even func-
tion of time, that is, δ(t) = δ(−t). This can be  easily 
proved using the defining integral (Equation 18.2) 
and substituting t = −t′ in δ(t), in dt, and in the 
integration limits. The integral becomes
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  The negative sign of dt′ in the integrand in 
the second integral from the left is removed 
by interchanging the limits of integration. t′ is 
replaced by t in the last integral, because, in a 
definite integral, the limits are defined, so that 
the integration variable is a dummy variable 
that can be designated by any symbol, without 
changing the value of the integral.

 5. For consistency in all the relations involving 
δ(t) and u(t), particularly those of the Laplace 
transform and its properties (Chapter 21), u(t) 
is considered dimensionless, so that δ(t) has the 
dimensions of t−1, that is, per unit time. This is 
consistent with Equation 18.4 and means that 
the integral in Equation 18.2 is dimensionless.

 6. It follows that a current impulse can be 
expressed as qδ(t) A, where q is the strength, or 
area, of the current impulse. Since this area is 
in ampere-second, or coulombs, it represents 
charge. With δ(t) having the dimensions of 
t−1, time cancels out, so that the unit of qδ(t) 
is the ampere. Similarly, a voltage impulse can 

be expressed as λδ(t) V, where λ is the strength 
or area of the voltage impulse. Since this area 
is in volt-second, or weber-turn, it represents 
flux linkage. With δ(t) having the dimen-
sions of t−1, time cancels out, so that the unit 
of λδ(t) is the volt. Unless otherwise speci-
fied, impulses will be denoted as Kδ(t), with K 
interpreted as appropriate for the case under 
consideration.

 7. δ(t – a) is a unit impulse δ(t) that is delayed by 
a, so it occurs at t = a, between t = a− and t = a+, 
as illustrated in Figure 18.5a. Equation 18.3 
becomes
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  since δ(t – a) = 0 for t ≤ a−. Equation 18.4 becomes
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  since the impulse of unit area occurs between 
t = a− and t = a+. Following the same argument 
as for Equations 18.3 and 18.4, Equations 18.10 
and 18.11 can be combined in a single expres-
sion involving u(t – a):
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  where u(t – a) is the unit step function u(t) that is 
delayed by a, so that it jumps from zero to unity 
at t = a (Figure 18.5b). Differentiating both sides 
of Equation 18.12
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(18.13)

An important property of δ(t) is presented in 
 Example 18.1. Other properties of δ(t) are considered in 
problems at the end of the chapter.
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f (1) (t)

FIGURE 18.5
Delayed impulse (a) and delayed step (b).
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Example 18.1: Sampling of Function by Impulse

It is required to prove the following property of the 
impulse function:

 

f t t a f a t a f t t a

f a
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where f(t) is continuous at t = a.

Solution:

Figure 18.6 illustrates a unit impulse δ(t – a) at t = a and a 
function f(t) that is continuous at t = a. Continuity of f(t) 
at t = a implies that f(a−) = f(a) = f(a+). It may be argued, 
at first sight, that multiplying the infinite δ(t  –  a) by 
a finite value of f(t) is still infinity. The impulse func-
tion, however, is a special type of infinity that is of 
infinitesimal duration. The proper procedure is to con-
sider, first, the integral of the product f(t)δ(t – a), then 
apply the definition of the impulse and the condition 
of continuity of f(t) at t = a. The integral of the product 
f(t)δ(t – a) can be expanded as
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Since δ(t – a) is zero for t ≤ a− and for t ≥ a+, it follows 
that
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Because the function is continuous at t = a, f(t) in the 
interval between t = a− and t = a+ is f(a). This is a constant 

and can be taken outside the integral. From the defini-
tion of the impulse at t = a, the integral of δ(t – a) between 
t = a− and t = a+ is unity. Thus,
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As was done with Equation 18.12, the two conditions 
in Equation 18.16 can be combined into a single expres-
sion in terms of the step function at t = a:
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Differentiating both sides of Equation 18.17 and using 
Equation 18.13,

 
f t t a f a

d
dt

u t a f a t a( ) -( ) = ( ) -( )( ) = ( ) -( )d d
 

(18.18)

If f(a) = 0, then it must not be inferred from Equation 
18.18 that multiplying zero by infinity is indeterminate. 
If  f(a) = 0, the RHS of Equation 18.17 is zero. Differen-
tiating both sides of this equation gives f(t)δ(t – a) = 0 
if f(a)  =  0. Again, this emphasizes that in dealing with 
impulses, the finite area of the impulse should be 
invoked wherever necessary to obtain mathematically 
correct results. Intuitively, it seems reasonable that since 
the impulse δ(t – a) occurs at the point t = a, multiply-
ing δ(t – a) by f(a) multiplies the strength of the impulse 
by f(a).

Because multiplying f(t) by δ(t – a) returns the value 
f(a), the impulse is said to sample the function at t = a. 
Note that if f(t) has a step discontinuity at t = a, the value 
sampled is the mean of f(a−) and f(a+) (Problem P18.49).

Primal Exercise 18.2

Determine (a) 5δ(t)sint and (b) 5δ(t)cost.

Ans. (a) 0; (b) 5δ(t).

Primal Exercise 18.3

The response of an LTI circuit to δ(t) is u(t − 1) – u(t – 3). 
Determine the response of the circuit to the delayed 
impulse δ(t – 2).
Ans. u(t − 3) – u(t – 5).

a
t

f (a)

f (t)

(t – a)

FIGURE 18.6
Figure for Example 18.1.



552 Circuit Analysis with PSpice: A Simplified Approach

18.3  Responses of Capacitive Circuits 
to Step and Impulse Inputs

18.3.1  Single Capacitor

The fact that the v–i relation for a capacitor involves 
differentiation or integration with respect to time 
underlies an important characteristic of the capacitor. 
Consider the v–i relation of a capacitor to be rearranged 
as dv =  (1/C)idt. Integrating this relation between two 
limits t1 and t2 gives
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where v(t2) = v2 and v(t1) = v1. It follows that
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Let t t2 1® , that is, t2 – t1 = Δt → 0. We will consider the 
current integral on the RHS of Equation 18.20 as an area, 
assuming first that i is finite and continuous at t = t1, as 
illustrated in Figure 18.7a. For small Δt, the area under 
the curve from t =  t1 to t =  t2 is that of a trapezoid of 
width Δt and a finite mean height. This area tends to 
zero as Δt → 0, so that v(t2) = v(t1).

If i is finite and has a finite discontinuity at t = t1 (Figure 
18.7b), then the mean height of the trapezoid of width Δt 
is finite, so that the area of the trapezoid tends to zero as 
Δt → 0. Again, Equation 18.20 gives v(t2) = v(t1).

It is seen that as long as i is finite and continuous at 
t = t1, or is finite and has a finite discontinuity at t = t1, 
the integral on the RHS of Equation 18.20 tends to zero 
as Δt → 0, which makes v(t2) = v(t1). In other words, the 
capacitor voltage does not change instantaneously due 
to a finite change in capacitor current.

On the other hand, if a current impulse i = qδ(t – t1) 
occurs at t = t1, then
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This underlies an important concept,

Concept: The voltage across a capacitor cannot be changed 
instantaneously except by a current impulse, which 
 deposits on the capacitor a charge equal to the strength of 
the impulse.

A current impulse of qδ(t) A has a strength or area 
of q coulombs. When such an impulse flows through 
a capacitor of C farads, it deposits q coulombs on the 
capacitor instantaneously, between t  =  0− and t  =  0+, 
which changes the voltage across the capacitor instanta-
neously by q/C V. Physically, an instantaneous change in 
the charge or voltage of a capacitor is an instantaneous 
change in the stored energy. As emphasized in earlier 
chapters, stored energy cannot be changed instanta-
neously by any finite “force” or any physically realiz-
able means. This does not contradict the effect of the 
impulse because the infinite amplitude of the impulse 
and its infinitesimal duration are not physically realiz-
able. The impulse, after all, is a mathematical construct 
that is, nevertheless, extremely useful for theoretical 
purposes in that it readily leads to important conclu-
sions and concepts concerning the behavior of linear 
systems, including circuits. Practically, an impulse can 
be approximated by a pulse whose area is equal to that 
of the impulse, and whose duration is small compared 
to the shortest response time of the system, as will be 
illustrated by PSpice simulations.

It should be carefully noted that whereas the voltage 
across a capacitor cannot be changed instantaneously 
except by a current impulse, the current through a capacitor 
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FIGURE 18.7
Integrals of a continuous function (a), or a function including a step discontinuity (b), or an impulse (c).
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can change instantaneously, even in the absence of any 
impulse. This is because the energy stored in the capaci-
tor is not directly related to current, but to charge or 
voltage.

The responses of a capacitor to current or voltage steps 
or impulses can be readily derived from the v–i relation 
of a capacitor. These responses, illustrated in Figure 18.8, 
are discussed in what follows, assuming the capacitor is 
initially uncharged. Any initial charge on the capacitor 
can, in principle, be added to these responses algebra-
ically, as appropriate and in accordance with superposi-
tion. Units of v, i, R, and C are not explicitly specified but 
are assumed to be consistent.

Case 1: iSRC(t) = Ku(t) (Figure 18.8a)
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The integral of the step function between 0− and 0+ is 
zero. Although u(t) = 1 at t = 0+, the area involved in the 
integration is 1 × (0+ − 0−) = 1 × Δt = 0 as Δt → 0. The inte-
gral of u(t) for t ≥ 0+ is the ramp function t. The response 
is shown in Figure 18.8a. v(t) is continuous at t = 0, that 
is, v(0−) = 0 and v(0+) = 0, because the change in i is finite, 
as was argued in connection with Figure 18.7b. But the 
slope of v(t) is discontinuous at t = 0.

Case 2: iSRC(t) = δu(t) (Figure 18.8b)
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d . As explained previ-

ously, the current impulse changes the capacitor voltage 
 instantaneously from zero to K/C. The voltage response 
will therefore be (K/C)u(t) (Figure 18.8b). Note  that 

since an impulse function is the time derivative of 
the step  function (Equation 18.8), the current input of 
 Figure 18.8b is the time derivative of that of Figure 18.8a. 
Because the voltage–current relation for a capacitor is 
linear, the voltage response of Figure 18.8b is also the 
time derivative of that of Figure 18.8a.

Case 3: vSRC(t) = Ku(t) (Figure 18.8c)

i t C
dv
dt

KC t( ) = = ( )d . With the voltage across the capaci-

tor being a step function at the origin, the capaci-
tor current is an impulse at the origin of strength KC 
(Figure 18.8c). This is the charge deposited by the cur-
rent impulse on the capacitor, so that the voltage across 
the capacitor changes instantaneously from 0 at t = 0− to 
K at t = 0+, as required by the step function.

Case 4: vSRC(t) = Kδ (t) (Figure 18.8d)

i t C
dv
dt

KC t( ) ( ),( )= = d 1  where δ(1)(t) is the derivative of 
the unit impulse ( Figure 18.8d). When the applied 
voltage is an impulse the voltage first increases 
toward infinity and eventually returns to zero at 
t = 0+. By this time, there is no charge on the capacitor. 
The  derivative of the impulse is biphasic: it increases 
in the positive direction on the rising phase of the 
impulse, then goes negative in mirror fashion on the 
negative phase of the impulse. The positive part  of 
the δ(1)(t) current deposits charge on the capacitor, 
and the negative part removes this charge, so that by 
t = 0+, the voltage is zero, and there is no net charge on 
the capacitor, in accordance with v being zero at t = 0+. 
Because of its biphasic nature δ(1)(t) is also known as 
the unit doublet.

Before ending this discussion, the following argument 
that was used in the preceding discussion should be 
emphasized, namely, that
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This argument will be invoked on many occa-
sions in future discussions. A helpful analogy is that 
of the water vessel invoked in Section 11.1. Consider 
a water tap emptying into a vessel, where water flow 
from the tap is analogous to current and the volume of 
water in the  vessel is analogous to charge. If the water 
tap is suddenly turned on at t = 0, causing a finite flow 
of water into the vessel, then at t = 0+, water has not 
yet accumulated in the vessel. In other words, the time 
integral of water flow, from t = 0−, just before the tap 
is turned on, and t = 0+, just after the tap is turned on, 
is zero.
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FIGURE 18.8
Capacitor responses to a current step (a), to a current impulse (b), to a 
voltage step (c), and to a voltage impulse (d).
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A consequence of Equation 18.22 is that a finite quan-
tity added to or subtracted from an impulse does not 
affect the impulse. Thus,

 d dt y t y( ) ± = ( ) , if remains finite during the impulse 
(18.23)

To prove this, the LHS is integrated over the duration 
of the impulse and Equation 18.22 applied. Thus,
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It is seen from Equation 18.24 that the integral of y 
between t = 0− and t = 0+ is zero, so that the impulse is 
not affected.

18.3.2  RC Circuit

There are two basic circuits to consider: (1) a series RC 
circuit excited by a voltage step or impulse and (2) a 
parallel RC circuit excited by a current step or impulse. 
When a series RC circuit is excited by an ideal current 
source, including a current step or impulse source, the 
resistor is redundant as far as the capacitor voltage 
is concerned, because the capacitor current is deter-
mined by the ideal current source, independently of the 
 resistor. The capacitor voltage will then be as in Figure 
18.8a or b. Similarly, when a parallel RC circuit is excited 
by an ideal voltage source, including a voltage step or 
impulse source, the resistor is redundant as far as the 
capacitor current is concerned, because the capacitor 
voltage is determined by the ideal voltage source, inde-
pendently of the resistor. The capacitor current will then 
be as in Figure 18.8c or d.

The responses of interest are summarized in 
Figure 18.9. These responses can be derived from the 
generalized response of first-order circuits, as given 
by Equation 11.57, based on the initial and final val-
ues of the voltage or current and the time constant. 
The final value can be readily determined from steady-
state conditions. The resistance seen by the capacitor 
is Thevenin’s resistance, which is R. Hence, τ = RC in 
all cases. It remains, therefore, to specify the initial 
value of voltage or current at t = 0+, just after the sud-
den change due to the step or impulse. It is assumed as 
in Figure 18.8 that the capacitor is initially uncharged. 
Physical interpretation of circuit behavior will be 
emphasized throughout.

Case 1: vSRC(t) = Ku(t) (Figure 18.9a)
At t  =  0−, both i and v are zero, by assumption. 
The  energy stored in the capacitor is zero at t  =  0−. 

The capacitor voltage is not forced to change at t = 0, for, 
according to KVL, Ku(t) = Ri + v. When u(t) changes at 
t = 0, i can change so as to satisfy KVL, with v remain-
ing zero, as required by the constancy of stored energy. 
Hence, v(0+) = 0. In other words, the uncharged capacitor 
acts as a short circuit during the interval t = 0− to t = 0+, in 
response to the voltage step. This means that i(0+) = K/R 
in order to satisfy KVL at t = 0+. As t → ∞, the capacitor 
is fully charged, so that i(∞) = 0 and v(∞) = K. With the 
initial values i(0+) and v(0+) determined, as well as the 
final values, it follows from Equation 11.57 that
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The time variations of i(t) and v(t) are illustrated in 
Figure 18.9a.

Case 2: vSRC(t) = Kδ(t) (Figure 18.9b)
During the rising phase of the impulse, the impulse 
appears like a step of large magnitude. It would be 
expected, therefore, that the uncharged capacitor would 
initially act as a short circuit, as in Case 1. If the capacitor 
acts as a short circuit, the voltage impulse appears across 
R, resulting in a current impulse i = Kδ(t)/R. The current 
impulse flowing through the capacitor deposits a charge 
K/R on the capacitor at t = 0+, so that v(0+) = K/RC. This 
means that, unlike a true short circuit, v(0+) ≠ 0. The fact 
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that v increases from 0 to K/RC during the impulse 
does not invalidate the argument that a full voltage 
impulse appears across R, as argued in connection with 
Equation  18.24, when a finite quantity is added to, or 
subtracted from, an impulse.

At t = 0+, when the impulse is over, the ideal voltage 
source acts as a short circuit, and the circuit reduces to 
a capacitor that is charged to K/RC and having a resis-
tor R across it. The capacitor begins to discharge, thereby 
reversing the direction of i. The initial value of i at t = 0+ is 
−K/R2C. This can also be determined from KVL, which is

 v t Ri t K t( ) + ( ) = ( )d , for all t (18.26)

At t  =  0+, v(0+)  =  K/RC, and the impulse is over, so 
that the RHS of Equation 18.26 is zero. This gives 
i(0+) = −v(0+)/ R = −K/R2C.

As t → ∞, both v and i tend to zero. It follows from the 
discussion of Section 11.1 that
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The time variations of i(t) and v(t) are illustrated in 
Figure 18.9b.

Case 3: iSRC(t) = Ku(t) (Figure 18.9c)
The responses in this case can be derived from those 
of Case 1 by transforming the Ku(t) voltage source in 
series with R to a Ku(t)/R current source in parallel 
with R. Multiplying i and v of Figure 18.9a by R gives 
the required responses as illustrated in Figure 18.9c. 
Nevertheless, it is instructive to derive these responses 
from first principles.

At t = 0−, both i and v are zero, by assumption, and 
the energy stored in the capacitor is zero. The capaci-
tor voltage is not forced to change at t = 0, for, accord-
ing to KCL, Ku(t) = v/R + i. When u(t) changes at t = 0, 
i can change so as to satisfy KCL, with v remaining zero, 
as required by the constancy of stored energy. Hence, 
v(0+) = 0. The uncharged capacitor acts as a short circuit 
during the interval t = 0− to t = 0+, in response to the 
current step. This means that i(0+) = K in order to satisfy 
KCL at t = 0+.

As t  →  ∞, the capacitor is fully charged, so that 
i(∞) = 0 and v(∞) = KR. Using Equation 11.57,

 i t Ke v t KR e tt RC t RC( ) = ( ) = -( ) ³- - +/ / ,and 1 0  
(18.28)

The time variations of i(t) and v(t) are illustrated in 
Figure 18.9c.

Case 4: iSRC = Kδ(t) (Figure 18.9d)
The responses in this case can be derived from those 
of Case 2 by  transforming the Kδ(t) voltage source in 

series with R to a Kδ(t)/R current source in parallel 
with R. Multiplying i and v of Figure 18.9b by R gives 
the response in this case, as  illustrated in Figure 18.9d. 
Nevertheless, it is instructive to derive these responses 
from first principles.

During the rising phase of the impulse, the impulse 
appears like a step of large magnitude. It would be 
expected, therefore, that the capacitor would initially 
act as a short circuit. This means that the applied current 
impulse flows through the capacitor, thereby deposit-
ing a charge K on the capacitor and increasing v to K/C 
at t = 0+. Although the capacitor acts initially as a short 
circuit in response to the current impulse, the capacitor 
voltage at the end of the impulse is finite, unlike that of 
a true short circuit. As v increases from 0 to K/C at t = 0+ 
during the impulse, the current in R increases from 0 to 
K/RC at t = 0+. This does not invalidate the argument 
that a full current impulse flows through the capacitor, as 
argued in connection with Equation 18.24, when a finite 
quantity is added to, or subtracted from, an impulse.

At t = 0+, when the impulse is over, the ideal current 
source acts as an open circuit and the circuit reduces to 
a capacitor that is charged to K/C and having a resistor 
R across it. The capacitor begins to discharge, thereby 
reversing the direction of i. The initial value of i at t = 0+ is 
−K/RC. This can also be determined from KCL, which is

 i v R K t+ = ( )/ ,d for all t (18.29)

At t  =  0+, v(0+)  =  K/C, and the impulse is over, so 
that the RHS of Equation 18.29 is zero. This gives 
i(0+) = −v(0+) = −K/RC.

As t → ∞, both v and i tend to zero. It follows from the 
discussion of Section 11.1 that
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The time variations of i(t) and v(t) are illustrated in 
Figure 18.9d.

18.3.3  Summary of Responses of Capacitive Circuits

The responses discussed in this section can be summa-
rized by the following important concepts:

 1. The voltage across a capacitor does not change 
instantaneously unless it is forced to change in order 
to satisfy KVL. On the other hand, the capacitor cur-
rent can change instantaneously in order to satisfy 
KVL and KCL.

 2. If the voltage across a capacitor is forced to change 
instantaneously, this change is accomplished by a 
current impulse through the capacitor.
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In Figure 18.8c, the capacitor voltage is 
forced to change instantaneously to become 
equal to K, in accordance with KVL, the capaci-
tor current being an impulse KCδ(t). In Figure 
18.9a and c the capacitor voltage is not forced 
to change instantaneously by the applied 
 excitation. The capacitor  current jumps instan-
taneously to satisfy  KVL in Figure  18.9a and 
KCL in Figure 18.9c.

 3. When a voltage or current step is applied to an 
RC circuit, and the capacitor voltage is not forced 
to change, an uncharged capacitor acts as a short 
circuit at the time the step is applied. Since the volt-
age of an uncharged capacitor is zero before the step 
is applied, it will remain zero at just after the step, 
because the stored energy does not change instanta-
neously. As for a short circuit, the capacitor voltage 
is zero but the capacitor current can have any finite 
value.

In Figure 18.9a, the capacitor acts as a short 
circuit in response to the voltage step, so that 
at t = 0+, v = 0 and i = K/R. Similarly in Figure 
18.9c, the capacitor acts as a short circuit in 
response to the current step, so that at t  =  0+, 
v = 0 and the source current K passes through 
the capacitor.

 4. If in the preceding case the capacitor is initially 
charged, the capacitor voltage does not change just 
after the step, because the stored energy does not 
change instantaneously if no current impulse flows 
through the capacitor. Superposition can be applied 
to determine the currents and voltages in the rest 
of the circuit, but it is generally easier to determine 
these values by replacing the charged capacitors by 
batteries of equal voltage, in accordance with the 
substitution theorem.

 5. When a voltage or current impulse is applied to 
an RC circuit, an uncharged capacitor initially 
acts as a short circuit in response to the impulse, 
which determines the path followed by the current 
impulse, or where in the circuit the voltage impulse 
appears. Just after the impulse, the capacitor voltage 
is not zero, as in a short circuit, but is equal to the 
charge deposited by the current impulse divided by 
the capacitance.

The justification is that the rising phase of 
an impulse is indistinguishable to begin with 
from a step of large amplitude. The capacitor 
will therefore initially act as a short circuit. But 
if a current impulse flows through the capaci-
tor, then the capacitor voltage at t = 0+ is not 
zero, as in the case of a short circuit, but is 
the charge deposited by the impulse divided 
by the capacitance. Thus, in Figure 18.9d, the 

capacitor acts initially as a short circuit, so 
that the current impulse flows through the 
capacitor, depositing a charge K coulombs 
and producing a capacitor voltage K/C at 
t  =  0+. In Figure 18.9b, the capacitor acts ini-
tially as a short circuit, so that the voltage 
impulse appears across R and results in a cur-
rent impulse (K/R)δ(t) through the capacitor. 
The  current impulse deposits a  charge K/R, 
the resulting voltage being K/RC.

 6. If in the preceding case the capacitor is initially 
charged, superposition can be applied. The capaci-
tor is first considered uncharged, and the preceding 
concepts applied. The charge or voltage due to ini-
tially stored energy is then added algebraically to the 
charge or voltage due to the impulse.

It should be kept in mind that the current and volt-
age values at t = 0+ are the initial values for determining 
 current and voltage as functions of time by solving the 
differential equation involved.

Example 18.2: Responses of a Capacitive 
Circuit to Voltage Step and Impulse

Given the circuit of Figure 18.10, (a) determine v1(0+), 
v2(0+), i1(0+), and i2(0+) assuming vSRC(t) = 2u(t) V and 
the capacitors to be initially uncharged. (b)  Repeat 
(a) assuming initial voltages of the capacitors at t  =  0 
of V10 = 4 V and V20 = 6 V, and determine how KVL 
and KCL are satisfied at t = 0+. (c) Repeat (a) assum-
ing vSRC (t)  =  4δ(t) mV. (d) Repeat (b) assuming 
vSRC(t) = 4δ(t) mV.

Solution:

KVL in Figure 18.10 is

 2 1 1 2i v v vSRC+ + = , for all t (18.31)

Equation 18.31 applies irrespective of the nature of vSRC. 
When vSRC is a voltage step, v1 and v2 are not forced to 
change at t  =  0+, because the term in i1 can change to 
satisfy KVL. The stored energy and hence the capacitor 
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voltages remain the same, at t = 0− and at t = 0+, irrespec-
tive of the initial charges on the capacitors.

 (a) When the step is applied, the capacitors act as short 
circuits (Figure 18.11a). It follows that v1(0+)  =  0 
and v2(0+) = 0. Moreover, i1(0+) = 2 V/2 kΩ = 1 mA. 
Since v2(0+) = 0 the current in the 1 kΩ is zero, so 
that i2(0+) = i1(0+) = 1 mA.

 (b) As argued in connection with Equation 18.31, 
v1 and v2 are not forced to change at t = 0. Hence, 
v1(0+) = V10 = 4 V and v2(0+) = V20 = 6 V. At t = 0+, the 
circuit becomes as shown in Figure 18.11b, where 
vSRC  =  2  V and the capacitors have been replaced 
by ideal dc voltage sources in accordance with 
the substitution theorem (Section 4.4). It follows 
from Equation 18.31 that 2i1(0+) + 4 + 6 = 2, which 
gives i1(0+) = −4 mA. The current in the 1 kΩ resis-
tor is 6 mA in the direction shown, so that i2(0+) = 
− (6 + 4) = −10 mA in order to satisfy KCL. Note that 
superposition can also be applied, considering the 
capacitors to be initially uncharged, and then add-
ing to i1(0+) and i2(0+) the components due to the ini-
tial voltages acting alone. However, it is simpler in 
this case to apply KVL to the circuit of Figure 18.11b. 
It should be kept in mind that replacing the 1 and 
2  μF capacitors by batteries of 4 and 6  V, respec-
tively, applies at t = 0+ only, and at no other time.

 (c) When the impulse is applied, the capacitors 
 initially act as short circuits as in Figure 18.11a. 
The voltage impulse will therefore appear across 
the 2 kΩ resistor and cause a current impulse of 
4δ(t) mV/2 kΩ  =  2δ(t) μA through both capaci-
tors. The current impulse deposits a charge of 
2 μC on the plate of the 1 μF capacitor connected 
to the 2 kΩ resistor and removes 2 μC from the 

plate of the 2 μF capacitor connected to the nega-
tive source terminal. This leaves each of the two 
capacitors with 2 μC, so that v1(0+)  =  2  V and 
v2(0+) = 1 V (Figure 18.12a). At t = 0+, the impulse is 
over and the voltage source acts as a short circuit; 
KVL around the outer loop gives i1(0+) = −1.5 mA. 
With 1 mA flowing in the 1 kΩ resistor, KCL gives 
i2(0+) = −2.5 mA.

 (d) When the capacitors are initially charged, the cur-
rent impulse can be considered first to deposit 2 μC 
on uncharged capacitors. This charge adds to the 
charges already present. The total charge on the 1 μF 
capacitor is 4 + 2 = 6 μC, which gives v1(0+) = 6 V, 
whereas the total charge on the 2 μF capacitor is 
12  +  2  =  14 μC, and v2(0+)  =  7  V (Figure  18.12b). 
It follows from KVL around  the  outer loop that 
i1(0+) = −6.5 mA. With 7 mA flowing in the 1 kΩ 
resistor, KCL gives i2(0+) = −13.5 mA.

Simulation: The circuit for simulation of the voltage 
step is shown in Figure 18.13a. PSpice applies VDC at 
the start of the simulation like a voltage step. Initial 
voltages across the capacitors are assumed as given. 
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Applying time domain analysis, cursor readings give 
v1(0+) = 4.0000 V and v2(0+) = 6.000 V. To read the currents 
using the cursor, it is necessary to remove the switch-
ing transient at t = 0. In the SCHEMATIC1 page, select 
‘Plot/Axis Settings/X-Axis/User Defined’, and enter 
1 us as the beginning of the trace, instead of zero. The 
cursors, when toggled, read I(C1) =  i1(0+) = −3.9995 m 
and I(C2) = i2(0+) = −9.999 m.

To simulate the impulse, the battery is replaced by 
VPULSE with the parameters entered as shown in 
Figure 18.13b. Because the time response of the circuit is 
of the order of kilo-ohms × microfarads, or milliseconds, 
the voltage impulse is simulated by a pulse of 0.1 μs dura-
tion and 40 kV amplitude, which makes the area 4 mV as 
required. The initial values can be read using the cursor by 
selecting a user-defined time axis starting at 0.101 μs, after 
the impulse is over. The readings are v1(0+)  =  5.9988  V, 
v2(0+) = 6.9990 V, i1(0+) = −6.4989 m, and i2(0+) = −13.498 m.

Primal Exercise 18.4

Determine vC(0+) and iC(0+) in Figure 18.14, assuming 
vSRC(t) = 6u(t), with (a) the capacitor initially uncharged; 
(b) the capacitor initially charged to 2  V. (c) and (d) 
repeat (a) and (b) assuming vSRC(t) = 6δ(t).
Ans. (a) vC(0+) = 0 V, iC(0+) = 3 A; (b) vC(0+) = 2 V, iC(0+) = 2 A; 
(c) vC(0+)  =  1.5  V, iC(0+)  =  −0.75  A; (d)  vC(0+)  =  3.5  V, 
iC(0+) = −1.75 A.

Primal Exercise 18.5

Determine vC(0+) and iC(0+) in Figure 18.15.
Ans. vC(0+) = 3 V, iC(0+) = −1.5 A.

Primal Exercise 18.6

Determine vO(t) in Figure 18.16 given iSRC(t)  =  10δ(t) 
μA + 5u(t) mA, with the capacitor initially uncharged. 
Note that the current impulse establishes the initial 
charge on the capacitor at t = 0+.

Ans. v t eO
t( ) = + -5 15 2 V, t is in ms.

Primal Exercise 18.7

Determine R and C in Figure 18.17 given that 
v t e u t tO

t( ) = ( )-0 1 0 2. ,. V is in s, in response to a unit 
impulse, δ(t).
Ans. C = 1 F, R = 10 Ω.

18.4  Inductor Response to Voltage Pulse

Consider a step voltage VSRC applied at t  =  0 to an 
inductor that is initially uncharged, as illustrated in 
Figure 18.18a. The voltage step implies that VSRC = 0 for 
t < 0, and vSRC = VSRC, for t > 0, so that the source voltage 
suddenly changes at t = 0 from 0 to VSCR. The current 
i through the inductor is
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The inductor current increases linearly with time at a 
rate VSRC/L as shown.
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Suppose that a voltage pulse of amplitude VSRC that 
starts at t = 0 and ends at t a=  is applied to the uncharged 
inductor (Figure 18.18b). Initially, for t < a, the voltage 
pulse is indistinguishable from the voltage step of the 
same amplitude, which causes the inductor current to 
increase linearly at the same rate VSRC/L as before. At 
t = a, i = aVSRC/L, since the flux linkage established in 
the inductor from t = 0 and t = a is aVSRC, the area under 
the voltage pulse. The current is 1/L times this flux link-
age, that is, aVSRC/L. Just after t = a, the pulse ends, so 
that vSRC becomes zero, and the ideal voltage source acts 
as a short circuit. Since the inductor is assumed ideal, 
the current is maintained for t > a at its value of aVSRC/L 
at t = a.

Let the amplitude of the pulse be increased to VSRC¢  and 
its duration reduced to ¢a  (Figure 18.18b), while keeping 
the area of the pulse the same, that is, ¢ ¢ =a V aVSRC SRC = 
flux linkage established by the voltage pulse. For t < a′, 
di dt V L V LSRC SRC/ / /= ¢( ) > ( ). The change in i is steeper, but 
the final value of i remains the same because the flux 
linkage established is the same. Thus, from Equation 
18.32, the final value of v is ¢ ¢( ) = ( )a V L aV LSRC SRC/ /  but is 
reached at a faster rate.

Note the similarity, because of duality, between 
Figures  18.1 and 18.32, whereby v replaces i and L 
replaces C. As in the case of the capacitor considered in 
Section 18.1, if the width of the voltage pulse becomes 
infinitesimally small, while the area of the pulse remains 
at aVSRC, then the voltage amplitude becomes infinitely 
large, resulting in a voltage impulse of strength aVSRC 
Vs. The resulting change in current becomes a step 
function, so that the current changes from 0 to aVSRC/L 
instantaneously at t = 0.

Primal Exercise 18.8

Determine the inductor current as a function of time if a 
voltage of 5 mV is applied for 10 ms to a 10 μH inductor.
Ans. i rises to 5  A at 10  ms and remains at this value 
thereafter 0.5.

18.5  Responses of Inductive Circuits 
to Step and Impulse Inputs

This section closely parallels Section 18.3 in accor-
dance with duality between capacitive and inductive 
circuits.

18.5.1  Single Inductor

Consider the v–i relation of an inductor to be rearranged 
as di  =  (1/L)vdt. Integrating this relation between two 
limits t1 and t2 gives
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where i(t2) = i2, and i(t1) = i1. It follows that
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As argued in Section 18.3, if v is finite and continuous 
at t = t1, or is finite and has a finite discontinuity at t = t1, 
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the integral on the RHS of Equation 18.34 tends to zero 
as t2 → t1, which makes i(t2) = i(t1). In other words, the 
inductor current does not change instantaneously due 
to a finite change in inductor voltage.

On the other hand, if a voltage impulse of strength λ 
occurs at t = t1, then
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This underlies an important concept,

Concept: The current through an inductor cannot be 
changed instantaneously except by a voltage impulse, which 
establishes in the inductor a flux linkage equal to the strength 
of the impulse.

A voltage impulse of λδ(t) V has a strength or area 
of λ Wb-T. When such an impulse is applied across 
an inductor of L henries, it establishes a flux link-
age λ Wb-T in the inductor instantaneously, between 
t  =  0− and t  =  0+, which changes the inductor cur-
rent instantaneously by λ/L  A. Physically, an instan-
taneous change in the flux linkage or current of an 
inductor is an instantaneous change in the stored 
energy. As argued previously, stored energy cannot 
be changed instantaneously by any finite ‘force’. But 
a voltage impulse of infinite amplitude and infini-
tesimal  duration can change the energy stored in the 
 inductor   instantaneously, and hence the inductor 
current.

Whereas the current through an inductor cannot be 
changed instantaneously except by a voltage impulse, 
the voltage across an inductor can change instantaneously, 
even in the absence of any impulse. This is because the 
energy stored in the inductor is not directly related to 
voltage, but to flux linkage or current.

The responses of an inductor to current or voltage 
steps or impulses can be readily derived from the v–i 
relation of an inductor, as illustrated in Figure 18.19, 
assuming the inductor is initially uncharged. Any ini-
tial current in the inductor can, in principle, be added 
algebraically to these responses, as appropriate and 
in accordance with superposition. Units of v, i, R, and 
L are not explicitly specified but are assumed to be 
consistent.

Case 1: vSRC(t) = Ku(t) (Figure 18.19a)
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i is contin uous at t = 0, but its slope is discontinuous. 
Moreover, i(0−) = 0 and i(0+) = 0, because the change in 
v is finite.

Case 2: vSRC(t) = Kδ(t) (Figure 18.19b)
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d . The voltage impulse 

changes the inductor current instantaneously from 
zero to K/L. The current response will therefore be u(t) 
(Figure 18.19b). Since the voltage input of Figure 18.19b 
is the time derivative of that of Figure 18.19a, the current 
response of Figure 18.19b is also the time derivative of 
that of  Figure 18.19a.

Case 3: iSRC(t) = Ku(t) (Figure 18.19c)

v t L
di
dt

KL t( )= = ( )d , that is, an impulse at the origin of 

strength KL (Figure 18.19c). The flux linkage established 
by the voltage impulse in the inductor is KL and the 
 current through the inductor is K, as required by the 
step function.

Case 4: iSRC = Ku(t) (Figure 18.19d)

v t L
di
dt

KL t( )= = ( )( )d 1 , where δ(1)(t) is the derivative of 
the unit impulse. The positive part of the δ(1)(t) voltage 
establishes flux linkage in the inductor, and the nega-
tive part abolishes this flux linkage, so that by t = 0+, the 
 current is zero, and there is no net flux linkage in the 
inductor, in accordance with i being zero at t = 0+.

18.5.2  RL Circuit

There are two basic circuits to consider: (1) a series RL cir-
cuit excited by a voltage step or impulse and (2) a parallel 
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RL circuit excited by a current step or impulse. When a 
series RL circuit is excited by an ideal current source, 
such as a current step or impulse source, the resistor is 
redundant as far as the inductor voltage is concerned, 
because the inductor current is determined by the ideal 
current source, independently of the resistor. The induc-
tor voltage will then be as in Figure 18.19c or d. Similarly, 
when a parallel RL circuit is excited by an ideal voltage 
source, including a voltage step or impulse source, the 
resistor is redundant as far the inductor current is con-
cerned, because the inductor voltage is determined by 
the ideal voltage source, independently of the resistor. 
The inductor current will then be as in Figure 18.19a or b.

The responses of interest are summarized in 
Figure 18.20. These responses can be derived from the 
generalized response of first-order circuits, as given by 
Equation 11.57, based on the initial and final values of the 
voltage or current and the time constant. The final value 
can be readily determined from steady-state conditions. 
The resistance seen by the inductor is Thevenin’s resis-
tance, which is R. Hence, τ = L/R in all cases. It remains, 
therefore, to specify the initial value of voltage or cur-
rent at t  =  0+, just after the sudden change due to the 
step or impulse. It is assumed as in Figure 18.19 that the 
inductor is initially uncharged. The physical interpreta-
tion of circuit behavior will be emphasized throughout.

Case 1: iSRC = Ku(t) (Figure 18.20a)
At t  =  0−, both i and v are zero, by assumption. The 
energy stored in the inductor is zero at t = 0−. The induc-
tor current is not forced to change at t = 0, for, accord-
ing to KCL, Ku(t) = v/R + i. When u(t) changes at t = 0, 
v can change to satisfy KCL, with i remaining zero, as 
required by constancy of stored energy. Hence, i(0+) = 0. 
In other words, the uncharged inductor acts as an open cir-
cuit during the interval t = 0− to t = 0+, in response to the 
current step. The applied current step flows through R at 
t = 0−, which means that v jumps from 0 at t = 0− to KR 
at t = 0+ in order to satisfy KVL. As t → ∞, the inductor 
acts as a short circuit and all the source current passes 
through the inductor, so that v(∞) = 0 and i(∞) = K. With 
the  initial and final values of i(0+) and v(0+) determined, 
it follows from  Equation 11.57 that

 v t K i t K e tRt L Rt L( ) = ( ) = -( ) ³- - +Re / / ,and 1 0  (18.36)

The time variations of i(t) and v(t) are illustrated in 
Figure 18.20a. Note that the dual of R in the capacitive 
case is G in the inductive case, which has been replaced 
by its reciprocal R.

Case 2: vSRC(t) = Kδ(t) (Figure 18.20b)
During the rising phase of the impulse, the impulse 
appears like a step of large magnitude. It would be 
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expected, therefore, that the inductor would act as an 
open circuit. In this case, the current impulse flows 
through R, resulting in a voltage impulse v  =  KRδ(t). 
The voltage impulse establishes a flux linkage KR in 
the inductor at t = 0+, so that i(0+) = KR/L. This means 
that, unlike a true open circuit, i(0+) ≠ 0. The fact that i 
increases from 0 to KR/L during the impulse does not 
invalidate the argument that the full current impulse 
flows through R, as argued in connection with Equation 
18.24, when a finite quantity is added to, or subtracted 
from, an impulse.

At t = 0+, when the impulse is over, the ideal current 
source acts as an open circuit and the circuit reduces 
to an inductor having an initial current of KR/L and a 
resistor R across it. The inductor begins to discharge, 
with a reversal of the polarity of v. The initial value of 
v at t = 0+ is −KR2/L. This can also be determined from 
KCL, which is

 i v R K t+ = ( )/ ,d for all t (18.37)

At t  =  0+, i(0+)  =  KR/C, and the impulse is over, so 
that the RHS of Equation 18.37 is zero. This gives 
v(0+) = –Ri(0+) = −KR2/L.

As t → ∞, both v and i tend to zero. It follows from the 
discussion of Section 11.3 that
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The time variations of i(t) and v(t) are illustrated in 
Figure 18.20b.

Case 3: vSRC(t) = Ku(t) (Figure 18.20c)
The responses in this case can be derived from those of 
Case 1 by transforming the Ku(t) current source in par-
allel with R to a KRu(t) voltage source in series with R. 
Dividing i and v of Figure 18.20a by R gives the response in 
this case, as illustrated in Figure 18.20c. Nevertheless, it is 
instructive to derive these responses from first principles.

At t = 0−, both i and v are zero, by assumption, and the 
energy stored in the inductor is zero. The inductor cur-
rent is not forced to change at t = 0, for according to KVL, 
Ku(t) = Ri + v. When u(t) changes at t = 0, v can change 
so as to satisfy KVL, with i remaining zero, as required 
by the constancy of stored energy. Hence, i(0+) = 0. The 
uncharged inductor acts as an open circuit during the 
interval t = 0− to t = 0+, in response to the voltage step. 
This means that v(0+) = K in order to satisfy KVL at t = 0+.

As t → ∞, the inductor acts as a short circuit, so that 
v(∞) = 0 and i(∞) = K/R. Using Equation 11.57,
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(18.39)

The time variations of i(t) and v(t) are illustrated in 
Figure 18.20c.

Case 4: vSRC(t) = Kδ(t) (Figure 18.20d)
The responses in this case can be derived from those of 
Case 2 by transforming the Kδ(t) current source in par-
allel with R to a KRδ(t) voltage source in series with R. 
Dividing i and v of Figure 18.20b by R gives the response 
in this case, as illustrated in Figure 18.20d. Nevertheless, 
it is instructive to derive these responses from first 
principles.

During the rising phase of the impulse, the impulse 
appears like a step of large magnitude. It would be 
expected, therefore, that the inductor would act as an 
open circuit. This means that the applied voltage impulse 
appears across the inductor, thereby establishing a flux 
linkage K in the inductor and increasing i to K/L at t = 0+. 
Although the inductor acts initially as an open circuit in 
response to the voltage impulse, the inductor current at 
the end of the impulse is finite, unlike that of a true open 
circuit. As i increases from 0 to K/L at t = 0+ during the 
impulse, the voltage across R increases from 0 to KR/L 
at t = 0+. This does not invalidate the argument that a full 
voltage impulse appears across the inductor, as argued 
in connection with Equation 18.24, when a finite quan-
tity is added to or subtracted from an impulse.

At t = 0+, when the impulse is over, the ideal voltage 
source acts as a short circuit and the circuit reduces to 
an inductor having an initial current K/L and a resistor 
R across it. The inductor begins to discharge, thereby 
reversing the direction of v. The initial value of v at t = 0+ is 
−KR/L. This can also be determined from KCL, which is

 v Ri K t+ = ( )d , for all t (18.40)

At t  =  0+, i(0+)  =  K/L, and the impulse is over, so 
that the RHS of Equation 18.40 is zero. This gives 
v(0+) = –Ri(0+) = −KR/L.

As t → ∞, both v and i tend to zero. It follows from the 
discussion of Section 11.3 that
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The time variations of i(t) and v(t) are illustrated in 
Figure 18.20d.

18.5.3  Summary of Responses of Inductive Circuits

The responses discussed in this section can be summa-
rized by the following important concepts:

 1. The current through an inductor does not change 
instantaneously unless it is forced to change in order 
to satisfy KCL. On the other hand, the inductor 
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voltage can change instantaneously in order to sat-
isfy KVL and KCL.

 2. If the current through an inductor is forced to change 
instantaneously, this change is accomplished by a 
voltage impulse across the inductor.

In Figure 18.19c, the inductor current is forced 
to change instantaneously to become equal to K, 
in accordance with KCL, the inductor voltage 
being an impulse KLδ(t). In Figure 18.20a and 
c, the inductor current is not forced to change 
instantaneously by the applied excitation. The 
inductor voltage jumps instantaneously to satisfy 
KCL in Figure 18.20a and KVL in Figure 18.20c.

 3. When a voltage or current step is applied to an RL 
circuit, and the inductor current is not forced to 
change, an uncharged inductor acts as an open cir-
cuit at the time the step is applied. Since the current 
of an uncharged inductor is zero before the step is 
applied, it will remain zero just after the step, because 
the stored energy does not change instantaneously. 
As for an open circuit, the inductor current is zero 
but the inductor voltage can have any finite value.

In Figure 18.20a, the inductor acts as an open 
circuit from t  =  0− to t  =  0+, so that at t  =  0+, 
i = 0, and v = KR. Similarly in Figure 18.20c, the 
inductor acts as an open circuit from t =  0− to 
t = 0+, so that at t = 0+, i = 0, and the source volt-
age K appears across the inductor.

 4. If in the preceding case the inductor is initially 
charged, the inductor current does not change just 
after the step, because the stored energy does not 
change instantaneously if no voltage impulse is 
applied across the inductor. Superposition can be 
applied to determine the currents and voltages in the 
rest of the circuit, but it is generally easier to deter-
mine these values by replacing the charged inductors 
by dc sources of equal current, in accordance with the 
substitution theorem.

 5. When a voltage or current impulse is applied to 
an RL circuit, an uncharged inductor initially 
acts as an open circuit in response to the impulse, 
which determines where in the circuit the voltage 
impulse appears, or the path followed by the current 
impulse. Just after the impulse, the current through 
the inductor is not zero but is equal to the flux link-
age established by the voltage impulse divided by the 
inductance.

The justification is that the rising phase of an 
impulse is indistinguishable to begin with from 
a step of large amplitude. The inductor will 
therefore initially act as an open circuit. But if 
a voltage impulse appears across the inductor, 
then the inductor current at t = 0+ is not zero, as 

in the case of an open circuit, but is the flux link-
age established by the impulse divided by the 
inductance. Thus, in Figure 18.20d, the induc-
tor acts initially as an open circuit, so that the 
voltage impulse appears across the inductor, 
establishing a flux linkage K and producing an 
inductor current K/L at t = 0+. In Figure 18.20b, 
the inductor acts initially as an open circuit, so 
that the current impulse flows through R and 
results in a voltage impulse (KR)δ(t) across the 
inductor. The voltage impulse establishes a flux 
linkage KR, the resulting current being KR/L.

 6. If in the preceding case the inductor is initially 
charged, superposition can be applied. The induc-
tor is first considered uncharged, and the preceding 
concepts applied. The flux linkage or current due 
to  initially stored energy is then added algebraically 
to the flux linkage or current due to the impulse.

It should be kept in mind that the current and volt-
age values at t = 0+ are the initial values for determining 
 current and voltage as functions of time by solving the 
differential equation involved.

Example 18.3: Responses of an Inductive 
Circuit to Current Step and Impulse

Consider the circuit of Figure 18.21, which is of the form 
of the dual of Figure 18.10, but with different component 
values. (a) Assuming iSRC(t) = 2u(t) mA and the induc-
tors to be initially uncharged, determine i1(0+), i2(0+), 
v1(0+), and v2(0+). (b) Repeat (a) assuming initial currents 
in the inductors at t = 0 of I10 = 3 mA and I20 = 4 mA, 
and determine how KVL and KCL are satisfied at t = 0+. 
(c) Repeat (a) assuming iSRC(t) = 2δ(t) μA. (d) Repeat (b) 
assuming iSRC(t) = 2δ(t) μA.

Solution:

KCL in Figure 18.21 is

 v i i iSRC1 1 22/ ,+ + = for all t (18.42)

Equation 18.42 applies irrespective of the nature of iSRC. 
When iSRC is a current step, i1 and i2 are not forced to 
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change at t = 0+, because the term in v1 can change to 
satisfy KCL. The stored energy and hence the inductor 
currents remain the same, at t = 0− and at t = 0+, irrespec-
tive of the initial currents in the inductors.

 (a) When the step is applied, the inductors act as open 
circuits (Figure 18.22a). It follows that i1(0+) = 0 and 
i2(0+) = 0. Moreover, v1(0+) = 2 mA × 2 kΩ = 4 V. 
Since i2(0+) = 0 the voltage across the 1 kΩ is zero, 
so that v2(0+) = v1(0+) = 4 V.

 (b) As argued in connection with Equation 18.42, i1 and 
i2 are not forced to change. Hence, i1(0+) = 3 mA and 
i2(0+) = I20 = 4 mA. At t = 0+, the circuit becomes as 
shown in Figure 18.22b, where iSRC = 2 mA and the 
inductors have been replaced by ideal dc current 
sources in accordance with the substitution theo-
rem (Section 4.4). It follows from Equation 18.42 
that 2 = 3 + v1(0+)/2 + 4, which gives v1(0+) = −10 V. 
The voltage across the 1 kΩ resistor is 4 V of the 
polarity shown, so that v2(0+) = −(10 + 4) = −14 V in 
order to satisfy KVL. Note that superposition can 
also be applied, considering the inductors to be 
initially uncharged, and then adding to v1(0+) and 
v2(0+) the components due to the initial currents 
acting alone. However, it is simpler in this case to 
apply KCL to the circuit of Figure 18.22b. It should 
be kept in mind that replacing the 1 and 2 H induc-
tors by current sources of 3 and 4 A, respectively, 
applies at t = 0+ only, and at no other time.

 (c) When the impulse is applied, the inductors initially 
act as open circuits, as in Figure 18.22a. The cur-
rent impulse will therefore flow through the 
2 kΩ resistor and cause a voltage impulse of 2δ(t) 
μA × 2 kΩ = 4δ(t) mV. The voltage impulse estab-
lishes a flux linkage of 4 mWb-T in both inductors. 

This produces initial currents i1(0+)  =  4  mA and 
i2(0+) = 2 mA (Figure 18.23a). At t = 0+, the impulse 
is over, and the current source acts as an open cir-
cuit. From KCL, the current in the 2 kΩ resistor is 
6 mA, and v1 = −12 V. KVL around the mesh on the 
RHS gives v2 = −14 V.

 (d) When the inductors are initially charged, the 
voltage impulse still establishes a flux linkage 
of 4  mWb-T in each inductor, which adds to the 
flux linkages already present. The total flux link-
age in the 1 H inductor becomes 4 + 3 = 7 mWb-T, 
and i1(0+) = 7 mA, whereas the total flux linkage 
in the 2 H inductor becomes 4  +  8  =  12 mWb-T, 
and  i2(0+) = 6 mA (Figure 18.23b). The current in 
the 2 kΩ resistor is 13  mA, and v1 = −26 V. KVL 
around the mesh on the RHS gives v2 = −32 V.

Simulation: The circuit for simulation of the cur-
rent step is shown in Figure 18.24a. PSpice applies 
IDC at the start of the simulation like a current step. 
Initial  currents through the inductors are assumed. 
Applying time domain analysis, cursor readings give 
i1(0+) = 3.0000 mA, i2(0+) = 4.000 mA, v1(0+) = −10.0000 V, 
and v2(0+) = −14.0000 V.
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The impulse is simulated by IPULSE with the parame-
ters entered as shown in Figure 18.24b. The initial values 
can be read using the cursor by selecting a user-defined 
time axis starting at 0.101 μs, after the impulse is over. 
The readings are i1(0+)  =  6.9966  m, i2(0+)  =  5.9981  m, 
v1(0+) = −25.989, and v2(0+) = −31.987.

Primal Exercise 18.9

Determine iL(0+) and vL(0+) in Figure 18.25.
Ans. iL(0+) = 4 A, vL(0+) = −8 V.

Primal Exercise 18.10

Determine iL(0+) and vL(0+) in Figure 18.26.

Ans. iL(0+) = 8 A, vL(0+) = −16 V.

Primal Exercise 18.11

Determine i(t) in Figure 18.27 given vSRC = 2δ(t) + 2u(t) A.

Ans. i(t) = 2 A.

Primal Exercise 18.12

Determine R and L in Figure 18.28 given that i(t) =
0 5. e u t tt- ( )A is in s, in response to a unit impulse, δ(t).
Ans. L = 10 H, R = 5 Ω.

18.6  Responses of RLC Circuits 
to Step and Impulse Inputs

When step or impulse inputs are applied to an RLC 
circuit, capacitors and inductors act, respectively, as 
summarized at the ends of Sections 18.3 and 18.5. This 
behavior is illustrated in Examples 18.4 and 18.5.

Example 18.4: Responses of RLC Circuit 
to Voltage Step and Impulse

Consider the circuit of Figure 18.29, with an initial volt-
age of 2  V on the capacitor and an initial current of 
2 mA in the inductor, determine (a) i1(0+), i2(0+), v1(0+), 
and v2(0+), assuming vSRC(t)  =  9u(t) V, and verify that 
KVL and KCL are satisfied. (b) Repeat (a) assuming 
vSRC(t) = 6δ(t) mV.

Solution:

 (a) KVL is

 v i v vSRC = + +2 1 1 2 (18.43)

  and KCL is

 i i v1 2 2 1= + /  (18.44)
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Neither v1 nor i2 are forced to change at t = 0+ 
in order to satisfy KVL or KCL because KVL can 
be satisfied by changes in i1 or v2 in Equation 
18.43, and KCL can be satisfied by changes in 
i1 in Equation 18.44. It follows that v1(0+)  =  2  V, 
and i2(0+) = 2 mA. At t = 0+, the capacitor can be 
replaced by a 2 V battery and the inductor by a 
2 mA dc current source. If the current in the 1 kΩ 
resistor is denoted as v2/1 mA (Figure 18.30), then 
i1 = v2/1 + 2 mA, and KVL around the mesh on the 
LHS at t = 0+ is 9 = 2(v2/1 + 2) + 2 + v2, which gives 
v2(0+) = 1 V and i1(0+) = 3 mA. The currents and 
voltages at t = 0+ will be as shown in Figure 18.30.

 (b) In the interval 0− < t < 0+, the capacitor acts as a 
short circuit and the inductor as an open circuit 
(Figure 18.31a). The 6δ(t) mV voltage impulse pro-
duces a 2δ(t) μA current impulse, which in turn 
produces a voltage impulse of 2δ(t) mV across the 
inductor. The 2δ(t) μA current impulse deposits a 
charge of 2 μC on the capacitor, which adds to the 
initial charge of 2 μC, so that the charge at t = 0+ is 
4 μC and v1(0+) = 4 V (Figure 18.31b). The voltage 
impulse establishes a flux linkage of 2 mWb-T in 
the inductor, which adds to the initial 4 mWb-T, 
so that the flux linkage at t = 0+ is 6 mWb-T and 
i2(0+) = 3 mA. i1(0+) = 3 + v2/1 mA, and KVL in the 

mesh on the LHS is 2(3 + v2/1) + 4 + v2 = 0. This 
gives v2(0+) = −10/3 V and i1(0+) = −1/3 mA, as in 
Figure 18.31b.

Simulation: The circuit for simulation of the voltage 
step is shown in Figure 18.32a. Applying time domain 
analysis, cursor readings give i1(0+)  =  3.0000  mA, 
i2(0+) = 2.000 mA, v1(0+) = 2.0000 V, and v2(0+) = 1.0000 V.

The impulse is simulated by VPULSE having the 
parameters entered as shown in Figure 18.32b. The ini-
tial values can be read using the cursor by selecting a 
user-defined time axis starting at 0.101  μs, after the 
impulse is over. The readings are i1(0+) = −333.268u, 
i2(0+) = 2.9995 m, v1(0+) = 3.9993, and v2(0+) = −3.3328.

Example 18.5: Responses of RLC Circuit 
to Current Step and Impulse

Consider the circuit of Figure 18.33, with an initial volt-
age of 2  V on the capacitor and an initial current of 
2 mA in the inductor, determine (a) i1(0+), i2(0+), v1(0+), 
and v2(0+), assuming iSRC(t) = 6u(t) mA, and verify that 
KVL and KCL are satisfied. (b) Repeat (a) assuming 
iSRC(t) = 6δ(t) μA.

Solution:

 (a) KCL is

 i i v iSRC = + +1 1 22/  (18.45)

  and KVL around the mesh on the RHS is

 v i v1 2 21= ´ +  (18.46)

+

–
9 V 2 mA

2 V

3 mA
1 mA

2 mA–+

–

+

1 V
t = 0+

2 k

1 k

FIGURE 18.30
Figure for Example 18.4.

10/3 V

4 V

10/3
mA

3 mA

(b)

–+

+

–1/3 mA

2 k

1 k

t = 0+

(a)

+

–
0– < t < 0+

+

–

2 k

1 k6  (t)
mV

2  (t)
mV

2  (t)
µA

FIGURE 18.31
Figure for Example 18.4.

–

+

1 H
–

+
iSRC 2 k 2 µF

1 k

i2i1

v2v1

FIGURE 18.33
Figure for Example 18.5.

9Vdc

2k

1k

1u

IC = 2

1 2

2H IC = 2

0

V–V+
+

–

TD = 0

TF = 1p
PW = 0.1u
PER = 1

V1 = 0

TR = 1p

V2 = 60k
+

–

(a) (b)

I

FIGURE 18.32
Figure for Example 18.4.



Responses to Step and Impulse Inputs 567

Neither i1 nor v2 are forced to change at t  =  0+ 
in order to satisfy KVL or KCL, because KCL 
and KVL can be satisfied by changes in v1 or i2. 
It follows that i1(0+) = 2 mA, and v2(0+) = 2 V. At 
t = 0+, the inductor can be replaced by a 2 mA cur-
rent source and the capacitor by a 2 V battery, as 
shown in Figure  18.34a. v1(0+) and i2(0+) can be 
determined by first combining the two current 
sources into a single 4 mA current source directed 
upwards, and then transforming this source, in 
combination with the 2 kΩ resistor in parallel with 
it, to an equivalent voltage source of 8 V in series 
with a 2 kΩ resistor (Figure  18.34b). From KVL, 
8 = 3i2(0+) + 2, which gives i2(0+) = 2 mA. It follows 
that v1(0+) = 2 + 2 × 1 = 4 V.

 (b) In the interval 0− < t  <  0+, the capacitor acts as 
a short circuit and the inductor as an open cir-
cuit (Figure 18.35a). The resistance of the two 
resistors in parallel is 2/3 kΩ. The 6δ(t) μA cur-
rent impulse produces a 6  ×  2/3δ(t)  =  4δ(t) mV 
voltage impulse, which in turn produces a cur-
rent impulse of 4/1δ(t)  =  4δ(t) μA through the 

capacitor. The 4δ(t) μA current impulse deposits a 
charge of 4 μC on the capacitor, which adds to the 
initial charge of 4 μC, so that the charge at t = 0+ is 
8 μC and v2(0+) = 4 V (Figure 18.35b). The voltage 
impulse establishes a flux linkage of 4 mWb-T in 
the inductor, which adds to the initial 2 mWb-T, 
so that the flux linkage at t = 0+ is 6 mWb-T and 
i2(0+) = 6 mA. KCL in terms of v1(0+) is i1(0+) = 6 = 
−v1(0+)/2 – [v1(0+) – 4]/1, which gives v1(0+) = 
−4/3 V and i2(0+) = −16/3 mA, as in Figure 18.35b.

Simulation: The circuit for simulation of the voltage 
step is shown in Figure 18.36a. Applying time domain 
analysis, cursor readings give i1(0+)  =  2.0000  mA, 
i2(0+) = 2.000 mA, v1(0+) = 4.0000 V, and v2(0+) = 2.0000 V.

The impulse is simulated by IPULSE with the parame-
ters entered as shown in Figure 18.36b. The initial values 
can be read using the cursor by selecting a user-defined 
time axis starting at 0.101 μs, after the impulse is over. 
The readings are i1(0+)  =  5.9987  m, i2(0+) = −5.3322  m, 
v1(0+) = −1.3330, and v2(0+) = 3.9992.
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Primal Exercise 18.13

Determine iL(0+), iC(0+), vL(0+), and vC(0+) in Figure 
18.37, assuming iL(0−)  =  1  mA and vC(0−)  =  3  V, if (a) 
iSRC(t) = 1.5u(t) mA; (b) iSRC(t) = δ(t) μA.
Ans. (a) iL(0+)  =  1  mA, iC(0+)  =  0.5  mA; vL(0+)  =  4  V, 
vC(0+)  =  3  V; (b) iL(0+)  =  1.5  mA, iC(0+)  =  −1.5  mA; 
vL(0+) = 1 V, vC(0+) = 4 V.

Primal Exercise 18.14

Determine R in Figure 18.38 so that the response vO(t) to 
vSRC(t) = δ(t) is critically damped.
Ans. 1 Ω.

Primal Exercise 18.15

Determine vR(t), vO(t), iC(t), and iL(t), in Figure 18.39.
Ans. vR(t) = δ(t) V, vO(t) = 1000cos103tu(t) V, iC(t) = δ(t) – 
1000sin103tu(t) A, IL(t) = 1000sin103tu(t) A.

Learning Checklist: What Should 
Be Learned from This Chapter

• The impulse function has infinite magnitude, 
infinitesimal duration, and a finite area, desig-
nated as the strength of the impulse.

 1. A unit impulse at the origin is defined as 

d t dt( ) =
-¥

+¥

ò 1, with
 
d t t( ) = ¹0 0for .

 2. The impulse at the origin occurs between 
t = 0− and t = 0+. At t = 0−, the impulse has 
not yet started (δ(t) = 0), and the impulse is 
over at t = 0+.

• δ(t) is related to u(t), the unit step at the origin, 

by
 

d t dt u t
t

( ) = ( )
-¥ò , for all t, or by δ(t) = du(t)/dt.

 1. The unit step function is dimensionless, 
whereas the unit impulse function has the 
units of t−1.

• The voltage across a capacitor cannot be changed 
instantaneously except by a current impulse, 
which deposits on the capacitor a charge equal 
to the strength of the impulse.

• The current through an inductor cannot be 
changed instantaneously except by a volt-
age impulse, which establishes in the induc-
tor a flux linkage equal to the strength of the 
impulse.

• The voltage across a capacitor does not change 
instantaneously unless it is forced to change in 
order to satisfy KVL. On the other hand, the 
capacitor current can change instantaneously in 
order to satisfy KVL and KCL.

• The current through an inductor does not 
change instantaneously unless it is forced to 
change in order to satisfy KCL. On the other 
hand, the inductor voltage can change instanta-
neously in order to satisfy KVL and KCL.

• When a voltage or current step is applied to 
an RC circuit, an uncharged capacitor acts as 
a short circuit at the time the step is applied. 
Since the voltage of an uncharged capacitor is 
zero before the step is applied, it will remain 
zero at just after the step, because the stored 
energy does not change instantaneously. As for 
a short circuit, the capacitor voltage is zero but 
the capacitor current can have any finite value.

 1. If in the preceding case the capacitor is ini-
tially charged, the capacitor voltage does 
not change just after the step, because the 
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stored energy does not change instanta-
neously if no current impulse flows through 
the capacitor. Superposition can be applied 
to determine the currents and voltages in 
the rest of the circuit, but it is generally eas-
ier to determine these values by replacing 
the charged capacitors by batteries of equal 
voltage, in accordance with the substitution 
theorem.

• When a voltage or current step is applied to 
an RL circuit, an uncharged inductor acts as an 
open circuit at the time the step is applied. Since 
the current of an uncharged inductor is zero 
before the step is applied, it will remain zero 
just after the step. As for an open circuit, the 
inductor current is zero but the inductor volt-
age can have any finite value.

 1. If in the preceding case the inductor is ini-
tially charged, the inductor current does not 
change just after the step, because the stored 
energy does not change instantaneously 
if no voltage impulse is applied across the 
inductor. Superposition can be applied to 
determine the currents and voltages in the 
rest of the circuit, but it is generally easier 
to determine these values by replacing the 
charged inductors by dc sources of equal 
current, in accordance with the substitution 
theorem.

• When a voltage or current impulse is applied 
to an RC circuit, an uncharged capacitor ini-
tially acts as a short circuit in response to the 
impulse, which determines the path followed 
by the current impulse, or where in the cir-
cuit the   voltage impulse appears. Just after 
the impulse, the capacitor voltage is not zero, 
as in a short  circuit, but is equal to the charge 
deposited by the  current impulse divided by 
the capacitance,

 1. If in the preceding case the capacitor is 
initially charged, superposition can be 
applied. The capacitor is first considered 
uncharged, and the preceding concepts 
applied. The charge or voltage due to ini-
tially stored energy is then added algebra-
ically to the charge or voltage due to the 
impulse.

• When a voltage or current impulse is applied 
to an RL circuit, an uncharged inductor ini-
tially acts as an open circuit in response to the 
impulse, which determines where in the cir-
cuit the voltage impulse appears, or the path 
followed by the current impulse. Just after the 

impulse, the current through the inductor is 
not zero but is equal to the flux linkage estab-
lished by the voltage impulse divided by the 
inductance.

 1. If in the preceding case the inductor is 
initially charged, superposition can be 
applied. The inductor is first considered 
uncharged, and the preceding concepts 
applied. The flux linkage or current due to 
initially stored energy is then added alge-
braically to the flux linkage or current due 
to the impulse.

• In an RLC circuit, and in response to step or 
impulse inputs, capacitors and inductors act as 
in RC and RL circuits, respectively.

• Current and voltage values at t = 0+ are the ini-
tial values for determining current and voltage 
as functions of time.

Problem-Solving Tips

 1. Always check if at t = 0+, capacitor voltages or 
inductor currents are forced to change in order 
to satisfy KVL and KCL.

 2. In the case of impulse inputs, ascertain the pas-
sage of impulses in the circuit, with capacitors 
acting as short circuits and inductors as open 
circuits.

Problems

Verify solutions by PSpice simulation.

Impulse Function

P18.1 The voltage drop across a device is u t( )V and the 
current through it, in the direction of voltage drop, 
is d t( )A. Determine the total energy delivered to the 
device.

 Ans. 1/2 J.

P18.2 The voltage drop across a device is d t -( )2 V and the 
current through it, in the direction of voltage drop, is 
5t A. Determine the instantaneous power and energy 
delivered to the device.

 Ans. 10δ(t – 2) W, 10 J.

P18.3 The voltage drop across a device is d t -( )1 V and the 
current through it, in the direction of voltage drop, is 
10 1 0 5-( )e t. .A  Determine the instantaneous power and 
energy delivered to the device.

 Ans. 10 1 10 5-( ) -( )e t. d W, −6.49 J.
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P18.4 Evaluate the following integrals involving impulse 
functions:

 (a) 10 2 0 75e t t dtt sin .p d -( )
-¥

¥

ò ;

 
(b)

 
4 2 1 2 22d p d dt t t t t dt( ) + -( ) + -( )éë ùû-¥

¥

ò cos .

 
(c)

 

j
j

d
wd w

w
w

( )
+-¥

¥

ò 3

 Ans. (a) −21.17; (b) 13; (c) 0.

P18.5 Show that d at dt
a

( ) =
-¥

¥

ò 1
. (Hint: Change the time 

variable to t′  =  at. Note that Equation 18.2 applies 
only when t in the argument of the impulse function is 
 multiplied by unity).

P18.6 Evaluate

 
(a)

  
24 1 12 4d p-( )

-¥

¥

ò t tdtcos . (Hint: Apply the proce-

dure of P18.5).

 (b) cost t dt( ) -æ
è
ç

ö
ø
÷

-¥

¥

ò d p
2

2

 Ans. (a) 1; (b) 1 2 2/ .

P18.7 Using integration by parts, show that

 
(a)  f t t a dt f a( ) -( ) = - ( )( ) ( )

-¥

¥

ò d 1 1 , where the (1) super-

script denotes the first derivative.

P18.8 Show that Equations 18.7 and 18.8 are invariant with 
respect to the unit of time.

First-Order Capacitive Circuits

P18.9 Determine iS and vL at t  =  0+ in Figure P18.9, given 
vSRC(t)  =  0.1δ(t) V and assuming that the capacitor is 
initially uncharged.

 Ans. vL(0+) = 2 V, iS(0+) = −40 A.

P18.10 Determine iS, v1, and v2 at t = 0+ in Figure P18.10, given 
vSRC(t) = 10δ(t) V and assuming that the capacitors (a) 
are initially uncharged and (b) have initial voltages 
V10 = V20 = 2 V.

 Ans. (a) v1(0+) = 5/3 V, v2(0+) = 10/3 V, iS(0+) = −5 mA; 
(b) 11/3 V, 16/3 V, iS(0+) = −9 mA.

P18.11 Determine C in Figure P18.11, given that vO(0+) = 0.5 V 
in response to vSRC(t) = δ(t) V.

 Ans. 0.2 F.

P18.12 Determine iC at t = 0+ in Figure P18.12, given iSRC(t) = δ(t) 
A and assuming that the capacitor is initially uncharged.

 Ans. −10 A.

P18.13 Determine iC at t = 0+ in Figure P18.13, given iSRC(t) = 
10δ(t) A and assuming that the capacitor is  initially 
uncharged.

 Ans. −2 A.

P18.14 Determine v1 and v2 for t = 0+ in Figure P18.14, given 
iSRC(t) = 4δ(t) A and assuming initial voltages v1 = 1 V 
and v2 = 1 V.

 Ans. v1 = 5/3 V, v2 = 4/3 V.

P18.15 Determine vO(t) in Figure P18.15 under the f ollowing 
conditions: (a) vSRC(t) = δ(t) V, with the capacitor  initially 
uncharged; (b) vSRC(t)  =  u(t) V, with the  capacitor 
initially  uncharged (determine the response both 
directly and from the impulse response); (c) vSRC(t) is 
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a pulse of 1 V amplitude and of duration from t = 0 to 
t  =  1  s, with  the capacitor initially uncharged; and 
(d) vSRC(t) = 15u(t), with the capacitor initially charged 
to 1 V.

 Ans. (a) 1 12 0 25/ .( ) -e t V; (b) 1 3 1 0 25/ .( ) -( )-e t V; 

(c)  1 3 0 25 1 0 25/ . .( ) -( )- -( ) -e et t V; (d) 5 4 5 0 25- -. . t, t is in s.

P18.16 Determine in Figure P18.16: (a) vO at t = 0+; (b) iC(t) for 
t ≥ 0+, assuming zero initial energy storage.

 
Ans. (a) 1 V; (b)

 
-

-e t/8

8
mA, t ≥ 0+, t is in s.

P18.17 Determine vC(0+) in Figure P18.17, assuming the capac-
itor is initially uncharged.

 Ans. 20 V.

P18.18 Determine vO(t) in Figure P18.18.

 Ans. −δ(t) V.

P18.19 Determine vO(t) in Figure P18.19, assuming an initial 
voltage of 2 V on C1 and an initial voltage V20 = 2 V 
on C2.

 Ans. v t eO
t( ) = -2 4/ V, t is in ms.

P18.20 The switch is closed in Figure P18.20 at t = 0, with the 
capacitor initially uncharged. Derive the expression 
for iS(t), t ≥ 0−.

 Ans. CVSRC(1 – α)δ(t) + VSRCu(t)/R.

P18.21 Determine dvC/dt at t = 0+ in Figure P18.21, assuming 
no initial energy storage.

 Ans. 2 V/s.
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First-Order Inductive Circuits

P18.22 Determine vS and iL at t  =  0+ in Figure P18.22, given 
iSRC(t) = 0.1δ(t) A and assuming the inductor is initially 
uncharged.

 Ans. iL(0+) = 2 A, vS(0+) = −40 V.

P18.23 Determine vS, i1, and i2 at t = 0+ in Figure P18.23, given 
iSRC(t)  =  δ(t) μA and assuming that the inductors (a) 
are initially uncharged and (b) have initial currents 
I10 = I20 = 2 mA.

 Ans. (a) i1(0+) = 5/3 mA, i2(0+) = 10/3 mA, vS(0+) = −50 V; 
(b) 11/3 mA, 16/3 mA, vS(0+) = −90 V.

P18.24 Determine iL1(t), iL2(t), and iS(t), t ≥ 0+, in Figure P18.24 
assuming the inductors are initially uncharged.

 Ans. i t eL
t

1 2( ) = - A, iL2(t) = 2 A, and i t eS
t( ) = - + -2 1( ) A, 

t is in μs.

P18.25 Determine vL at t = 0+ in Figure P18.25, given vSRC(t) = 
10δ(t) V and assuming that the inductor is initially 
uncharged.

 Ans. −2 V.

P18.26 Determine i1 and i2 for t = 0+ in Figure P18.26 assuming 
initial currents; i1 = 1 A and i2 = 1 A.

 Ans. i1 = 5/3 A, i2 = 4/3 A.

P18.27 Determine iSRC(t) in Figure P18.27 given that vO is an 
impulse at the origin of strength 1 mVs, and assuming 
the inductors are initially uncharged.

 Ans. 2u(t) A.

P18.28 The initial currents in L1 and L4 are shown in Figure 
P18.28, those in L2 and L3 are not shown. Determine 
i3(0+),

 Ans. 3 A.

P18.29 Determine iO(t) in Figure P18.29 assuming the inductor 
current to be initially to 6 mA.

 Ans. 5 2 2- -e t A, t is in μs.
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P18.30 Determine in Figure P18.30: (a) iO at t = 0+; (b) vO(t) for 
t ≥ 0+, assuming no initial energy storage.

 
Ans. (a) 1 mA; (b) - ³

-
+e

t t
t/

, ,
8

8
0V is in sm .

P18.31 The switch is opened in Figure P18.31 at t = 0, with no 
initial energy in the inductor. Derive the expression for 
vS(t), t ≥ 0−.

 Ans. RISRCu(t) + LISRC(1 – α)δ(t).

P18.32 Determine vO(t) in Figure P18.32 assuming no initial 
energy storage.

 Ans. v t e u t t sO
t( ) = -4 2/ ( ) .V, is in 

Second-Order RLC Circuits

P18.33 Determine iL and vC at t  =  0+ in Figure P18.33, given 
iSRC(t)  =  20δ(t) μA, and assuming the inductor and 
capacitor are initially uncharged.

 Ans. vC(0+) = 10 V, iL(0+) = 0.

P18.34 Determine iL and vC at t  =  0+ in Figure P18.34, given 
vSRC(t)  =  20δ(t) μV, and assuming the inductor and 
capacitor are initially uncharged.

 Ans. vC(0+) = 0, iL(0+) = 10 A.

P18.35 Determine iL and vC at t  =  0+ in Figure P18.35, given 
iSRC(t)  =  20δ(t) μA, and assuming the inductor and 
capacitor are initially uncharged.

 Ans. vC(0+) = 10 V, iL(0+) = 40 mA.

P18.36 Determine iL and vC at t  =  0+ in Figure P18.36, given 
vSRC(t)  =  10δ(t) μV, and assuming the inductor and 
capacitor are initially uncharged.

 Ans. vC(0+) = −10 V, iL(0+) = 10 mA.

P18.37 Determine vS at t  =  0+ in Figure P18.37, given 
iSRC(t) = 20δ(t) A, and assuming the inductor and capac-
itor are initially uncharged.

 Ans. vS(0+) = 20 V.
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P18.38 Determine diL/dt at t  =  0+ in Figure P18.38, given 
iSRC(t) = 5u(t) A, assuming the inductor and capacitor 
are initially uncharged.

 Ans. 2 A/s.

P18.39 Determine iL and vC at t  =  0+ in Figure P18.39, given 
iSRC(t) = δ(t) mA, and assuming the inductor and capac-
itor are initially uncharged.

 Ans. iL(0+) = 2 A, vC(0+) = 0 V.

P18.40 Determine iL, iC, iR, and v at t  =  0+ in Figure P18.40, 
given iSRC(t) = 0.1u(t) A, and assuming the inductor and 
capacitor are initially uncharged.

 Ans. v(0+) = 0, iL(0+) = 0, iC(0+) = 0.1 A, iR(0+) = 0.

P18.41 Determine iC(0+) in Figure P18.41, assuming no initial 
current in the inductor and an initial V0 = 1 V.

 Ans. 1 A.

P18.42 Determine iR(t), t  ≥  0+ in Figure P18.42, assuming at 
t = 0− an initial voltage of 5 V across the capacitor and 
an initial circulating current of 2 A.

 Ans. 3 2e tt- A, is in s.

P18.43 Determine vL, vC, i, and vx at t = 0+ in Figure P18.43, 
given vSRC(t) = 0.1u(t) V, and assuming ρ = 8 mA/V, 
and the inductor and capacitor are initially 
uncharged.

 Ans. i(0+) = 0, vx(0+) = 0, vC(0+) = 0, vL(0+) = 0.1 V.

P18.44 Determine vO, vL, iL, and vx at t = 0+ in Figure P18.44, 
given iSRC(t)  =  10u(t) A, and assuming the capacitor 
is  initially uncharged and the inductor has an initial 
current of 0.1 A.

 Ans. vx(0+) = 0, vO(0+) = 0, iL(0+) = 0.1 A, vL(0+) = −0.1 V.

P18.45 Repeat Problem P13.44 assuming the inductor is ini-
tially uncharged and the voltage across the capacitor is 
initially vX = 2 V.

 Ans. vx(0+) = 2 V, vO(0+) = 1 V, iL = 0, vL(0+) = 1 V.

P18.46 The initial voltage on the capacitor in Figure P18.46 
is V10 = 6 V, and the initial current in the inductor is 
I20 = 2 A. Determine i1(0+), i2(0+), v1(0+), and v2(0+).

 Ans. i1(0+) = −1 A, i2(0+) = 4 A, v1(0+) = 10 V, v2(0+) = −5 V.
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P18.47 Determine vO(0+) in Figure P18.47, assuming no initial 
energy storage.

 Ans. 25 V.

P18.48 Determine iL(0+) and vC(0+) in Figure P18.48, assuming 
no initial energy storage.

 Ans. iL(0+) = 2 A; vC(0+) = 2 V.

Probing Further

P18.49 (a) Show that u t t dt( ) ( ) =
-¥

¥

ò d 1
2

, using integration 

by parts. Note that this implies that u(t)  =  1/2 at 
t  =  0, for if this value is taken outside the integral, 
1
2

1
20

0

d t dt( ) =
-

+

ò , which is correct. (b) Consider that a 

function f(t) has a step discontinuity K at t = a, where a 
is a constant. Express f(t) as f′(t) + Ku(t – a), where f′(t) 
is continuous at t = a. Using the integral in (a), show 

that f t t a f a f a t a( ) ( ) = ( ) + ( )é
ë

ù
û ( )- +d d– – .

1
2  Note that 

according to the definition of Equation 18.8, u t( )
-¥

¥

ò   
d t dt( ) = 1, so that if a function f(t) has a step discon-
tinuity K at t = a, the value sampled by an impulse at 
t = a, is f(t)δ(t – a) = f(a+)δ(t – a), irrespective of K, which 
does not make sense.
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Objective and Overview

Chapter 18 was concerned with circuit responses to 
the basic step and impulse inputs. The present chapter 
extends the analysis to responses resulting from switch-
ing operations in circuits having initial energy storage in 
capacitors and inductors, which involve instantaneous 
redistribution of charge in capacitors and flux linkage in 
inductors. These instantaneous redistributions are nec-
essarily effected by current or voltage impulses. The dis-
cussion illustrates some important and useful concepts.

The chapter begins with the series and parallel con-
nections of capacitors having initial charges and then 
considers the dual case of series and parallel connec-
tions of inductors having initial currents. It is shown 
that the analysis of several types of circuits is greatly 
facilitated by applying the concept of equivalent capac-
itance and inductance. As to be expected from the 
linearity of the circuits under consideration, superposi-
tion can be applied to obtain the total charges of capac-
itors, and the total flux linkages of inductors, due to 
applied excitation in the presence of initial energy stor-
age. The discussion illustrates how charge is conserved 
in capacitive circuits and how flux linkage is conserved 
in inductive circuits. The effect of adding resistance is 
examined and it is demonstrated that energy can be 
trapped in a circuit even in the presence of resistors.

19.1  Series and Parallel Connections 
of Capacitors with Initial Charges

When capacitors having initial stored energy are con-
nected in series or in parallel, with or without addi-
tional external input, superposition applies because the 
circuit is LTI. In order to determine the redistribution of 
capacitor charges or voltages, it is usually convenient to 
apply the concept of equivalent series or parallel capac-
itance, discussed in Section 7.3. It may be wondered, 
however, if the values of these equivalent capacitors 
under conditions of no initial charges apply in the pres-
ence of initial charges. The answer is embodied in the 
following concept:

Concept: When capacitors in series or in parallel have ini-
tial charges, the equivalent series or parallel capacitance is the 
same as in the absence of initial charges.

This conclusion follows quite simply from the fact 
that the capacitance of an ideal capacitor is a positive 
constant (Equation 7.1) that is determined by the geom-
etry of the system and the dielectric properties of the 
medium in which the electric field exists, as exempli-
fied by Equation 7.3. The capacitance is independent of 
capacitor charge or voltage. If the capacitance depends 
on the charge, then the system is not linear any more. 
It follows that Ceqs and Ceqp are given by Equations 7.40 
and 7.49, respectively, in the presence of initial charges 
on the capacitances.

19.1.1  Capacitors in Parallel

To investigate the behavior of capacitors in parallel, 
consider the case of a 2 μF capacitor C1 having an initial 
charge q1(0) = 16 μC connected at t = 0 to a 6 μF capacitor 
C2 having an initial charge q2(0) = 24 μC (Figure 19.1a). 
The initial voltages of C1 and C2 are 16/2  =  8  V and 
24/6 = 4 V, respectively.

When connected together, the voltages across C1 and C2 
are forced to change instantaneously to become equal, in 
accordance with KVL. Since the change is instantaneous, 
it can only be accomplished by a current impulse that 
transfers charge from the capacitor of larger initial volt-
age (C1 having a voltage of 8 V) to the capacitor of lower 
initial voltage (C2 having a voltage of 4 V). This reduces 
the voltage of C1 and increases the voltage of C2 so as to 
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equalize the voltage across the two capacitors. Evidently, 
the final voltage will be intermediate between the ini-
tial voltages of the two capacitors. The current impulse 
is shown as Δqδt in Figure 19.1b flowing from C1 to C2 
between t = 0− and t = 0+. Note that charge flows in the 
direction of a voltage drop, from the capacitor having the 
higher initial voltage to the capacitor having the lower 
initial voltage although C1 is of smaller capacitance than 
C2 and has the smaller charge.

The total initial charge of 40 μC becomes distributed 
over the two capacitors in parallel, having a combined 
capacitance of 8 μF. The final voltage will therefore be 
40/8 = 5 V. The final charges on C1 and C2 are 10 μC and 
30 μC, respectively (Figure 19.1c). C1 has lost 6 μC and 
C2 has gained 6 μC. The strength of the impulse is the 
charge transferred, so that Δq = 6 μC. Since the charge 
lost by C1 is the charge gained by C2, charge is conserved 
between the two capacitors. This must be the case, 
because charge is confined to the capacitor plates that 
are connected together and cannot flow anywhere else.

The preceding argument can be formalized by using 
the concept of the equivalent parallel capacitor, Ceqp, 
whose value is (2 + 6) = 8 μF. Recall from Chapter 3 that 
equivalence of two circuits between a given pair of ter-
minals means that the two circuits have the same volt-
age–current relation between these terminals. It can be 
argued that the voltage across Ceqp is the same as that 
of the parallel combination of C1 and C2. If we consider 
the initial charges on C1 and C2 in Figure 19.1c as result-
ing from some currents i1(t) and i2(t), respectively, then 
the total current of C1 and C2 in parallel (Figure 19.1c) is 
i1(t) + i2(t). By equivalence, the charge on Ceqp must result 
from a current i1(t) + i2(t). Since q1 is the time integral of 
i1(t) and q2 is the time integral of i2(t), then the charge on 
Ceqp is the sum of the two integrals, that is, the sum of q1 
and q2, which is 40 μC (Figure 19.1d). The voltage of Ceqp is 
therefore 40/8 = 5 V, which, by equivalence, must also be 
the voltage across the parallel combination of C1 and C2.

It is of interest to compare the initial and final energies 
stored in the two capacitors. The initial stored energy is

 
w0
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16 8
1
2

24 4 112= ( )´( ) + ( )´( ) =m m mC V C V J
 

(19.1)

and the final energy is

 
wf = ( )´( ) =1

2
40 5 100m mC V J

 
(19.2)

As a result of redistribution of charge, 12 μJ are lost. 
That the final energy is less than the initial energy does 
not violate conservation of energy. Mathematically, this 
discrepancy is manifested as the integral of p = Ri2 over 
the duration of the impulse, where R is the ideally zero 
resistance of the connection between the two capacitors 
and i2 is the square of an impulse. The product Ri2 is 

indeterminate, but not zero. Physically, energy is dis-
sipated in some residual resistance of the connection, 
which is inevitably present, and in electromagnetic 
radiation due to charge acceleration. If the capacitors 
are connected by a resistor, it can be readily shown that 
the power dissipated in the resistor accounts for the dif-
ference in the initial and final energies of the capacitors.

It may be concluded, therefore, that when two or more 
capacitors having initial energy storage are paralleled 
together, charge is redistributed among the capacitors by 
current impulses so as to equalize the voltage across them. 
If a current pulse is applied to the parallel combination, 
charge is added to each capacitor, while keeping a common 
voltage across them. The distribution of charge among the 
capacitors is conveniently determined using the equivalent 
parallel capacitor, as illustrated in the following example.

Example 19.1: Paralleling of 
Initially Charged Capacitors

Given three capacitors C1  =  2  μF having a charge of 
24 μC, C2 = 4 μF having a charge 24 μC, and C3 = 6 μF 
having a charge of 12  μC, it is required to determine 
(a) the voltage across the capacitors when connected in 
parallel and (b) the voltage and charge on each capaci-
tor after the application of a 9 mA, 4 ms, pulse to the 
paralleled capacitors.

Solution:

 (a) The initial charge and voltage on each capacitor are 
shown in Figure 19.2a. When connected in parallel, 
Ceqp = 12  μF (Figure 19.2b). From conservation of 
charge, the charge on Ceqp is the sum of the charges 
on the individual capacitors, which is 60 μC. The 
voltage of Ceqp is 60/12  =  5  V. From equivalence, 
this must be the voltage across the parallel com-
bination. It follows that the charges on C1, C2, and 
C3 are, respectively, 2 × 5 = 10 μC, 4 × 5 = 20 μC, 
and 6 × 5 = 30 μC (Figure 19.2c). The total charge is 
60 μC, as it should be.

 (b) The 9 mA pulse of 4 ms duration delivers a charge 
of 9 × 4 = 36 μC. Applied to Ceqp, the total charge 
is now 96  μC, and the voltage is 96/12  =  8  V 
(Figure 19.3a). From equivalence, the voltage across 
the parallel combination is also 8 V, which means 
that the charges on C1, C2, and C3 are, respectively, 
2 × 8 = 16 μC, 4 × 8 = 32 μC, and 6 × 8 = 48 μC (Figure 
19.3b). The total charge is 96 μC, as it should be.

Simulation: The circuit for part (a) is entered as in 
Figure  19.4a. PSpice requires that every node should 
have a path of finite or zero resistance to ground, which 
means that nodes isolated from ground by ideal capaci-
tors or current sources are not allowed and will give a 
“floating” node error. In circuit terminology, floating 
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denotes isolation from ground. A 100 MΩ resistor con-
nected between the upper node and ground in Figure 
19.4 avoids the “floating” of the upper node and is suf-
ficiently large so as not to significantly affect the results. 
The initial voltages on the capacitors are entered as 
explained previously. Two normally open switches 
have been added as the Sw_tClose part from the EVAL 
library. The desired closure time of the switch is set at 
1  ms in the Property Editor spreadsheet of the switch 
so as to show both the initial and final voltages of the 
capacitors. Voltage markers have been added to indi-
cate voltages. In the simulation profile, Time domain 
(Transient) analysis is chosen, 2 ms entered for ‘Run to 
time’, 0 entered for ‘Start saving data after’, and 0.5 μs 
entered for ‘Maximum step size’. After the simulation is 
run, the graph in Figure 19.5 is displayed showing the 
initial voltages of 2, 6, and 12 V, and the final voltage of 
5 V, as determined previously.

The circuit for part (b) is entered as illustrated in Figure 
19.4b. The current source is IPULSE from the SOURCE 
library. The parameters of the source are more fully 
explained in Appendix C. I1 is the initial current level, 
which is zero; I2 is the higher level of current, which is the 
9 mA magnitude; and TD is the time delay, after t = 0, when 
the pulse is applied. This is set to 1 ms in the simulation so 
as to display the initial conditions, TR is the rise time of the 
pulse; TF is its fall time; PW is the pulse width, which is 
4 ms; and PER is the period of the pulse. Since only a single 
pulse is required, the period is set larger than the duration 
of the simulation. TR and TF are set at 1 ns, which is small 
compared to the pulse width of 4 ms, so that the pulse is 
“square” rather than trapezoidal. In the simulation profile, 
Time domain (Transient) analysis is chosen, 6m entered for 
‘Run to time’, 0 entered for ‘Start saving data after’, and 
0.5u entered for ‘Maximum step size’. After the simulation 
is run, the graph of Figure 19.6 is displayed. The voltage 
increases  linearly during the pulse from 5 to 8 V.
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Primal Exercise 19.1

Assume that in Figure 19.1a C1 is initially charged to 2 V 
and C2 is uncharged. Determine the common voltage 
after the switch is closed.
Ans. 0.5 V.

Primal Exercise 19.2

Repeat Example 19.1 assuming a charge of 12 μC on C1, 
12 μC on C2, and 24 μC on C3.
Ans. (a) 4 V; (b) 7 V, q1 = 14 μC, q2 = 28 μC, q3 = 42 μC.

19.1.2  Capacitors in Series

When considering capacitors connected in series and 
having initial stored energy, it is of interest to determine 
the voltages across the individual capacitors in the fol-
lowing cases:

 1. A current pulse is applied to the series 
combination.

 2. A steady voltage is applied to the series 
combi nation.

 3. The two terminals of the series combination are 
connected together.

These cases will be considered in the following 
three examples. It will be seen that the concept of the 
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equivalent series capacitance is very useful, particularly 
in the last two cases.

Example 19.2: Charged Capacitors in Series

A current pulse of 3  A amplitude and 4  s duration is 
applied to three capacitors in series: C1 = 6 F, C2 = 3 F, 
and C3 = 2 F (Figure 19.7a). It is required to determine 
the voltages across the capacitors (a) when the capaci-
tors are initially uncharged and (b) when C1, C2, and C3 
have initial charges of 12, 6, and, 2 C, respectively.

Solution:

 (a) Overall, the current pulse can be considered to 
deposit a charge of +12 C on the top plate of C1 
and to remove +12 C from the bottom plate of 
C3, leaving a charge of −12 C on this plate. There 
will be induced charges in the remaining plates of 
the capacitors (Figure 19.7b) so that each capaci-
tor will have a charge of 12 C on its top plate 
and −12 C on its bottom plate. There is zero net 
charge (+12 and −12 C) on the capacitor plates 
that are connected together. The voltages on the 
capacitors are v1 = 12/6 = 2 V, v2 = 12/3 = 4 V, and 
v3 = 12/2 = 6 V. The total voltage across the three 
capacitors is 12 V.

  Ceqs can be evaluated by considering two capacitors 
at a time. The series capacitance of the 6 F and 3 F 
capacitors is (6 × 3)/(6 + 3) = 2 F. The series capaci-
tance of this and the 2 F capacitor is 1 F (Figure 19.7). 
The 3  A current pulse deposits 12 C of charge at 
t = 4 s, the voltage across Ceqs being 12/1 = 12 V, the 
same as that across the series combination.

 (b) When the capacitors have arbitrarily assigned 
initial charges (Figure 19.8a), the charge on Ceqs is 
clearly not the same as the individual charge of any 
of the three capacitors, because these individual 
charges are all different. But because of equiva-
lence, the v–i relation is the same, even with i = 0, so 
that the voltage across Ceqs must be the same as the 
voltage across the series combination. The voltages 
of the individual capacitors are v10  =  12/6  =  2  V, 
v20 = 6/3 = 2 V, and v30 = 2/2 = 1 V. The total volt-
age is 5 V, which must be the voltage across Ceqs. It 
follows that the charge of Ceqs is 1 × 5 = 5 C. That is, 
the charge on Ceqs must be consistent with the value 
of this capacitor and the voltage across it. The total 
energy stored in the three capacitors is no longer 
the same as that stored in Ceqs, because the three 
capacitors are charged individually and arbitrarily.

After the current pulse is applied to the three 
capacitors, the resulting charges and voltages of the 
three capacitors can be determined from superposi-
tion, since the system is linear. This implies that the 
charge on each capacitor due to the current pulse 
simply adds to the initial charge already present on 
that capacitor. The current pulse deposits 12 C on 
Ceqs at t = 4 s, increasing the charge on this capacitor 
to 17 C and the voltage to 17/1 = 17 V. The charge 
on each of the three capacitors must increase by the 
same amount as that on Ceqs, since the same current 
is applied for the same duration. The final charges 
are q1f = 12 + 12 = 24 C, q2f = 6 + 12 = 18 C, and 
q3f = 2 + 12 = 14 C (Figure 19.7b). The voltages on the 
three capacitors are v1f = 24/6 = 4 V, v2f = 18/3 = 6 V, 
and v3f = 14/2 = 7 V, the total being 17 V, as for Ceqs.
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The charges and voltages for C1, C2, C3, and 
Ceqs are listed in Table 19.1. The “No initial stor-
age” row refers to the values found in (a) prior to 
the 4 s pulse. The row that follows lists the initial 
conditions. The last row indicates the charges and 
voltages at t = 4 s, these being the sum of the cor-
responding values in the two preceding rows.

Simulation: The circuit is entered as illustrated in Figure 
19.9. 100 MΩ resistors are added in order to avoid a float-
ing node error in the simulation, and the current source 
is entered as explained in the preceding example. The 
initial voltages on the capacitors are added as described 
previously. In the simulation profile, Time domain 
(Transient) analysis is chosen, 6 entered for ‘Run to time’, 
0 entered for ‘Start saving data after’, and 0.5 m entered 
for ‘Maximum step size’. After the simulation is run, the 
graph in Figure 19.10 is displayed showing the initial and 
final voltages at the nodes with voltage markers. The ini-
tial voltages, with respect to ground, are (i) 1 V, the voltage 
across C3; (ii) 3 V, the sum of the voltages across C2 and C3; 

and (iii) 5 V, the voltage across the three capacitors. These 
voltages increase linearly during the pulse and reach, in 
the same order, 7, 13, and 17 V, corresponding, at t = 4 s, to 
v3 = 7 V, v2 = 6 V, and v1 = 4 V, as in Figure 19.8b.
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TABLE 19.1

Capacitor Charges and Voltages

 C1 = 6 F C2 = 3 F C3 = 2 F Ceqs = 1 F

q1, C v1, V q2, C v2, V q3, C v3, V Qeqs, V Veqs, V

No initial storage 12 2 12 4 12 6 12 12
Initial conditions 12 2 6 2 2 1 5 5
Final (t = 4 s) 24 4 18 6 14 7 17 17
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Primal Exercise 19.3

A 1A  pulse of 2ms duration is passed through three 
capacitors of 0 2. , 0 8. , and 0 04. mF connected in series. 
The capacitors were initially uncharged. Determine, 
at the end of the pulse, (a) the charge of each capaci-
tor and the voltage across it and (b) the capacitance of 
the equivalent capacitor, its charge, and the voltage 
across it.
Ans. (a) 2 μC; 10, 2.5, and 50 V, respectively; (b) 0 032. mF, 
2 μC; 62.5 V.

Example 19.3: Steady Voltage Applied 
to Capacitors in Series

Let a steady voltage of 15 V be applied at t = 0 to the series-
connected capacitors in Figure 19.11, where C1  =  6  μF, 
C2 = 3 μF, and C3 = 2 μF. It is required to determine the 
charges and voltages on the capacitors at t ≥ 0+: (a) with 
zero initial energy storage and (b) with the initial volt-
ages on the capacitors as v10 = 2 V, v20 = 2 V, and v30 = 1 V.

Solution:

 (a) The capacitance of 6 μF in series with 3 μF is 2 μF, and 
the series capacitance of this and the 2 μF capacitor 

Time
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is Ceqs = 1 μF. When 15 V are applied to the series 
combination and to Ceqs, a current impulse flows that 
will instantaneously charge Ceqs to 15 V by deposit-
ing a charge of 15 μC on Ceqs (Figure 19.11a). By cir-
cuit equivalence, this same charge is applied to the 
three capacitors. Since the capacitors have zero ini-
tial energy storage, the charge on each of the three 
capacitors will be the same 15 μC (Equation 7.45). It 
follows that v1 = 15/6 = 2.5 V, v2 = 15/3 = 5 V, and 
v3 = 15/2 = 7.5 V. The total voltage is 15 V, as it should 
be. Note how the charge was determined first from 
Ceqs and deduced for the individual capacitors.

 (b) When the capacitors are initially charged, the total 
voltage is 5  V, which, by circuit equivalence, is 
also the voltage on Ceqs. The charge on Ceqs will be 
(5 V) × (1 μF) = 5 μC (Figure 19.11b). The applied 
15 V will bring the charge on Ceqs to 15 μC, which 
must be due to a flow of charge of 10 μC from the 
applied source. By circuit equivalence, this same 
charge must flow through the three series capaci-
tors, as illustrated in Figure 19.11c, increasing the 
charge on each capacitor by 10 μC. Hence, the final 
charges and voltages will be as follows:

 q1f = 2 × 6 + 10 = 22 μC and v1f = 11/3 V

 q2f = 2 × 3 + 10 = 16 μC and v2f = 16/3 V

 q3f = 1 × 2 + 10 = 12 μC and v3f = 12/2 = 6 V

It is seen that v1f + v2f + v3f = (11/3) + (16/3) + 6 = 
15 V as it should be.

Simulation: The circuit is entered as in Figure 19.12. 
100 MΩ resistors and initial voltages on the capacitors 
have been added as explained previously. A normally 
open switch is added and set to close at 1 m.

In the simulation profile, Time domain (Transient) analy-
sis is chosen, 2 m entered for ‘Run to time’, 0 entered for 

‘Start saving data after’, and 0.5 μs entered for ‘Maximum 
step size’. After the simulation is run, the graph in 
Figure 19.13 is displayed showing the initial and final volt-
ages at the nodes with voltage markers. The initial voltages, 
with respect to ground, are read using the cursor as 5.000, 
3.000, and 1.000 V corresponding to v10 = 5 – 3 = 2 V, v20 = 3 
– 1 = 2 V, and v30 = 1 V.  The final voltages, with respect 
to ground, are read using the cursor as 6,000, 11,333, 
and 15,000 V corresponding to v1f = 15 – 34/3 = 11/3 V, 
v2f = (34/3) − 6 = 16/3 V, and v3f = 6 V.

The preceding two examples illustrate the following 
concept:

Concept: When an excitation is applied to capacitors in 
series or in parallel having initial stored energy, the charge 
due to the applied excitation adds algebraically to the 
charge initially stored in each capacitor, in accordance with 
superposition.
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Primal Exercise 19.4

Repeat Example 19.3 assuming the initial charges on the 
capacitors are q10 = 18 μC, q20 = 12 μC, and q30 = 10 μC.
Ans. (a) As in Example 19.3; (b) q1f = 21 μC, q2f = 15 μC, 
q3f = 13 μC.

Example 19.4: Ring Connection of Capacitors

Consider three capacitors having initial charges and volt-
ages as shown in Figure 19.14 and connected in series with 
a switch that is closed at t = 0. It is required to determine 
the final charges and voltages on the three capacitors.

Solution:

Ceqs can be determined by considering the capaci-
tors two at time. Thus, the two 8 μF capacitors C1 and 
C2 in series give a capacitance of 4  μF. This, in series 
with the 4  μF capacitor C3, gives Ceqs  =  2  μF. The volt-
age on Ceqs is the voltage drop across the switch, which 
is Vaa′ = 2 + 10 − 4 = 8 V. It follows that the charge on Ceqs 
is (8 V) × (2 μF) = 16 μC (Figure 19.15a). When the switch 
is closed, Ceqs completely discharges, causing the flow of 
16 μC in the clockwise direction (Figure 19.15b). By cir-
cuit equivalence, 16 μC will also flow in the clockwise 
direction in the original circuit when the switch is closed 
in this circuit (Figure 19.16). As a result, C1 is completely 

discharged. The 16  μC add to the charge on the top 
plate of C2, which becomes +48 μC. The charge on the 
negatively charged plate of C3 will be −40 + 16 = −24 μC 
(Figure 19.16). The final voltages on the capacitors will be 
v1f = 0, v2f = 48/8 = 6 V, and v3f = 24/4 = 6 V. The total volt-
age around the mesh is zero, in accordance with KVL.

It is seen from Figures 19.14 and 19.16 that the charges 
at the capacitor nodes, before and after the switch is 
closed, are as follows:

‘ ’ C ‘ ’ C ‘ ’ Ca and a b c¢ -: , : , :48 24 72m m m

Charge is therefore conserved at each of the nodes. 
Evidently, this is because the charge can only be redis-
tributed between the capacitor plates connected to a 
given node and cannot flow elsewhere.

It should be noted that when the switch connected 
between terminals ‘a’ and a′ is closed, charges are redis-
tributed instantaneously through current impulses. As 
explained in the case of parallel connection of capacitors, 
energy is lost. Thus, the energy stored in Figure 19.14 is 
0.5 × 2 × 16 + 0.5 × 10 × 40 + 0.5 × 4 × 32 = 280 μJ. The energy 
stored in Figure 19.16 is 0.5 × 6 × 24 + 0.5 × 6 × 48 = 216 μJ.

Simulation: The circuit is entered as in Figure 19.17. Two 
large 100 MΩ resistances are added, in order to avoid a 
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floating node error in the simulation, as explained previ-
ously. The initial voltages on the capacitors are entered 
and a normally open switch is added and set to close at 
1 m. Capacitor voltages are indicated using a differential 
voltage marker for C1 and voltage markers for C2 and C3. 
In the simulation profile, Time domain (Transient) analy-
sis is chosen, 2 m entered for ‘Run to time’, 0 entered for 
‘Start saving data after’, 0 entered for ‘Start saving data 
after’, and 0.5u entered for ‘Maximum step size’. After 
the simulation is run, the graph in Figure 19.18 is dis-
played showing the initial and final voltages across the 
capacitors.

Problem-Solving Tip

• Equivalent series or parallel capacitors can be 
 conveniently used to facilitate the solution of prob-
lems involving capacitors.

Example 19.4 illustrates the following concept concern-
ing conservation of charge:

Concept: Charge is conserved at any node in a circuit at the 
instant of a sudden change as long as no current impulses are 
applied from an external source to the node at the instant of 
the sudden change.

Conservation of charge is in accordance with KCL.

Primal Exercise 19.5

Repeat Example 19.4 using initial values of 20, 24, and 
30 μC on C1, C2, and C3, respectively.
Ans. q1f  =  6  μC, v1f  =  3/4  V, q2f  =  38  μC, v2f  =  19/4  V, 
q3f = 16 μC, v3f = 4 V.

Primal Exercise 19.6

The switch in Figure 19.19 is closed at t = 0, with the ini-
tial voltages across the capacitors as shown. Determine 
the voltage after the switch is closed, considering the 
two capacitors to be (a) in series or (b) in parallel.
Ans. 1/3 V, the upper node being negative with respect 
to the lower node.

19.2  Series and Parallel Connections 
of Inductors with Initial Currents

The case of inductors with initial currents parallels 
closely that of capacitors discussed in the preceding sec-
tion, as to be expected from duality. Thus,

Concept: When inductors in series or in parallel have initial 
currents, the equivalent series and parallel inductances are 
the same as when there are no initial currents.

This conclusion follows from the fact that the induc-
tance of an ideal inductor is a positive constant that 
depends on the geometry of the system, on the number 
of turns of the coil, and on the magnetic properties of the 
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medium in which the magnetic field exists, as exempli-
fied in Equation 7.24. The inductance is independent of 
the current in the inductor. If the inductance depends 
on the current, then the system is not linear any more. It 
follows that Leqs and Leqp are given by Equations 7.60 and 
7.69, Chapter 3, respectively, in the presence of initial 
currents in the inductors.

The following examples are essentially the duals of 
those considered for the case of capacitors.

19.2.1  Inductors in Series

To investigate the behavior of inductors in series, sup-
pose that a 2 μH inductor L1 having a current i1(0) = 8 A is 
connected at t = 0 to a 6 μH inductor L2 having a current 
i2(0) = 4 A by simultaneously moving the two switches, 
as shown in Figure 19.20. It is required to determine 
the final current in each inductor and in the equivalent 
inductor and to compare the initial and final energies 
stored in L1 and L2.

Figure 19.20 illustrates how the initial currents may 
be established in practice prior to connecting the induc-
tors in series. The switches are of the make-before-break 
type, that is, they make contact with the final contact 
before breaking with the initial contact. This ensures that 
the inductor current is not interrupted during switch-
ing. Interrupting the inductor current during switching 
means that the inductor current becomes zero in a very 
short time interval, which implies a large di/dt. This, in 
turn, gives rise to a large Ldi/dt voltage across the switch 
contacts as they interrupt the current. The large voltage 
causes breakdown of the air dielectric between the con-
tacts, leading to an arc discharge between the contacts. 
The high current density of the arc can damage the con-
tacts due to localized burning. This kind of precaution 
is always necessary when interrupting currents through 
inductors. The resistors across the current sources ensure 
that these sources in Figure 19.20 are not left open cir-
cuited after the switches move to their new positions.

The initial flux linkages in L1 and L2 are λ1(0) = (2 μH)
(8 A) = 16 μVs and λ2(0) = (6 μH)(4 A) = 24 μVs, respectively 
(Figure 19.21a). When connected together, the currents 

through L1 and L2 are forced to change instantaneously to 
become equal, in accordance with KCL. Since the change 
is instantaneous, it can only be accomplished by a volt-
age impulse that reduces the flux linkage of the induc-
tor having the larger initial current (L1 of current 8  A) 
and increases the flux linkage of the inductor having the 
smaller initial current (L2 of current 4 A), so as to equalize 
the current through the two inductors. Evidently, the final 
current will be intermediate between the initial currents of 
the two inductors. The voltage impulse, shown as Δλδt in 
Figure 19.21b between t = 0− and t = 0+, is of the polar-
ity indicated. It adds Δλ to the flux linkage of the induc-
tor having the larger inductance and flux linkage, but 
smaller current, and subtracts Δλ from the flux linkage 
of the inductor having the smaller inductance and flux 
linkage, but larger current. The total flux linkage remains 
the same.

The total initial flux linkage of 40 μVs becomes dis-
tributed over the two inductors in series, having a 
combined inductance of 8  μH. The final current will 
therefore be 40/8 = 5 A. The final flux linkages of L1 and 
L2 are 10 and 30 μVs, respectively (Figure 19.21c). The 
flux linkage in L1 has decreased by 6 μVs, whereas the 
flux linkage of L2 has increased by 6 μVs. The strength 
of the impulse is the flux linkage transferred, so that 
Δλ = 6 μVs. Since the flux linkage lost by L1 is the flux 
linkage gained by L2, flux linkage is conserved around 
the mesh formed by the two inductors. Note that in 
going around the mesh, say in the counterclockwise 
direction, the flux linkages of L1 and L2, as well as Δλ 
that adds to the flux linkage of L2, are all in the same 
direction and can all be considered to have the same 
positive sign. On the other hand, Δλ that subtracts from 
the flux linkage of L2 is in the opposite direction and 
will therefore have a negative sign.
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The preceding argument can be formalized by using 
the concept of the equivalent series inductor, Leqs, whose 
value is (2 + 6) = 8 μH. From the concept of equivalence, 
the current through Leqs is the same as that of the series 
combination of L1 and L2. If we consider the initial flux 
linkages of L1 and L2 as resulting from some voltages 
v1(t) and v2(t), respectively, then the total voltage of  L1 
and L2 in series is v1(t) + v2(t). By equivalence, the flux 
linkage of Leqs must result from a voltage v1(t)  +  v2(t). 
Since the flux linkage of L1 is the time integral of v1(t) 
and the flux linkage of L2 is the time integral of v2(t), 
then the flux linkage of Leqs is the sum of the two inte-
grals, that is, the sum of the two flux linkages, which is 
40 μVs (Figure 19.1). The current through Leqs is therefore 
40/8 = 5 A, which by equivalence, must also be the cur-
rent through the series combination of L1 and L2.

The initial energy stored in the two inductors is 
1 2 0 1 2 0 1 2 2 64 1 21 1

2
2 2

2
/ / / /( ) ( )( ) + ( ) ( )( ) = ( ) ´ ´ + ( ) ´L i L i   

6 16 112´ = mJ. The final energy stored in the two 
inductors is 1 2 1 2 8 25 1001 2

2
/ / J( ) +( )( ) = ( )´ ´ =L L i f m . 

As a result of readjustment of current by the voltage 
impulse, 12 μJ are lost.

As explained for the case of two paralleled capacitors 
in connection with Figure 19.1, the discrepancy between 
the initial and final values of energy does not violate 
conservation of energy. The discrepancy is attributed to 
an impulse of voltage that appears across the two induc-
tors, involving an infinite voltage due to the impulse 
applied across an infinite parallel resistance. In the pres-
ence of such a resistance, it can be readily shown that 
the power dissipated in the resistor accounts for the dif-
ference in the initial and final energies of the inductors.

Example 19.5: Series Connection of Charged Inductors

Given three inductors, L1  =  2  μH having a current of 
12 A, L2 = 4 μH having a current of 6 A, and L3 = 6 μH 
having a current of 2 A, it is required to determine (a) the 
current through the inductors when connected in series 
and (b)  the current and flux linkage for each inductor 
after the application of a 9 mV, 4 ms, pulse to the series 
combination of inductors.

Solution:

 (a) The initial current and flux linkage for each induc-
tor are shown in Figure 19.22a. When connected 
in series, Leqs = 12 μH (Figure 19.22b). From equal-
ity of voltages across the series combination and 
across Leqs, the flux linkage of Leqs is the sum of the 
flux linkages on the individual inductors, which is 
60  μVs. The current of Leqs is 60/12  =  5  A. From 
equivalence, this must be the current through the 
series combination. It follows that the flux linkages 
of L1, L2, and L3 are, respectively, 2 × 5 = 10 μVs, 

4 × 5 = 20 μVs, and 6 × 5 = 30 μVs (Figure 19.22c). 
The total flux linkage is 60 μVs, as it should be.

 (b) The 9 mV pulse of 4 ms duration establishes a flux 
linkage of 9 × 4 = 36 μVs of the same sign as that of 
Leqs. The total flux linkage is now 96 μVs, and the 
current is 96/12 = 8 A (Figure 19.23a). From equiv-
alence, the current through the series combination 
is also 8  A, which means that the flux linkages 
of L1, L2, and L3 are, respectively, 2 × 8 = 16 μVs, 
4 × 8 = 32 μVs, and 6 × 8 = 48 μVs (Figure 19.23b). 
The total flux linkage is 96 μVs, as it should be.

Simulation: The circuit for part (a) is entered as illustrated 
in Figure 19.24a. The following should be noted concern-
ing this schematic: (i) In order to provide a path for the ini-
tial current in each inductor, normally closed switches are 
connected in parallel rather than in series. The switches 
are set to open at t = 1 ms, thereby connecting the conduc-
tors in series. (ii) PSpice does not allow loops of zero resis-
tance, which can arise from loops of inductors, or voltage 
sources, or both. The 1 nΩ resistor in Figure 19.24a avoids 
such a loop when the switches open. When the switches 
are closed, a zero resistance is avoided in the other 
two  meshes by the resistances of the closed  switches. 
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The 1 nΩ resistance is too small to significantly affect 
the results. (iii) The default resistance of a closed switch 
is 0.01 Ω, which is too large for the simulation involving 
pure inductances. This resistance is reduced to 1 nΩ in the 
Property Editor spreadsheet of the switch.

Current markers are used to indicate the currents. 
Time domain (Transient) analysis is chosen, 2  ms is 
entered for ‘Run to time’, 0 for ‘Start saving data after’, 
and 0.5 μs for ‘Maximum step size’. After the simulation 
is run, the graph in Figure 19.25 is displayed showing 
the initial currents of 2, 6, and 12 A, and the final current 
of 5 A, as determined previously.

The circuit for part (b) is entered as illustrated in 
Figure 19.24b. The voltage source is VPULSE from the 

source library. The parameters of the source are entered 
as explained in Example 19.1. Time domain (Transient) 
analysis is chosen, 6m is entered for ‘Run to time’, 0 for 
‘Start saving data after’, and 0.5u for ‘Maximum step 
size’. After the simulation is run, the graph in Figure 19.26 
is displayed. The current increases linearly during the 
pulse from 5 to 8 A.

Primal Exercise 19.7

Repeat Example 19.5 assuming a flux linkage of 12 μVs 
on L1, 12 μVs on L2, and 24 μVs on L3.
Ans. (a) 4 A; (b) 7 A, λ1 = 14 μVs, λ2 = 28 μVs, λ3 = 42 μVs.

★19.2.2  Inductors in Parallel

The behavior of inductors in parallel is examined in the 
next three examples, which are the duals of Examples 
19.2 through 19.4 for capacitors.

Example 19.6: Charged Inductors in Parallel

A voltage pulse of 3  V amplitude and 4  s duration is 
applied to three inductors in parallel: L1 = 6 H, L2 = 3 H, 
and L3 = 2 H (Figure 19.27a). It is required to determine 
the currents in the inductors (a) when the inductors are 
initially uncharged and (b) when L1, L2, and L3 have ini-
tial flux linkages of 12, 6, and 2 Vs, respectively.

Solution:

 (a) The voltage pulse establishes a flux linkage of 
+12 Vs, or Wb-turn, in each of the inductors and in 
Leqp. The currents in the inductors are i1 = 12/6 = 2 A, 
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i2 = 12/3 = 4 A, and i3 = 12/2 = 6 A. The total current 
through the three inductors is 12 A (Figure 19.27b).

  Leqp can be evaluated by considering two inductors at 
a time. The parallel inductance of the 6 and 3 H induc-
tors is (6 × 3)/(6 + 3) = 2 H. The parallel inductance 
of this and the 2 H inductor is 1 H. The 3 V voltage 
establishes 12 Vs of flux linkage at t = 4  s, the cur-
rent through Leqp being 12/1 = 12 A, the same as that 
through the parallel combination (Figure 19.27b).

 (b) When the voltage is applied to the three induc-
tors, with initial flux linkages (Figure 19.28a), 

the flux linkage in Leqp is clearly not the same as 
the individual flux linkage in any of the three 
inductors, since these individual flux link-
ages are all different. But because of equiva-
lence, the current in Leqp must be the same as 
that in the paralleled inductors. The currents 
in the individual inductors are i10 = 12/6 = 2 A, 
i20  =  6/3  =  2  A, and i30  =  2/2  =  1  A. The total 
current is 5  A, which must be the current in 
Leqp. It follows that the flux linkage in Leqp is 
1 × 5 = 5 Vs (Figure 19.28a).
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The voltage pulse of 3 V amplitude and 4 s dura-
tion adds a flux linkage of 12 Vs to the flux linkages 
present in Leqp and in each of the three paralleled 
inductors. λeqp becomes 17 Vs and ieqp = 17 A (Figure 
19.28b). The application of superposition to the indi-
vidual inductors is illustrated in Table 19.2. The “No 
initial storage” row refers to the values found previ-
ously (Figure 19.27b). The row that follows lists the 
initial conditions. The last row indicates the flux link-
ages and currents at t = 4 s, after the voltage pulse 
is over. The values in this row are the sums of the 
corresponding values in the two preceding rows. 
The initial and final values are also shown in Figure 
19.28. The final flux linkages are λ1f = 12 + 12 = 24 Vs, 
λ2f  =  6  +  12  =  18  Vs, λ3f  =  2  +  12  =  14 Vs, and 
λeqp = 2 + 12 = 17 Vs (Figure 19.28b). The currents in the 
three inductors are i1f = 24/6 = 4 A, i2f = 18/3 = 6 A, 
and i3f  =  14/2  =  7  A, the total being 17  A, as for 
Leqp. Note from Table 19.2 that superposition can be 
applied to flux linkages as well as currents.

Simulation: The circuit is entered as in Figure 19.29. 
1 nΩ resistors are added in order to avoid short-circuit 
loops, and the voltage source is entered as explained in 
the preceding example. The initial currents in the induc-
tors are added as described previously in the Property 
Editor spreadsheet. In the simulation profile, Time 
domain (Transient) analysis is chosen, 6 is entered for 
‘Run to time’, 0 for ‘Start saving data after’, and 0.5 m 
for ‘Maximum step size’. After the simulation is run, 
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TABLE 19.2

Inductor Flux Linkages and Currents

 L1 L2 L3 Leqp

λ1, Vs i1, A λ2, Vs i2, A λ3, Vs i3, A λeqp, Vs ieqp, A

No initial storage 12 2 12 4 12 6 12 12
Initial conditions 12 2 6 2 2 1 5 5
Final (t = 4 s) 24 4 18 6 14 7 17 17

2H
IC = 1

0

3H
IC = 2

6H
IC = 2

1n 1n 1n

TD = 1

TF = 1n
PW = 4
PER = 10

V1 = 0

TR = 1n

V2 = 3

I I I
–
+

FIGURE 19.29
Figure for Example 19.6.



592 Circuit Analysis with PSpice: A Simplified Approach

the graph displayed in Figure 19.30 shows the initial 
and final currents in the three inductors. The currents 
increase linearly from their initial values to their final 
values during the application of the 4 s pulse.

Primal Exercise 19.8

A 1 V pulse of 2ms duration is applied to three inductors 
of 0.2, 0.8, and 0.04 μH connected in parallel. The induc-
tors were initially uncharged. Determine, at the end of 
the pulse, (a) the flux linkage of each inductor and the 
current through it and (b) the inductance of the equiva-
lent inductor, its flux linkage, and current.
Ans. (a) 2 μVs; 10, 2.5, and 50 A, respectively; (b) 0.032 μH, 
2 μVs, 62.5 A.

Example 19.7: Steady Current Applied 
to Inductors in Parallel

Let a steady current of 15 A be applied to the parallel-con-
nected inductors in Figure 19.31, by opening the switch 
at t = 0, where L1 = 6 μH, L2 = 3 μH, and L3 = 2 μH. It is 
required to determine the flux linkages and currents of the 
inductors: (a) with zero initial energy storage and (b) with 
the initial currents on the inductors of i10 = 2 A, i20 = 2 A, 
and i30 = 1 A.

Solution:

  (a) The inductance of 6 μH in parallel with 3 μH is 2 μH, 
and the parallel inductance of this and the 2  μH 
capacitor is Leqp = 1 μH. When 15 A are applied to the 
parallel combination and to Leqp, a voltage impulse 
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occurs that instantaneously establishes a flux link-
age of 15  μVs in Leqp (Figure 19.31). From circuit 
equivalence, this same voltage impulse is applied 
to the parallel combination of inductors. Since 
these inductors have zero initial energy storage, the 
flux linkage on each of the three inductors will be 
the same as on Leqp. It follows that i1 = 15/6 = 2.5 A, 
i2 = 15/3 = 5 A, and i3 = 15/2 = 7.5 A. The total cur-
rent is 15 A, as it should be.

 (b) When the inductors are initially charged, the total 
current is 5 A, which, by circuit equivalence, is also 
the current in Leqp. The flux linkage of Leqp will be 
(5 A) × (1 μH) = 5 μVs (Figure 19.32a). The applied 
15 A will bring the flux linkage to 15 μVs, which 
means an increase of flux linkage of 10 μVs from 
the applied source. By circuit equivalence, this 
same integral of voltage is applied to the three 
inductors, which increases the flux linkage of each 
inductor by 10 μVs. Hence, the final flux linkages 
and currents will be as follows (Figure 19.32b):

 λ1f = 2 × 6 + 10 = 22 μVs and i1f = 22/6 = 11/3 A

 λ2f = 2 × 3 + 10 = 16 μVs and i2f = 16/3 A

 λ3f = 1 × 2 + 10 = 12 μVs and i3f = 12/2 = 6 A

It is seen that i1f + i2f + i3f = (11/3) + (16/3) + 6 = 15 A 
as it should be.

Simulation: The circuit is entered as illustrated in Figure 
19.33. The opening time of the normally closed switch is 
set at 1 ms and its resistance when closed (RCLOSED) 

is set to 1 nΩ. Time domain (Transient) analysis is cho-
sen, 2 ms is entered for ‘Run to time’, 0 for ‘Start saving 
data after’, and 0.5 μs for ‘Maximum step size’. After the 
simulation is run, the graph in Figure 19.34 is displayed 
showing the initial and final currents for each inductor, 
using current markers. The final currents are read using 
the cursor as 3.6667  A, 5.3333  A, and 5.9971  A corre-
sponding to i1f = 11/3 A, i2f = 16/3 A, and i3f = 6 A.

Problem-Solving Tip

• Equivalent series or parallel inductors can be 
conveniently used to facilitate the solution of 
problems involving inductors.

The preceding two examples illustrate the following 
concept:

Concept: When an excitation is applied to inductors in series 
or in parallel and having initial stored energy, the flux link-
age due to the applied excitation adds algebraically to the flux 
linkage initially stored in each inductor.
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Primal Exercise 19.9

Repeat Example 19.7 assuming the initial flux link-
ages of the inductors are λ10 = 18 μVs, λ20 = 12 μVs, and 
λ20 = 10 μVs.
Ans. (a) As in Example 19.7; (b) λ1f = 21 μVs, λ2f = 15 μVs, 
λ3f = 13 μVs.

Example 19.8: Redistribution of Currents 
in Paralleled Inductors

Given three inductors having initial flux linkages and 
currents as shown in Figure 19.35 and are paralleled with 
a switch that is opened at t = 0. It is required to determine 
the final currents and flux linkages of the three induc-
tors. This example is the dual of Example 19.4. Because 
there are two voltage rises and one voltage drop in 
Figure 19.14, two currents are shown entering the upper 
node in Figure 19.35 and one current leaving the node.

Solution:

Leqp can be determined by considering the inductors 
two at time. Thus, the two 8  μH inductors in paral-
lel give an inductance of 4 μH. This, in parallel with 
4 μH, gives Leqp = 2 μH. The current in Leqp is the current 
through the switch, in which 2 + 10 − 4 = 8 A. It follows 
that the flux linkage of Leqp is (8 A) ×  (2 μH) = 16 Vs 
(Figure 19.36a). When the switch is opened, Leqp com-
pletely discharges, which is equivalent to apply-
ing 16  Vs in the opposite direction (Figure 19.36b) 
by means of a voltage impulse of strength 16 Vs, the 
polarity of the voltage impulse being node ‘a’ posi-
tive with respect to node aʹ. By circuit equivalence, 
the same voltage impulse appears between the corre-
sponding nodes in the original circuit. The resulting 
flux linkage of 16 Vs opposes the flux linkages in L1 
and L3 and adds to the flux linkage in L2. It follows that 
λ1 = 0, λ3 = 24 Vs, and λ2 = 48 Vs, so that i1 = 0, i2 = 6 A, 
and i3 = 6 A (Figure 19.37). Note that KCL is satisfied.

Flux linkage is conserved around the three closed 
paths formed by any two inductors. The flux linkages 
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in the clockwise direction around the closed paths are 
as follows:

L L t t1 3 16 40 24 0 0 24 24 0: .- -= - = = - =- +Vs at and Vs at

L L t t2 3 40 32 72 0 24 48 72 0: .+ = = + = =- +Vs at and Vs at  

L L t t1 2 16 32 48 0 0 48 48 0: .+ = = + = =- +Vs at and Vs at

Note that in going clockwise around a closed path, 
flux linkage in the same direction is taken as positive, 

whereas flux linkage in the opposite direction is taken 
as negative.

Simulation: The circuit is entered as illustrated in 
Figure 19.38. The orientation of the inductors and the 
placement of the current markers are such that posi-
tive current values are indicated. The opening time 
of the normally closed switch is set at 1  ms and its 
resistance when closed (RCLOSED) is set to 1  nΩ. 
Time domain (Transient) analysis is chosen, 2  ms 
is entered for ‘Run to time’, 0 for ‘Start saving data 
after’, and 0.5u for ‘Maximum step size’. After the 
simulation is run, the graph in Figure 19.39 is dis-
played showing the initial and final currents for each 
inductor.

Example 19.8 illustrates the following concept con-
cerning conservation of flux linkage:

Concept: Flux linkage is conserved around any closed path 
in a circuit at the instant of a sudden change as long as no 
voltage impulses are applied from an external source in the 
closed path at the instant of the sudden change.

Conservation of flux linkage is in accordance with 
KVL.

Primal Exercise 19.10

Repeat Example 19.8 using initial values of 20, 24, and 
30 μVs on L1, L2, and L3, respectively.
Ans. λ1f = 6 μVs, i1f = 3/4 A, λ2f = 38 μVs, i2f = 19/4 A,  
λ3f = 16 μVs, i3f = 4 A.
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Primal Exercise 19.11

The switch in Figure 19.40 is opened at t = 0, with the 
initial currents in the inductors as shown. Determine the 
current after the switch is opened, considering the two 
inductors to be (a) in series or (b) in parallel.
Ans. 1/3 A clockwise.

19.3  Switched Circuits

By switched circuits are meant circuits in which the 
movement of one or more switches changes the circuit 
configuration, as by adding or removing circuit elements 
or by modifying the applied excitation in some specified 
manner. It is to be expected that a switching operation, 
being another form of a sudden change in a circuit, is 
subject to the same basic considerations discussed in this 
chapter and the preceding chapter, such as the following:

 1. A capacitor voltage does not change at the 
instant of switching unless forced to by a cur-
rent impulse in order to satisfy KVL. Similarly, 
an inductor current does not change at the 
instant of switching unless forced to by a volt-
age impulse in order to satisfy KCL.

 2. KCL and KVL must be satisfied at all times, 
before switching, just after switching, and in the 
steady state.

These basic concepts allow the determination of the 
initial conditions, just after switching, that are required 
for deriving the complete solution following the switch-
ing operation. This is illustrated by the following exam-
ples of switching in first-order and second-order circuits. 
Examples 19.9 and 19.10 illustrate impulsive readjust-
ment in the presence of a resistor, whereas Examples 
19.11 and 19.12 illustrate the “trapping” of stored energy 
in a circuit.

Adding an inductor to the capacitive circuits consid-
ered in this chapter, or a capacitor to the inductor cir-
cuits, does not introduce any important concepts beyond 
those of Chapter 12. The equivalent series or parallel 

capacitor or inductor will have an initial stored energy, 
after the initial switching operation, as in the circuits of 
Chapter 12 and can be analyzed in the same manner dis-
cussed in that chapter. More general switched circuits can 
be analyzed using the Laplace transform (Chapter 22).

Example 19.9: Switched Parallel RC Circuit

In the circuit in Figure 19.41, capacitor C1 is initially 
charged to V10 = 10 V and C2 is uncharged. The switch 
is closed at t = 0. It is required to determine the variation 
with time of v, the voltage across the capacitors, for t ≥ 0+.

Solution:

Just after the switch is closed, the voltages across C1 and 
C2 are forced to change instantaneously from their initial 
values to a common voltage, by a current impulse, as in 
the case of the two capacitors in Figure 19.1. At t = 0−, 
v and iR are both zero. At t = 0+, v and hence iR jump by 
a finite amount due to redistribution of charge between 
the capacitors. As argued in connection with Equation 
18.22, the time integral of iR, which is the charge leaked 
through the resistor, is zero between t = 0− and at t = 0+, 
because v and hence iR are finite during this interval. It 
follows that charge is conserved at the instant of switching, 
as it flows from C1 to C2.

The initial charge on C1 is 10 × 3 = 30 C, and Ceqp = 5 F. 
v at t = 0+ is 30/5 = 6 V and iR = 6 A. As t → ∞, both 
capacitors are completely discharged and vF and iRF are 
both zero. τ = RC = 5 s. It follows from Equation 11.57 that

 v t e tt( ) = ³- +6 00 2. V,  (19.3)

It is of interest to examine the capacitor currents. To 
take into consideration the switching interval, v can be 
expressed for t ≥ 0− as

 v t e u tt( ) = ( )-6 0 2. V, (19.4)

where v = 0 for t ≤ 0− and is given by Equation 19.3 for 
t ≥ 0+. The current i2 is

i t C
dv
dt

e t e u t tt t
2 2

0 2 0 22 6 1 2 0( ) = = ( ) - ( )éë ùû ³- - -. .. ,d
 

(19.5)

 = ( ) - ( ) ³- -12 2 4 00 2d t e u t tt. ,. A  (19.6)
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where the first term between brackets in Equation 19.5 
evaluates to 6δ(t) at t = 0. Similarly, the voltage across C1 
having the same polarity as v can be expressed as

 v t e u tt
1

0 210 10 6( ) = - -( ) ( )- . ,V  (19.7)

so that v1 = 10 V for t ≤ 0−, and v1 is given by Equation 
19.3 for t ≥ 0+. The current i1 is

i t C
dv
dt

e t e u t tt t

1 1
1

0 2 0 23 10 6 1 2 0

( ) = -

= - - -( ) ( )- ( )é
ë

ù
û ³- - -. .. ,d

 (19.8)

 = ( ) + ( ) ³- -12 3 6 00 2d t e u t tt. ,. A  (19.9)

It is seen that a current impulse flows from C1 to 
C2, transferring a charge of 12 C, so that the charges 
at t = 0+ are 30 − 12 = 18 C on C1 and 12 C on C2, the 
resulting voltage being 6 V on the two capacitors. KCL 
is i1 − i2  =  iR, so that the current impulse cancels out 
from iR, leaving iR = v/R, for t ≥ 0+, where v is given by 
Equation 19.3.

Simulation: The circuit is entered as in Figure 19.42. 
A normally open switch is set to close at 1 ms so as 
to show the initial voltages across the capacitors, 
which are in turn entered as 10 V for C1 and 0 for C2. 
‘Time domain (Transient)’ analysis is chosen, 15  ms 
is entered for ‘Run to time’, 0 for ‘Start saving data 
after’, and 1  μs for ‘Maximum step size’. After the 
simulation is run, the graph displayed in Figure 19.43 
shows the initial values of voltages across C1 and 
C2 as 10  V and 0, respectively. When the switch is 
closed, both voltages change to 6 V and decay expo-
nentially thereafter with a time constant of 5 ms. The 
tangent to the exponential at t  =  1  ms is entered as 
–1200 * Time + 7.2.

★Example 19.10: Switched Series RL Circuit

The circuit in Figure 19.44 is the dual of that in Figure 
19.41. Inductor L1 has an initial current of I10  =  10  A 
and L2 is uncharged. The switch is closed at t = 0. It is 
required to determine the variation with time of i, the 
current through the inductors for t ≥ 0+.

Solution:

Just after the switch is closed, the currents through L1 
and L2 are forced to change instantaneously from their 
initial values to a common value, by a voltage impulse, 
as in the case of the two inductors in Figure 19.20. At 
t = 0−, i and vR are both zero. At t = 0+, i and hence vR 
jump by a finite amount. In the interval 0− ≤ t ≤ 0+, when 
a voltage impulse appears across the inductors, vR is 
finite and will not affect this impulse (Equation 18.24). 
The reduction in flux linkage of L1 will therefore be 
equal to the increase in flux linkage of L2, so that flux 
linkage is conserved at the instant of switching.
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The initial flux linkage of L1 is 10  ×  3  =  30  Vs, and 
Leqs = 5 H. i at t = 0+ is 30/5 = 6 A and vR = 6 V. As t → ∞, 
both inductors are completely discharged and if and vRf 
are both zero. It follows from Equation 11.57, that

 i t e tt( ) = ³- +6 00 2. ,A  (19.10)

It is of interest to examine the inductor voltages. To 
take into consideration the switching interval, i can be 
expressed as

 i t e u tt
2

0 26( ) = ( )- . ,V  (19.11)

where i2 = 0 for t ≤ 0−, and i2 is given by Equation 19.10 
for t ≥ 0+. The voltage v2 is

v t L
di
dt

e t e u t tt t
2 2

2 0 2 0 22 6 1 2 0( ) = = ( )- ( )éë ùû ³- - -. .. ,d
 

(19.12)

 = ( ) - ( )-12 2 4 0 2d t e u tt. ,. V  (19.13)

where the first term between brackets in Equation 19.12 
evaluates to 6δ(t). Similarly, the current through L1 
 having the same polarity as i can be expressed as

 i t e u tt
1

0 210 10 6( ) = - -( ) ( )- . ,A  (19.14)

so that i1 = 10 A for t ≤ 0−, and i1 is given by Equation 
19.10 for t ≥ 0+. v1 is

v t L
di
dt

e t e u t tt t

1 1
1

0 2 0 23 10 6 1 2 0

( ) = -

= - - -( ) ( )- ( )é
ë

ù
û ³- - -. .. ,d

 (19.15)

 = ( ) + ( )-12 3 6 0 2d t e u tt. . V (19.16)

It is seen that a voltage impulse of 12  Vs appears 
across L1 and L2, reducing the flux linkage in L1 at t = 0+ 

to 30 − 12 = 18 Vs and establishing a flux linkage of 12 Vs 
in L2. The resulting current is 6 A in both inductors. KVL 
is v1 − v2 = vR, so that the voltage impulse cancels out 
from vR, leaving vR = i/G, for t ≥ 0+, where i is given by 
Equation 19.10.

Simulation: The circuit is entered as in Figure 19.45. 
A normally closed switch is set to open at 1 s so as to 
connect the two inductors in series. The initial currents 
in the inductors are entered as 10 A for L1 and 0 for L2. 
Time domain (Transient) analysis is chosen, 15  s is 
entered for ‘Run to time’, 0 for ‘Start saving data after’, 
and 1  ms for ‘Maximum step size’. After the simula-
tion is run, the graph displayed is the same as that in 
Figure 19.43 but with the vertical axis representing cur-
rent instead of voltage. When the switch is opened, the 
currents in the two inductors change to 6 A and decay 
exponentially thereafter with a time constant of 5 s.

The following concept is illustrated by Examples 19.9 
and 19.10:

Concept: A finite current does not add to, or subtract from, 
charge at a node during the infinitesimal interval just before and 
just after a switching operation. Similarly, a finite voltage does 
not add to, or subtract from, flux linkage in a closed path during 
the interval just before and just after a switching operation.

Thus, charge is conserved at the nodes in Figure 19.41 
at the instant of switching. Similarly, flux linkage is 
conserved in the mesh in Figure 19.44 at the instant of 
switching.

Example 19.11: Switched Series RC Circuit

Given two capacitors C1 = 3 F and C2 = 2 F charged to 
10  V each and connected at t  =  0 in series with a 2  Ω 
resistor (Figure 19.46a), it is required to determine i as a 
function of time and the final values of v1 and v2.

Solution:

Ceqs = (3 × 2)/(3 + 2) = 1.2 F. The initial voltage of Ceqs is 
the sum of the initial voltages across the two capacitors, 
that is, 20 V. The initial charge on Ceqs is q = 1.2 × 20 = 24 C. 
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The circuit for t ≥ 0 is shown in Figure 19.46b. As t → ∞, 
Ceqs will completely discharge, and i = 0. The initial value 
of i is 10 A, and the time constant is 2 × 1.2 = 2.4 s. It fol-
lows that i is given by

 i t e t tt( ) = ³-10 02 4/ . , ,A in s (19.17)

The charge q = 24 C is moved by i through the circuit 
in the clockwise direction. The initial charge on C1 is 30 C. 
When 24 C are moved clockwise, the residual charge 

on C1 is 6 C, and the final value of v1 is v1f = 6/3 = 2 V. 
The initial charge on C2 is 20 C. When 24 C are moved 
clockwise, the residual charge on C2 is −4 C and the final 
value of v2 is v2f = −4/2 = −2 V. The voltage across the 
resistor is 2 – 2 = 0, since i goes to zero. Some residual 
charge therefore remains trapped in the capacitors.

With the initial and final values of v1 and v2 known, it 
follows that
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Simulation: The circuit is entered as in Figure 19.47. 
A normally open switch is set to close at 1  s so as to 
display the initial voltages across the capacitors, which 
are in turn entered as 10 V for C1 and C2. A 100 meg 
resistor is added to avoid a floating node between the 
capacitors. Time domain (Transient) analysis is cho-
sen, 10 s is entered for ‘Run to time’, 0 for ‘Start saving 
data after’, and 1 ms for ‘Maximum step size’. After the 
simulation is run, the graph displayed in Figure 19.48 
is showing the initial values of voltages across C1 and 
C2. When the switch is closed, both voltages decrease 
exponentially with a time constant of 2.4  s, the final 
voltages being 2 for v1 and −2 for v2.

★Example 19.12: Switched Parallel RL Circuit

The circuit in Figure 19.49a is the dual of that in Figure 
19.46a. Both inductors have an initial current of 10  A. 
The switch is opened at t = 0. It is required to determine 
v as a function of time and the final values of i1 and i2.
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Figure for Example 19.11.
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Solution:

Leqp = (3 × 2)/(3 + 2) = 1.2 H (Figure 19.49b). The ini-
tial current of Leqp is the sum of the initial currents of 
the two inductors, that is, 20 A. The initial flux link-
age of Leqp is λeqp = 1.2 × 20 = 24 Vs. As t → ∞, Leqp will 
completely discharge, and v = 0. Initial value of v is 
i/G = 10 V, and the time constant is 2 × 1.2 = 2.4 s. It 
follows that v is given by

 v t e tt( ) = ³- +10 02 4/ . ,V  (19.19)

The initial flux linkage λeqp of 24 Vs is reduced to zero 
as t → ∞. This can be considered to be due to an oppos-
ing flux linkage leqp¢ = − λeqp that arises from the time inte-
gral of v (Figure 19.49b). By equivalence, this leqp¢  also 
appears across L1 and L2 and subtracts from the initial 
flux linkages. The final flux linkages are λ1f = 6 Vs in L1, 
directed upward, and λ2t  =  4  Vs in L2, directed down-
ward. A current of 2  A therefore circulates in the two 
inductors (Figure 19.50), representing a residual flux 
linkage that remains trapped in the inductors.

With the initial and final values of i1 and i2 known, it 
follows that
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Simulation: The circuit is entered as in Figure 19.51. 
A normally closed switch is set to open at 1  s so as 

to display the initial currents through the inductors, 
which are in turn entered as 10 A for L1 and L2. A 1 nΩ 
resistor is added to avoid a zero resistance inductor 
loop. Time domain (Transient) analysis is chosen, 10 s is 
entered for ‘Run to time’, 0 for ‘Start saving data after’, 
and 1 ms for ‘Maximum step size’. After the simulation 
is run, the graph displayed is the same as that in Figure 
19.48 but with the vertical axis representing current 
instead of voltage. When the switch is opened, the cur-
rents in the two inductors decrease exponentially with 
a time constant of 2.4 s, the final currents being 2 for 
i1 and −2 for i2,

The following concept is illustrated by Examples 19.11 
and 19.12:

Concept: Stored energy can be trapped in capacitors or in 
inductors in the final, steady state when initial charges on 
capacitors, or initial flux linkages in inductors, are not com-
pletely neutralized, even in the presence of resistors, while 
KCL, KVL, and Ohm’s law are satisfied.

Primal Exercise 19.12

The switch in Figure 19.52 is closed at t  =  0, with the 
inductor initially uncharged. Determine vO(0+), vL(0+), 
and iL(t), t ≥ 0+.

Ans. vO(0+) = 0, vL(0+) = 4 V, iL(t) = 1 4-( )-e t , t ≥ 0+ s.
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Learning Checklist: What Should 
Be Learned from This Chapter

• When capacitors in series or in parallel have initial 
charges, the equivalent series or parallel capaci-
tance is the same as in the absence of initial charges.

• When inductors in series or in parallel have ini-
tial currents, the equivalent series and parallel 
inductances are the same as when there are no 
initial currents.

• When capacitors having different voltages are 
paralleled, charge is instantaneously redistrib-
uted by current impulses, so as to have a com-
mon voltage across the capacitors. This voltage 
can be readily determined from conservation of 
charge and the equivalent parallel capacitance.

• When inductors having different currents are 
connected in series, flux linkage is instanta-
neously redistributed by voltage impulses, so as 
to have the same current through the inductors. 
This current can be readily determined from 
conservation of flux linkage and the equivalent 
series inductance.

• When an excitation is applied to capacitors in 
series or in parallel having initial stored energy, the 
charge due to the applied excitation adds algebra-
ically to the charge initially stored in each capaci-
tor, in accordance with superposition. The charge 
added and the final voltages across the capacitors 
are most easily determined using the equivalent 
series or parallel capacitance, as applicable.

• When an excitation is applied to inductors in 
series or in parallel having initial stored energy, 
the flux linkage due to the applied excitation 
adds algebraically to the flux linkage initially 
present in each inductor, in accordance with 
superposition. The flux linkage added, and the 
final currents in the inductors are most easily 
determined using the equivalent series or paral-
lel inductance, as applicable.

• Charge is conserved at any node in a circuit at the 
instant of a sudden change as long as no current 
impulses are applied from an external source to 
the node at the instant of the sudden change.

• Flux linkage is conserved around any closed 
path in a circuit at the instant of a sudden change 
as long as no voltage impulses are applied from 
an external source in the closed path at the 
instant of the sudden change.

• There is an apparent loss of energy in impul-
sive redistribution of charges in capacitive 

circuits or in the impulsive redistribution 
of flux linkages in inductive circuits, due to 
indeterminate power dissipation by a cur-
rent impulse flowing through zero resistance 
or a voltage impulse appearing across zero 
conductance.

• In a switching operation, a capacitor voltage does 
not change at the instant of switching unless 
forced to by a current impulse. Similarly, an 
inductor current does not change at the instant of 
switching unless forced to by a voltage impulse. 
KCL and KVL must be satisfied at all times, before 
switching, just after switching, and in the steady 
state.

• A finite current does not add to, or subtract 
from, charge at a node during the infinitesimal 
interval just before and just after a switching 
operation. Similarly, a finite voltage does not 
add to, or subtract from, flux linkage in a closed 
path during the infinitesimal interval just before 
and just after a switching operation.

• Stored energy can be trapped in capacitors or in 
inductors in the final, steady state when initial 
charges on capacitors, or initial flux linkages in 
inductors, are not completely neutralized, even 
in the presence of resistors, while KCL, KVL, 
and Ohm’s law are satisfied.

Problem-Solving Tips

 1. Equivalent series or parallel capacitors can be 
conveniently used to facilitate the solution of 
problems involving capacitors.

 2. Equivalent series or parallel inductors can be 
conveniently used to facilitate the solution of 
problems involving inductors.

Problems

Verify solutions by PSpice simulation.

Capacitive Circuits

P19.1 The switch in Figure P19.1 is closed at t = 0, with C1 ini-
tially charged to V10 = 2 V. Determine the initial voltage 
V20 of C2 that will make each of C1 and C2 completely 
discharge as t → ∞.

 Ans. 3 V.

P19.2 The switch in Figure P19.2 is closed at t = 0 after being 
open for a long time. Determine vO(t), t ≥ 0+, assuming 
VSRC = 8 V.

 Ans. 4 V.
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P19.3 The switch in Figure P19.3 is closed at t = 0, with initial 
voltages on C1 and C2 and with q4(0−) = 4 C. Initial volt-
age on C3 is not shown. Determine (a) the charge through 
the switch when it closes and (b) the final value of v4.

 Ans. (a) 12 C; (b) −1 V.

P19.4 C2 in Figure P19.4 is initially uncharged and the 
switch has been in position ‘a’ for a long time. The 
switch is moved to position ‘b’ at t  =  0. Determine 
vC1(t) for t ≥ 0+.

 Ans. 10 0 4 0 6 3. . /+( )-e t , t is in ms.

P19.5 The switches in Figure P19.5 open at t = 0 after being 
closed for a long time. Determine the final values of vC1 
and vC2.

 Ans. v1 = 4 V, v2 = −4 V.

P19.6 The capacitors in Figure P19.6 have initial voltages 
V10 = −5 V and V20 = 30 V. If the switch is closed at t = 0, 
determine (a) v1(t), v2(t), and vO(t) for t ≥ 0+ and (b) the 
energy trapped in the circuit.

 Ans. (a) v t e t
1

240
3

25
3

( )=- + - V, v t e t
2

240
3

50
3

( )= + - V, 

v t eO
t( ) = -25 2 V , t ≥ 0+, t is in s; (b) 0.8 mJ.

P19.7 The switch in Figure P19.7 is closed at t = 0, the ini-
tial values of the capacitor voltages being V10  =  1  V, 
V20 = 0.2 V, and V30 = 1.2 V. Determine (a) iO(t) for t ≥ 0+ 
and (b) the final values of v1, v2, and v3.

 Ans. i t e tO
t( ) = ³- +12 021 80/ ,A , t is in ms, v1f = 43/35 V, 

v2f = 3/35 V, v3f = 8/7 V.

P19.8 The capacitors in Figure P19.8 were initially charged as 
shown. When the switch is closed at t = 0, the current 
if is found to be 0.18e–t mA where t is in ms. Determine 
(a) v tf ( ) for t ≥ 0+, (b) R, and (c) the final voltages across 
the capacitors.

 Ans. (a) 75e t-  V; (b) 1250/3 kΩ; (c) −24  V across the 
60/13 nF, 24 V across the parallel combination.
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P19.9 The initial voltages on the capacitors in Figure P19.9, 
before the switch is closed are, 2  V on C1, 6  V on 
C2, and 0  V on C3. The switch is closed at t  =  0. 
Determine (a) the charges on the three capacitors at 
t = 0+; (b) vR(t), t ≥ 0+; and (c) the final voltages on the 
capacitors.

 Ans. (a) q1(0+)  =  0, q2(0+)  =  8  μC, q3(0+)  =  4  μC; (b) 

v t eR
t( ) = -4 0 5. V, t is in ms; (c) v1F  =  −2  V, v2F  =  +2  V, 

v3F = 0.

P19.10 The switch in Figure P19.10 is closed at t = 0, with C1 
initially charged to V10 = 9 V, and C2 and C3 uncharged. 
Determine (a) v1(0+), (b) i(t) for t ≥ 0+, and (c) the volt-
age across C3 as t → ∞, by evaluating the charge depos-
ited on C3 by i as t → ∞.

 Ans. (a) 6 V; (b) 6 2e t- / mA where t is in ms; (c) 4 V.

P19.11 Given, in Figure P19.11, C1 = 8 F, initially charged to 
V10 = 6 V; C2 = 6 F, initially charged to V20 = 4 V; and 
C3  =  3  F, initially charged to V30  =  2  V, the switch is 
closed at t = 0. Determine the final values of v2 and v3.

 Ans. v2f = 2 V; v3f = −2 V.

Inductive Circuits

P19.12 The switch in Figure P19.12 is closed at t = 0. Determine 
i(t) for t ≥ 0+ if (a) the initial currents in the inductors 
are as indicated in Figure P19.12 and (b) if each initial 
current is 5 A pointing from left to right.

 Ans. (a) 1 6 2. e t- A; (b) - -e t2 A.

P19.13 The switch in Figure P19.13 is opened at t = 0, with an 
initial current of 10 A in the 2 H inductor. Determine 
the initial current I20 in the 4 H inductor so that both 
inductors completely discharge as t → ∞.

 Ans. 5 A.

P19.14 The switch in Figure P19.14 is moved to position 
‘b’ at t = 0 after being in position ‘a’ for a long time. 
Determine the final values of i1 and i2.

 Ans. i1 = 4 A, i2 = −4 A.

P19.15 The inductors in Figure P19.15 have initial currents 
I10 = 30 A and I20 = −5 A. If the switch is opened at t = 0, 
determine (a) i1(t), i2(t), and iO(t) for t ≥ 0+ and (b) the 
energy trapped in the circuit.

 Ans. (a) i t e t
1

240
3

50
3

( ) = + - A, i t e t
2

240
3

25
3

( ) = - + - A, 

i t eO
t( ) = -25 2 A, t ≥ 0+, t is in s;

 (b) 0.8 kJ.
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P19.16 The three inductors in Figure P19.16 have the ini-
tial currents shown. The switch is opened at t = 0. 
Determine vO(t) for t ³ 0 and the final currents in the 
inductors.

 Ans. v t e tO
t( ) = ³- +12 021 80/ ,V , t is in ms, i1f = 43/35 A, 

i2f = 3/35 A, v3f = 8/7 A.

P19.17 The inductors in Figure P19.17 have initial cur-
rents as shown. When the switch is opened at t = 0, 

the voltage v tf ( ) is found to be 50 2 5e t- . V , where t is 

in s. Determine (a) i tf ( ) for t ≥ 0+, (b) R, and (c) the 
final currents in the inductors.

 Ans. (a) i t e t
f ( ) = -2 5. A, t ≥ 0+, t is in s; (b) 50 Ω; (c) 0.

P19.18 Derive and analyze the circuit that is the dual of that of 
Problem P19.9.

 Ans. (a) λ1(0+)  =  0, λ2(0+)  =  8  μVs, λ3(0+)  =  4  μVs; 

(b) i t eG
t( ) = -4 0 5. A, t is in ms; (c) i1F = −2 A, i2F = +2 A, 

i3F = 0.

P19.19 The switch in Figure P19.19 is opened at t  =  0 after 
being closed for a long time. Determine IL(0+) and vO(t).

 Ans. iL(0+) = 4 A, v t e tO
t( ) = +( ) ³-0 5 1 3 0. , +V ms.

RLC Circuits

P19.20 The switch in Figure P19.20 is closed at t  =  0, with 
iL(0−) = 0 and vC(0−) = 2 V. Assuming ρ = 3 kΩ, deter-
mine (a) iL(0+) and vO(0+) and (b) vO(t).

 Ans. (a) iL(0+) = 6 mA; vO(0+) = −6 V; (b) v t eO
t( ) = - -6  

t ≥ 0+ μs.

P19.21 The switch in Figure P19.21 is opened at t  =  0, after 
being closed for a long time, and just after the impulse 
is over at t = 0+. Determine (a) iL(0−), iL(0+), vO(0−), and 
vO(0+) and (b) vO(t) assuming the value of R for critical 
damping.

 Ans. (a) iL(0−)  =  0, vO(0−)  =  20  V, iL(0+)  =  10  A, 

vO(0+) = 20 V; v t e te tO
t t( ) = +( ) + ³- - +10 1 2 10 0V, ms.
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P19.22 Determine vO(t) in Figure P19.22 assuming zero initial 
energy storage and a critically damped response.

 Ans. v t e t tO
t( ) = -( ) ³- +10 1 0V, ms.

P19.23 Determine v1(t) and v2(t), t  ≥  0+, in Figure P19.23, 
assuming iL(0−) = 0, v1(0−) = 0 and v2(0−) = 1 V.

 Ans. v t e t tt
1

80 5 6 6 0 5( ) = -( ) --. cos sin . V , v t e t
2

80 5( ) = -.  

cos sin .6 6 0 5t t-( ) + V.

0.1 mF

0.1 mF
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–
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Objective and Overview

This chapter introduces convolution, which is a 
 fundamental operation in the time domain that gives 
the response of a linear time-invariant (LTI)  system 
to an arbitrary input, based solely on its impulse 
response, without any knowledge about the system or 
its constituents.

The chapter begins by explaining two operations that 
are commonly encountered in convolution, namely, 
shifting a function in time and folding a function around 
the vertical axis. The convolution integral is then intro-
duced and interpreted graphically, which leads to a 
general procedure for deriving the convolution integral 
based on the graphical interpretation. Some basic prop-
erties of the convolution operation are then presented, 
followed by some important special cases of convolu-
tion, namely, convolution of staircase functions and 
convolution with impulse and step functions. The chap-
ter ends with a summary of some general properties 
of the convolution integral, illustrated with additional 
examples.

20.1  Shifting in Time and Folding

Before considering convolution, some basics  concerning 
shifting of functions in time and folding around the 
 vertical axis are discussed.

20.1.1  Shifting in Time

Consider the function, h(λ), where λ is a time variable, as 
shown in the middle trace in Figure 20.1a. It is assumed 
for simplicity and for reasons that will become clear later 
that h(λ) = 0 for λ < 0− and decreases like an exponen-
tial for λ > 0+. Suppose that the function is shifted to the 
right by a, where a is a positive number, such as 5 units 
of time. The origin, where λ = 0, is unchanged so that the 
vertical edge of the function is shifted from the origin to 
λ = a. The magnitude of the function at a particular value 
of λ, say λ = λ1 > 0, is h(λ1), where λ in the function h(λ) is 
replaced by λ1. The value of the shifted function should 
be the same at λ = (λ1 + a) as at λ = λ1. For this to be the 
case, λ in the shifted function should be decreased by a, that 
is, λ is replaced by (λ − a). The shifted function becomes 
h(λ − a), so that at λ = (λ1 + a), h(λ − a) = h((λ1 + a) − a) = 
h(λ1), the same value as for the unshifted function, as it 
should be.

Similarly, if the function is shifted by −a to the left, 
where a is a positive number, the vertical edge of the 
function is moved from the origin to λ = −a (Figure 20.1a). 
The value h(λ1) of the unshifted function should occur 
at λ = (λ1 − a) for the shifted function. λ in the shifted func-
tion should therefore be increased by a, that is, λ is replaced 
by (λ + a). The shifted function becomes h(λ + a), so that 
at λ = (λ1 − a), h(λ + a) = h((λ1 − a) + a) = h(λ1), the same 
value as for the unshifted function, as it should be.

If the function is shifted by a variable amount denoted by the 
symbol t, which could be positive or negative, the same expression 

20
Convolution

0 a–a
(a)

0 tt(b)

h(  + a) h(  – a)

h(  – t) h(  – t)

h(  )

h(  )

t > 0t < 0

h(  1)

1 (  1 + a)(  1 – a)

FIGURE 20.1
Shifting in time. (a) Function f(λ) shifted to the right or left by a positive number a, and (b) f(λ) shifted to the right or left by a variable t.
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h(λ − t) applies in terms of t as for a shift to the right by a posi-
tive quantity t (Figure 20.1b). If t has a positive value a, the 
expression for the shifted function is h(λ − a), as in Figure 
20.1a. If t has a negative value, t = −a, then the expression 
for the shifted function is h(λ + a), again as in Figure 20.1a.

20.1.2  Folding around the Vertical Axis

Next, consider the function h(−λ) (Figure 20.2a). This is 
the same function h(λ) of Figure 20.2a but with λ replaced 
by −λ. It is thus the mirror image of the function h(λ) 
with respect to the vertical axis. It is also described as 
h(λ) folded around the vertical axis. Shifting the func-
tion h(−λ) to the right or left is subject to the same rule 
 illustrated in Figure 20.1a, namely, in shifting to the right 
by a with respect to the same origin, λ in the shifted func-
tion is decreased by a, whereas in shifting to the left by a, 
λ in the shifted function is increased by a, where a is a pos-
itive number. Thus, if the function h(−λ) is shifted to the 
right by a, it becomes h(−(λ − a)) = h(a − λ) (Figure 20.2b). 
Note that the shift is applied to λ in the argument of the given 
function and not to the whole argument −λ. Thus, the argu-
ment −λ becomes (a − λ) and not (−λ − a). Similarly, if the 
function h(−λ) is shifted by a variable amount denoted 
by the symbol t, which could be positive or negative, 
the folded  function becomes h(t − λ). In other words, λ in 
the function is replaced by (t − λ) when the function is folded 
around the vertical axis and shifted by a variable t.

Primal Exercise 20.1

Derive the expressions for the following functions when 
first folded around the vertical axis and then shifted by t: 
(a) u(λ), (b) u(λ − 3), (c) δ(λ), (d) λu(λ), (e) (λ − 2)u(λ − 2), 
and (f) cos πλ. Note that an even function is unaltered by 

folding around the vertical axis. When folded and shifted, 
the argument of the function could be (t − λ) or (λ − t).

Ans. (a) u(−λ), u(t − λ); (b) u(−λ − 3), u(t − λ − 3); (c) δ(−λ) = 
δ(λ), δ(t − λ) = δ(λ − t ); (d) −λu(−λ), (t − λ)u (t − λ); (e) (−λ − 2)u 
(−λ − 2), (t − λ − 2)u(t − λ − 2); (f)  cos(−πλ)  =  cos(πλ), 
cos(π(t − λ)) = cos(π(λ − t)).

20.2  Convolution Integral

To illustrate the meaning and significance of convolu-
tion in circuit analysis, consider an LTI circuit or  system 
whose response h(t) to a unit impulse δ(t) (Figure 20.3a) 
can be determined in some manner, either analyti-
cally, or by simulation, or experimentally by applying 
a large, brief input of a duration that is much shorter 
than the smallest time constant, or response time, of the 
system, as was done in the simulation examples in pre-
ceding chapters. The question is, knowing h(t), can one 
determine the response y(t) to an arbitrary input x(t) 
(Figure 20.3b)? According to convolution theory, y(t) can 
indeed be determined as

 
y t x h t d( ) = ( ) -( )

-¥

¥

ò l l l
 

(20.1)

where λ is an arbitrary integration variable having the 
dimensions of time. The RHS of Equation 20.1 is a defi-
nite integral that evaluates to a function of t alone.

Equation 20.1 defines a convolution operation, which 
is represented as

 y t x t h t( ) = ( ) ( )*  (20.2)

In words, x t( ) is said to be convolved with h t( ). The 
key concept behind convolution is that the input x(t) can 
be considered as a series of very narrow pulses, each of 
which approximates an impulse. Since the system is 
 linear, these impulse responses can be summed together 
to give y(t).

The first step in deriving the convolution integral, 
therefore, is to approximate x(t) by a series of pulses of 
equal width, Δλ, as illustrated in Figure 20.4a, where 
the approximation can be as close as desired by making 
Δλ sufficiently small. The ith pulse starts at t  =  λi and 
is of duration Δλ and height x(λi). As Δλ is made very 

(a) 0

h(–  )

0 a
(b)

h(a –   )h(–  )

–  1 (–  1 + a)

FIGURE 20.2
Function f(λ) folded around the vertical axis (a) and shifted to the right 
by a positive number a (b).

LTI
system

(a)

(t) h(t) h(t) y(t)x(t)

(b)

+

–

+

–

+

–

+

–

FIGURE 20.3
Interpretation of convolution integral. Knowing the response h(t) of an 
LTI system to δ(t) (a), the response y(t) of the system to an arbitrary 
input x(t) (b) can be determined by convolution.
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small, the response to the ith pulse can be considered 
to be the same as the response to an impulse at t =  λi 
whose strength is the same as the area of the pulse, 
which is x(λi)Δλ. Let the response to δ(t), a unit impulse 
at the origin, be h(t), as illustrated in Figure 20.4b. Note 
that since δ(t) occurs at the origin, the response h(t) is 
zero for t < 0−, since there is no response to the impulse 
before it occurs. The response to the unit impulse at t = a 
is h(a). A unit impulse that is delayed by λi is δ(t − λi). 
If the strength of the impulse is [x(λi)Δλ], rather unity, 
the impulse is represented as [x(λi)Δλ]δ(t − λi), and the 
response to the impulse for t ≥ λi is y(t) = [x(λi)Δλ]h(t − λi), 
where (t − λi) is the interval of time t after the beginning 
of the impulse response, as illustrated in Figure 20.4c. 
At any particular instant of time t = t1, where t1 − λI = a, 
for example, the response is h(a) as in Figure 20.4b, but 
multiplied by the strength of the impulse. That is, the 
response is [x(λi)Δλ]h(t1 − λi), represented by the ordinate 
b in Figure 20.4c. Since the system is LTI, superposition 
applies, so that the total response due to all the pulses λi 
that occur up to t1 is the sum of the responses to all these 
individual pulses. It follows that

 
y t x h t
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In the limit, as Dl l® d , the summation becomes an 
integration. Since λi is arbitrary, the subscript can be 

dropped, replacing λi by λ. Similarly, t1 can be replaced 
by t. The lower limit of the integral is −∞ and the upper 
limit is t. The summation becomes the convolution 
integral:
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Mathematically, the integral of Equation 20.4 rep-
resents an infinite sum, over a continuum of time, of 
responses to impulses, each having an infinitesimal 
strength. Practically, the summation of Equation 20.3 is 
the sum of responses to pulses whose duration is finite 
but small compared with the smallest time constant of 
the circuit or the reciprocal of the highest frequency in 
the circuit’s natural response. Note that in changing the 
summation to integration, the primary time variable 
becomes λ instead of t, the latter becoming a constant 
with respect to the integration.

The integral of Equation 20.4 is the same as that 
of Equation 20.1, except for the upper limit. It is seen 
from Figure 20.4b that if λi, the time at which the 
impulse occurs, exceeds t1, the time at which response 
is required, then the response is zero. This is because a 
physical system operating in real time does not respond 
to an impulse before this impulse occurs. Operation in 
real time means that the system response unfolds for the 
first time as current time progresses. This is in contrast 
to a recorded signal that was captured at an earlier time 
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t
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t
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i
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0
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[x(  i)     i]  (t –   i)

[x(  i)     i]  (t –   i)

[x(  i)     ]  (t1 –   i)

FIGURE 20.4
Graphical derivation of convolution integral. (a) A function x(t) approximated by a series of narrow pulses, (b) the response h(t) of the system to 
δ(t), and (c) response of the system to the narrow pulse at t = λi in (a).
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and is being replayed later. At any instant of the record-
ing, the future response is already available. Physical 
systems do not anticipate the occurrence of an input 
before it occurs and cannot therefore respond to such 
an input, as explained in Example 11.7. If the response is 
zero for λ > t, then the upper limit in Equation 20.4 could 
just as well be infinity rather than t.

In summary, the following concept applies:

Concept: The response of an LTI circuit to an arbitrary input 
can be considered as the superposition of responses to sufficiently 
narrow pulses, each having an amplitude determined by the 
input. These narrow pulses can be approximated by impulses, 
which naturally leads to a convolution integral involving the 
input function and the impulse response of the circuit.

It is convenient, though by no means essential, to 
assume that x(t)  =  0, for t  <  0−, which means that the 
lower limit of integration in Equation 20.4 can be taken 
as 0− instead of −∞. This is usually done because of the 
link between convolution and the one-sided Laplace 
transform, which has 0− as the lower limit of integration 
(Section 21.1). Having the lower limit as 0− rather than 0 
would include an impulse at the origin. With the lower 
limit taken as 0−, Equation 20.4 reduces to the form of 
the convolution integral that is conventionally applied 
in circuit analysis, namely,

 
y t x h t d

t

( ) = ( ) -( )
-ò l l l

0  
(20.5)

If the integrand does not include an impulse at the 
origin, then the lower limit of integration can be unam-
biguously taken as zero in Equation 20.5.

It should be emphasized that according to Equation 
20.5, the given function x(t) is now x(λ), a function of 
the time variable λ rather than t. The integration is with 
respect to this new time variable λ, so that t is a constant 
as far as the integration with respect to λ is  concerned. 
t can be a particular numerical value, in which case 
Equation 20.5 evaluates y(t) at that particular value of t. 
More generally, t can assume any value within a speci-
fied range that depends on the function under consid-
eration, in which case y(t) is obtained as a function of t 
over the given range of t.

20.2.1  Graphical Interpretation

We wish to interpret the convolution integral graphically, 
as this leads to a very useful procedure for deriving the 
convolution integral. We note first of all that, in general, 
an integral represents an area. Equation 20.5 can there-
fore be considered as the area under the product of two 
functions: (1) x(λ), which is simply the given function 
x(t) with the time variable t replaced by another time 
variable λ, and (2) h(t − λ). But what is h(t − λ)? According 

to Figure 20.2, h(t − λ) can be considered to result from 
three steps: (1) t in the impulse response h(t) is replaced 
by λ to give h(λ), as in x(λ); (2) h(λ) is folded around the 
vertical axis, resulting in h(−λ), as in Figure 20.2a; and 
(3) h(−λ) is shifted by t to the right, to give h(t − λ), as 
in Figure 20.2b. These steps are illustrated in Figure 
20.5a. The product x(λ)h(t − λ) is shown in Figure 20.5b. 
According to Equation 20.5, the value of the convolu-
tion integral at t is the area under the product from λ = 0 
to λ = t, shown shaded in Figure 20.5b. As t is changed, 
the position of the shifted function h(t − λ) changes, the 
product function changes, and so does the area under 
the product from λ = 0 to λ = t.

20.2.2  Procedure Based on Graphical Interpretation

Figure 20.5b forms the basis for the graphical evalua-
tion of the convolution integral. The following steps are 
involved:

 1. Express h(t) and x(t) as function of λ.

 2. Fold the impulse response around the vertical axis, 
that is, draw it backward as h(−λ).

 3. Shift h(−λ) by t to obtain h(t − λ).
 4. Determine the area under the product x(λ)h(t − λ) 

over the given range of t. The result is y(t) for this 
range of t.

 5. Repeat steps 3 and 4 for various values of t to obtain 
y(t) over the whole range of t.

The preceding procedure is illustrated by Examples 
20.1 and 20.2, which also demonstrate, in principle, how 
convolution can be applied to obtain a circuit response 
due to an excitation that varies arbitrarily with time.

(a)

h(t –   )h(–  )

x(  )

t0

x(  )h(t –   )

(b)
t0

FIGURE 20.5
Graphical interpretation of convolution integral. (a) Impulse response 
folded around the vertical axis and shifted to the right by t and (b) the 
product of x(λ) and h(t – λ).
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Example 20.1:  Response of RL Circuit 
to a Rectangular Voltage Pulse

Consider the series RL circuit of Figure 20.6a, with R = 1 Ω, 
L = 1 H, zero initial energy storage, and vSRC(t) as the pulse 
shown in Figure 20.6b. It is required to determine i(t) as 
vSRC(t)*h(t), where h(t) is the current response to a unit 
 voltage impulse.

Solution:

h(t) is given by Equation 18.5, with K = 1, L = 1, and 
τ = 1. Replacing t by λ, the impulse response becomes 
(Figure 20.6c)

 h el ll( ) = ³- +A for, ,0  

and

 h l l( ) = £ -0 0, for  (20.6)

The two different expressions of h(λ) for λ  ≤  0− and 
λ  ≥  0+ can be combined for analytical purposes into a 
single expression by using the unit step function u(λ), as 
defined by Equation 18.5:

 h e ul ll( ) = ( )- A (20.7)

The next step is to fold h(λ) around the vertical axis, as 
explained in connection with Figure 20.2a. The function 
becomes

 h e u-( ) = -( )l ll
 (20.8)

as shown in Figure 20.7a. h(−λ) does not overlap vSRC(λ), 
so that the product vSRC(λ)h(−λ) is zero for t  =  0. When 
the folded function h(−λ) is shifted by t to the right, it 
becomes

 h t e u tt-( ) = -( )- -( )l ll
 (20.9)

as explained in connection with Figure 20.2b and shown 
in Figure 20.7b.

The next step is to form the product vSRC(λ)h(t − λ) and 
determine the area under the product for t > 0. Whereas 
the expression for h(t − λ)u(t − λ) is the same for any t > 0, 
vSRC(λ) = 2, for 0 < t < 4 s, and vSRC(λ) = 0, for t > 4 s. It 
follows that the range of the shift t must be divided into 
two, in accordance with the time variation of vSRC(λ). The 
convolution integral for the first range of t is
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The following should be noted concerning this integral:

 1. The integrand does not have any impulses and is 
finite over the range of t from t = 0 to t = 4. It follows 
that the lower limit of integration could be 0− or 0+, 
and the upper limit of integration could be 4− or 4+, 
without affecting the value of the integral, since the 
product of a finite quantity and an infinitesimal 
interval is zero. The range of integration can there-
fore be considered as 0 ≤ t ≤ 4 s. Ranges of t will 
henceforth be considered inclusive of the lower and 
upper limits unambiguously, without specifying 
(limit)− and (limit)+ when no impulses are included 
in the integrand. In the presence of impulses, the 
ranges should be specified more carefully.

 2. By definition of u(t), u(0+) = 1 and u(0−) = 0 (Equation 
18.5). It follows that over the range of integration 
from λ = 0 to λ just less than t, u(t − λ) = 1, whereas 
outside the integration range, when λ just exceeds t, 
u(t − λ) = 0. This means that u(t − λ) in Equation 
20.10 is redundant and can be ignored. It is helpful 
to remember that u(x) = 1 for x positive and u(x) = 0 
for x negative. u(0) is finite between x  =  0− and 
x  =  0+. The integral of a finite integrand between 
infinitesimal limits is zero. So when the integrand is 
finite, it can be assumed that u(x) = 0 for x negative and 
u(x) = 1 for x zero or positive.

Equation 20.10 becomes
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The area under the product from λ  =  0 to λ  =  t, 
0 ≤ t ≤ 4 s, is shown shaded in Figure 20.7b.

When t is increased beyond 4 s, the product of the two 
functions is zero beyond the edge of the pulse at t = 4 s. 
The upper limit of integration is 4, so that the convolu-
tion integral becomes
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The complete response i(t) is i(t) = iʹ(t), 0 ≤ t ≤ 4 s, and 
i(t) = i″(t) for t ≥ 4 s, as shown by the simulation plot of 
Figure 20.10. The following should be noted concerning  
Equations 20.11 and  20.12:

 1. The integrand is the same in both cases but the upper 
limit is different, which makes the integrals different.

 2. iʹ(t) and i″(t) have the same value at t = 4 s, although the 
voltage pulse is, strictly speaking, undefined at t = 4 s. 
Mathematically, this is because the integral of a finite 
integrand between two infinitesimally separated lim-
its is zero (Equation 18.22), so that the integral is the 

same at t = 4− s as at t = 4+ s. This justifies the inclusive 
limits, t ≤ 4 s and t ≥ 4 s. The lower inclusive limit 
0  ≤  t in Equation 20.11 is similarly justified, in the 
absence of an impulse at the origin.

It is instructive to derive i(t) as the response to 
two step functions: 2u(t), starting at the origin, and 
−2u(t − 4), which is a negative, delayed step stating at 
t = 4 s (Figure 20.8). When these two steps are added, 
the result is a pulse of 2 V amplitude and 4 s duration 
(Figure 20.6b). The response to 2u(t) is obtained from 
Equation 11.57, with an initial value i(0+) = 0 and a final 
value iF = 2 A and τ = 1 s. This gives Equation 20.11 as 
the response for 0 ≤ t ≤ 4 s. The response to the nega-
tive step is obtained by noting that since the circuit 
is LTI, time invariance implies that delaying the input simply 
delays the response by the same interval. The response to 
the  negative delayed step is therefore - -( )- -( )2 1 4e t A. By 
superposition, the response for t ≥ 4 s is the sum of this 
response and that given by Equation 20.11. Adding these 
two responses gives the response of Equation 20.12.

Simulation: The circuit is entered as in Figure 20.9. 
The voltage source is the pulse source VPULSE having 
the  parameters shown. In the simulation profile, Time 
domain (Transient) analysis is selected, 10s is entered 
for ‘Run to time’, 0 for ‘Start saving data after’, and 1ms 
for ‘Maximum step size’. After the simulation is run, 
the graph of Figure 20.10 is displayed, showing the cur-
rents during each of the integration intervals, as given by 
Equations 20.11 and 20.12. The source voltage has been 
added for convenience.
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Example 20.2:  Response of RL Circuit 
to a Trapezoidal Voltage Pulse

Consider the same series RL circuit of Example 20.1 but 
with vSRC(t) as in Figure 20.11. It is required to determine 
i(t) as vSRC(t)*h(t).

Solution:

h(t) is the same as before, and the folded impulse response 
is given by Equation 20.8 and shown in Figure 20.12a.

The next step is to form the product function 
vSRC(λ)h(t  − λ)u  (t − λ) and determine the area under the 
 product for different values of the shift t. Considering the 
first range of t, the shifted function h(t − λ) u(t − λ) is shown 

in Figure 20.12b, having the vertical edge located at λ = t. 
The product vSRC(λ)h(t − λ)u(t − λ) is 2h(t − λ) u(t − λ). Denoting 
the convolution integral y(t) in this range by iʹ, it follows 
that iʹ is the area under the product 2h(t − λ)u(t − λ) from 
λ = 0 to λ = t. This area is shown shaded in Figure 20.12b 
and is obtained analytically as

¢( ) = = -( ) £ £- -( ) -òi t e d e tt t
t

2 2 1 0 4
0

l l A s,
 

(20.13)

as in Equation 20.11. For a shift t beyond 4 s and up to t = 6 s, 
the folded and shifted impulse response h(t − λ)u (t − λ) 
is as shown in Figure 20.13. This function is multiplied 
by vSRC(λ) = (6 − λ) over the interval 4 ≤ t ≤ 6 s. Note that 
although t is restricted to the range between 4 and 6 s, the con-
volution integral is with respect to λ and starts from λ = 0, in 
accordance with Equation 20.15. The convolution integral is 
the shaded area in Figure 20.13a. It is denoted by i″ over 
the given range of t and is given by

 

¢¢( ) = + -( )

- - -

- -( ) - -( )

- - -( )

ò òi t e d e d

t e e

t t
t

t t

2 6

7 2 4

0

4

4

4

l l
l l l =

A, ££ £t 6 s
 

(20.14)
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For t ³ 6 s the folded and shifted impulse response 
h(t − λ)u  (t − λ) is as shown in Figure 20.13b. This function 
is multiplied by vSRC(λ), which is 0 for t ≥ 6 s. The con-
volution integral is the shaded area in Figure 20.13b and 
extends from λ = 0 to λ = 6. It is denoted by i‴ over the 
given range of t and is given by

 

¢¢¢( )¢ = + -( )

= - - +

- -( ) - -( )

- - -( ) -

ò òi t e d e d

e e e

t t

t t t

2 6

2
0

4

4

6

4

l ll l l

--( ) ³6 6A s, t  (20.15)

The complete response i is the convolution integral i as 
a function of t. It is given by iʹ, i″, and i‴ over the respec-
tive time intervals, as shown in the simulation plot of 
Figure 20.15. Note that i and its first derivative are con-
tinuous at the breakpoints t = 4 s and t = 6 s. The conti-
nuity of i follows from the fact that the current through 
the inductor is not being forced to change. The  conti-
nuity of di/dt follows from Kirchhoff’s voltage law: 
vSRC(t) = Ri + Ldi/dt. Since vSRC and i are continuous at 
the breakpoints, then di/dt is continuous at these points.

Note that Equations 20.13 and 20.14 give the same 
value at t = 4 s. Similarly, Equations 20.14 and 20.15 give 

the same value at t = 6 s. This serves as a check on the 
convolution integral.

Simulation: The circuit is entered as illustrated in 
Figure 20.14. The voltage source is the piecewise-linear 
VPWL having the parameters shown. In the simulation 
profile, Time domain (Transient) analysis is selected, 10 s 
is entered for ‘Run to time’, 0 for ‘Start saving data after’, 
and 0.5s for ‘Maximum step size’. After the simulation 
is run, the graph of Figure 20.15 is displayed showing 
the source voltage and the three currents during each of 
the integration intervals.

Problem-Solving Tip

• A simple check on convolution is that the 
c onvolution integral should have the same value at 
the common limits of consecutive ranges of t.

Primal Exercise 20.2

If h(t) and x(t) are as shown in Figure 20.16, determine 
the value of y(t) = f(t)*g(t) at t = 1.5 s.

Ans. −0.5.
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20.3  Operational Properties of Convolution

The convolution integral is not restricted to the interpre-
tation of Figure 20.3 in terms of the impulse response. 
It is in fact encountered in other contexts, such as prob-
ability theory. In such cases, the convolution integral 
is to be regarded simply as a mathematical operation 
on two functions of time, which may be denoted as 
f(t) and g(t), which need not be interpreted in terms of 
the input to a system and its impulse response. This 
is illustrated by Example 20.3 and is used in the fol-
lowing discussion on the operational properties of 
convolution.

20.3.1  Commutative Property

 f t g t g t f t( ) ( ) = ( ) ( )* *  (20.16)

The convolution integral is commutative, which means 
that the two functions in the integral can be inter-
changed. In terms of Equation 20.10, this means

 
y t f g t d g f t d

t t

( ) = ( ) -( ) = ( ) -( )
- -ò òl l l l l l

0 0  
(20.17)

The second integral in Equation 20.17 can be derived 
from the first by substituting u = t − λ in the first integral, 
which gives

y t f t u g u du f t u g u du
t

t

( ) = -( ) ( ) -( ) = -( ) ( )
-

-ò ò
0

0  
(20.18)

Replacing the dummy integration variable u by l  
gives the second integral in Equation 20.17.

As a consequence of the commutative property, the 
roles of the impulse response h(t) and the applied input 
x(t) can be interchanged without affecting the convolu-
tion integral.

Primal Exercise 20.3

Repeat Example 20.1 considering the rectangular wave-
form being the impulse response and the exponential 
function being the applied input.

20.3.2  Distributive Property

x t f t g t x t f t x t g t( ) ( ) + ( )éë ùû = ( ) ( ) + ( ) ( )* * *  (20.19)

The proof of this property readily follows from the 
 distributive property of integration. Thus,

 

x t f t g t x t f t g t d

x t f t d

t

( ) ( ) + ( )éë ùû = ( ) -( ) + -( )éë ùû

= ( ) -( )

-ò* l l l

l

0

ll l l+ ( ) -( )

= ( ) ( ) + ( ) ( )

- -ò ò0 0

t t

x t g t d

x t f t x t g t* * .

We have in fact implicitly used the distributive 
 properties in Example 20.2 when h(t) was convolved 
with x(t)  considered as the sum of functions over differ-
ent ranges of t.

20.3.3  Associative Property

 x t f t g t x t f t g t( ) ( ) ( )éë ùû = ( ) ( )éë ùû ( )* * * *  (20.20)

To prove this property, we note that f t g t( ) ( ) =*   
f t g t d

t

( ) -( )
-ò l l

0
. Hence, using the commutative 

property,

 
x t f t g t f t g t d x t d

tt

( ) ( ) ( )éë ùû = ( ) -( )é

ë
ê

ù

û
ú -( )

-- òò* * l l s s
00  

(20.21)

where σ is a dummy integration variable. Equation 20.21 
can be expressed as

 
f t g t x t d d

tt

( ) -( ) -( )
-- òò l s l s

00  
(20.22)

Similarly, x t f t f t x t d
t

( ) ( ) = ( ) -( )
-ò* s s

0
, and

 

x t f t g t f t x t d g t d

f t

tt

( ) ( )éë ùû ( ) = ( ) -( )é

ë
ê

ù

û
ú -( )

= ( )

-- òò* * s s l l
00

gg t x t d d
tt

-( ) -( )
-- òò l s l s

00  

as in Equation 20.22.

20.3.4  Invariance with Inverse Integration 
and Differentiation

According to this property,

f t g t f t g t f t g tn n n n( ) ( ) = ( ) ( ) = ( ) ( )( ) -( ) -( ) ( )
* * *  (20.23)

where
n is a positive integer
superscript (n) denotes the nth derivative
superscript (−n) denotes the nth integral
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Equation 20.23 can be easily proved using the 
Laplace transform for functions that are zero for 
t < 0 (Equation 21.98). Its general proof in the time 
domain for functions that are not zero for t < 0 will 
not be given here. This property is useful in deriving 
the convolution integral for functions involving lin-
ear segments and step discontinuities, as illustrated 
by Example 20.5.

Example 20.3: Convolution of Ramp 
and Cosine Functions

Convolve the two functions f(t) = tu(t) and g(t) = costu(t).

Solution:

Since the two functions are zero for t < 0, the lower limit of 
integration is zero and the upper limit is t. As there is no 
impulse at the origin, a lower limit of 0 is the same as 0−. 
The first step is to replace t by λ as the integration vari-
able, because t will be the variable in the resulting expres-
sion for the convolution integral. The functions become 
f(λ) = λu(λ) and g(λ) = cosλu(λ). The next step is to replace 
λ by (t − λ) in one of the functions. It does not matter in 
which function this replacement is made because of the 
commutative property of the convolution integral. We 
will choose for illustration the replacement of λ by (t − λ) 
in the cosine function. The convolution integral becomes

 

y t t d t t d

t d

tt

( ) = -( ) = +( )

= +

òò l l l l l l l

l l l

cos cos cos sin sin

cos cos

00

ssin sint d
t t

0 0ò ò l l l  (20.24)

Both integrals can be evaluated by integration by 
parts. This is facilitated by performing the integration 
by parts on the complex exponent ejλ. Thus,
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(20.25)

The real part is the integral of λcosλ, whereas the 
imaginary part is the integral of λsinλ. It follows that

 

y t t t t t t t t t

t t t t

( ) = + -( ) + -( )
= + -

cos cos sin sin sin cos

cos sin cos c

1
2 oos sin sin cost t t t t+ -2  

or

 y t t u t( ) = -( )1 cos ( ) (20.26)

Exercise 20.4

Repeat Example 20.3 by replacing λ by (t − λ) in λu(λ) 
rather than in cosλ and verify that the result is the same 
as Equation 20.26.

Primal Exercise 20.5

Convolve (a) 1-( ) ( )-e u tt  and e u tt- ( )2 ; (b) tu(t) and tu(t).

Ans. (a) 
1
2 2

2

- +
æ

è
ç

ö

ø
÷ ( )-

-

e
e

u tt
t

; (b) (t3/6)u(t).

20.4  Special Cases of Convolution

20.4.1  Convolution of Staircase Functions

A function of finite magnitude and duration can in 
general be approximated by a series of steps at regular 
intervals of time (Figure 20.17), the smaller the interval, 
the better is the approximation. Such a stepped func-
tion is a staircase function. The convolution integral 
of two staircase functions is a piecewise-linear function 
consisting of a series of straight line segments, as will 
be demonstrated in this section. Analytically, the con-
volution of two such functions reduces to multiplica-
tion of two polynomials and can be readily performed 
using MATLAB’s ‘conv’ command, as illustrated by 
Example 20.4. This can be useful in practice, as when 
the functions are derived experimentally and cannot be 
expressed analytically.

Example 20.4:  Convolution of Staircase Functions

It is required to convolve f t( ) and g t( ) of Figure 20.18. 
Such functions, which consist essentially of a series of 
rectangles, can be used to illustrate the convolution of 
staircase functions. Convolving rectangular functions is 
particularly simple, as is demonstrated in this example.

Solution:

The usual procedure based on the graphical interpreta-
tion is applied for the sake of illustration. The functions 

t

x(t)

0

FIGURE 20.17
Staircase approximation to a function.
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are first expressed in terms of λ. Either f(λ) or g(λ) may 
be folded and shifted by t. f(λ) will be folded and shifted 
in this example. It is generally advisable to fold and shift 
the simpler function, having the fewer number of dis-
tinct ranges of values, or to fold and shift a function that 
starts at a negative time.

Because of the discrete steps in the two functions, 
there are several ranges of t to consider:

 (a) 0 ≤ t ≤ 1: Figure 20.19a shows f(−λ) shifted to the 
right by t. Over the range 0 ≤ t ≤ 1, the magnitude 
of f(−λ) is 2 and that of g(λ) is also 2. The area under 
the product is 4t, which is linear in t and varies 
from 0 at t = 0 to 4 at t = 1. Because of this linear-
ity, no formal integration need be performed. y(t) 
over this range is a line that joins the origin, when 

t = 0 and y(0) = 0, to the point y(1) = 4 at t = 1, as 
shown in Figure 20.22. Hence, the value of the area 
under the product need only be determined for the two 
end values of t in the given range. When t = 0, there is 
no overlap between f(−λ) and g(λ), and the product 
is zero. When t = 1, Figure 20.19b applies, and the 
area under the product is 4 × 1 = 4.

 (b)  1 ≤ t ≤ 2: The linear variation of area with the shift 
of t applies no matter how many rectangles are 
involved. Linearity applies to every pair of rectan-
gles that are being multiplied together, and the sum 
of the linear functions is still linear in t. The situa-
tion when 1 ≤ t ≤ 2 is shown in Figure 20.20a. There 
are three rectangular areas involved in this case: (i) 
for the rectangles between 0 and (t  −  1), the area 
is (−1) × 2 × (t − 1) = 2 − 2t; (ii) for the rectangles 
between (t − 1) and 1, the area is 2 × 2 × (1 − (t − 1)) = 
4(2 − t) = 8 − 4t; and (iii) for the rectangles between 1 
and t, the area is 2 × 3 × (t − 1) = 6t − 6. Each of these 
areas is linear in t. When added together, the sum is 
4, which happens to be independent of t in this case. 
Thus, when t  =  1, Figure 20.19b applies, and the 
area is 4. When t = 2, the area is (−1) × 2 + 2 × 3 = 4 
(Figure 20.20b). It follows that y(t) remains at 4 from 
t = 1 to t = 2, as shown in Figure 20.22. Thus, the 
area need only be calculated at the two boundary 
values of t, that is, at t = 1 and t = 2 in this case. In 
what follows, only the areas at the boundary values 
of t will be calculated.

 (c)  2 ≤ t ≤ 3: When t = 3, Figure 20.20c applies, and the 
total area under the product is (−1) × 3 × 1 + 1 × 2 × 
1 = −1. y(t) changes from 4 at t = 2 to −1 at t = 3 
(Figure 20.22).

 (d)  3 ≤ t ≤ 4: When t = 4, Figure 20.21a applies, and the 
total area under the product is (−1) × 1 × 1 = −1. 
Hence, y(t) remains at −1 from t  =  3 to t  =  4 
(Figure 20.22).

 (e)  4 ≤ t ≤ 5: When t = 5, Figure 20.21b applies and the 
product becomes zero, because there is no overlap 
between the two functions.
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The convolution integral y t( ) is shown in Figure 20.22.
To use MATLAB for convolving two staircase functions, 

two polynomials representing f(t) and g(t) are formed. The 
independent variable of the polynomial is arbitrary but 
will be kept as t, since this is the argument of y(t). However, 
capital letters are used for the polynomials in order to dis-
tinguish the polynomial from the given function. The coef-
ficients of the powers of t in a polynomial are equal to the 
various levels of the respective staircase function, in the 
order of decreasing powers t, with the last nonzero level in 
the positive direction of the time variable t of the function 
being the constant term of the polynomial. Thus, since f(t) 
in Figure 20.18 consists of two levels, the first level is the 
coefficient of t in the polynomial in t and the second level is 
the constant term. The polynomial is written as F(t) = 2t − 1. 
G(t) consists of three levels: the first level is the coefficient 
of t2, the second level is the coefficient of t, and the third 
level is the constant term. The polynomial is written as 
G(t) = 2t2 + 3t + 1. The product of the two polynomials will 
be denoted by B(t), the breakpoint polynomial, given by

 B t F t G t t t t t t t( ) = ( ) ( ) = - + + = + - -( )( )2 1 2 3 1 4 4 12 3 2
 

It is seen that the coefficients of B(t) are the values of y(t) 
at the successive nonzero breakpoints between the first 
and last zero values of y(t). Note that B(t) is not the same 
as y(t), the convolution integral. B(t) is just a polynomial 
whose coefficients give the nonzero breakpoints of y(t).

The multiplication of large polynomials is facilitated 
by MATLAB’s ‘conv’ command. If we enter the coeffi-
cients of F(x) and G(x) as arrays,

>> F = [2 –1]
>> G = [2 3 1]
followed by the command:
>> Y = conv(F, G)
MATLAB returns
Y = 
4  4  –1  –1

corresponding to the values of y(t) at the successive non-
zero breakpoints, between the first and last zero values 
of y(t).

When deriving the convolution integral as the prod-
uct of two polynomials, the following should be noted:

 (a) It is assumed that unit time intervals are used. When 
the time intervals are not unity, the intervals should be 
scaled to unity, but the values of the function should 
also be scaled so as to keep the same area under the 
product of the functions (see Problem P20.26).

 (b) It is most convenient to assume that both staircase 
functions start at t = 0. If that is not the case, the 
functions are advanced or delayed so as to make 
them start at t = 0, then the convolution integral is 
shifted back by an amount that is opposite that of 
the total net shift of the two functions. This is illus-
trated by problems at the end of the chapter.

Problem-Solving Tip

• It is generally advisable to fold and shift the sim-
pler function, having the fewer number of distinct 
ranges of values, or to fold and shift a function that 
starts at negative time.

20.4.2  Convolution with Impulse Function

It is required to convolve a function x(t)u(t) with δ(t), 
a unit impulse at the origin (Figure 20.23a). When t is 
replaced by λ and the impulse function is folded around 
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shifted by t to form the convolution integral.
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the vertical axis, the resulting function δ(−λ) remains 
an impulse at the origin because δ(t) is an even func-
tion (Equation 18.8). When shifted by t to the right 
(Figure 20.23b), it becomes δ(t − λ). This is the same as 
δ(λ − t), because of the evenness of the impulse function. 
The convolution integral becomes

 
x t t tx u t d

t

( ) ( ) -= >
-ò* ( ) ( ) ( ) ,d l l d l l

0
0

 
 (20.27)

It is assumed that x(λ) does not have an impulse at 
the origin, so that the lower limit of integration could 
be unambiguously 0, as explained in connection with 
Equation 20.5. The integrand is nonzero over the dura-
tion of the impulse from λ = t− to λ = t+. Assuming that 
the function is continuous at λ = t, this value is substi-
tuted for λ in x(λ)u(λ), as usual in evaluating expressions 
involving impulses. The term x(t) is a constant as far as 
the integration with respect to λ is concerned and can 
be taken outside the integral. Since u(λ)  =  1 over the 
range of integration, with t positive, u(λ) is redundant 
in the integrand. Equation 20.27 becomes
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(20.28)

where the integral of a unit impulse over the duration of 
the impulse is, by definition, unity. The restriction t > 0 is 
removed by multiplying the function by u(t). Equation 
20.28 becomes

 x t t x t u t( ) ( ) = ( ) ( )*d  (20.29)

It is seen that convolution of a function with a unit 
impulse at the origin is the function itself, for t  >  0, 
assuming the function is continuous over the given 
range of t.

In terms of the graphical interpretation of Figure 20.23, 
recall that multiplying a continuous function x(λ) by an 
impulse at time λ = t makes the impulse “sample” the 
function at this instant, that is, return the value of the 
function x(t) as the strength of the impulse x(t)δ(λ − t) at 
time t. The area under this product, over the duration of 
the impulse, is x(t). Hence, as t is increased from zero, 
the function is “swept” by the impulse, resulting in x(t) 
over the range of the given function.

Equation 20.29 can be interpreted in terms of the 
commutative property of convolution. Thus, δ(t) can 
be considered as an input and x(t) as the response 
to δ(t). Equation 20.29 is simply an expression of the 
fact that if the input is an impulse δ(t), the response is 
 evidently x(t).

To appreciate the significance of convolution with an 
impulse, suppose that the impulse is delayed by a > 0, 

while x(t) remains as it was (Figure 20.24a). Replacing 
t  by λ, the functions become x(λ) and δ(λ − a). When 
the impulse function is folded and shifted to the right 
by t, λ is replaced by (t − λ) so that the impulse function 
becomes δ(t − λ − a) (Figure 20.24b). Since the impulse 
function is even, the argument can be negated, without 
changing the value of the function. Thus, δ(t − λ − a) = 
δ(λ − t  +  a)  = δ(λ − (t − a)). The convolution integral 
becomes

x t t a x u t a d t a
t

( ) ( ) = ( ) ( ) - -( )( ) >
-ò* ,d l l d l l-

0

 (20.30)

The integrand is nonzero over the duration of the 
impulse, from λ = (t − a)− to λ = (t − a)+. Assuming that 
the function is continuous at λ = t − a, this value is sub-
stituted for λ in the expression x(λ)u(λ), as usual in eval-
uating expressions involving impulses, to give x(t − a) 
u(t − a); x(t − a) is a constant as far as integration with 
respect to λ is concerned and can be taken outside the 
integral. u(t − a) = 1 for t > a. Equation 20.30 becomes
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(20.31)

The restriction t  >  a is removed by multiplying the 
 function by u(t − a). Equation 20.31 becomes

 x t t a x t a u t a( ) -( ) = -( ) -( )*d  (20.32)

It is seen that convolution of a function with a 
delayed impulse delays the function by the delay of the 
impulse. This result can be interpreted along the same 
lines as in Figure 20.23. The difference is that the given 
function is not swept until t just exceeds a, the delay 

t
a

(t – a)

t

(a)
0 0

x(t)u(t)

(t – a)–a

t
1

 (t –   – a)

x(  )u(  )
(–  – a)

0
(b)

FIGURE 20.24
Convolution with delayed impulse. (a) A function x(t)u(t) is to be 
 convolved with δ(t – a), and (b) δ(λ – a) folded around the vertical axis 
and shifted by t to form the convolution integral.
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of the impulse. This means that the function that is 
returned by the convolution integral is the given func-
tion delayed by a.

The next step is to generalize convolution with an 
impulse to the case where the impulse is delayed 
by a > 0 and the function x(t) is delayed by b > 0. The 
delayed function is considered as x(t − b)u(t − b) and not 
as x(t − b)u(t), which in general is a different function 
altogether. To appreciate the difference, consider the 
function x(t)u(t), with x(t) =  t, as in Figure 20.25a. The 
extension of x(t) = t to t < 0 is shown in dashed line. If 
x(t) is delayed by b > 0 and multiplied by u(t), the result-
ing function is shown as the solid line in Figure 20.25b. 
On the other hand, if the delayed function x(t − b) is 
multiplied by the delayed step function u(t − b), then the 
 function of Figure 20.25a is delayed as is by b, as shown 
in Figure 20.25c. In other words, x(t − b)u(t − b) = 0 for 
t < b and is x(t − b) for t > b, just as the function x(t)u(t) = 0 
for t < 0 and is x(t) for t > 0.

The function x(t)u(t) of Figure 20.23a is shown as a 
delayed function x(t − b)u(t − b) in Figure 20.26a, together 
with the delayed impulse δ(t − a). When t is replaced 
by λ, and the impulse is folded around the vertical axis 
and shifted by t to the right, λ is replaced by (t − λ) so 
that the impulse becomes δ(t − λ − a) (Figure  20.26b). 
Since the impulse function is even, the argument can 
be negated, without changing the value of the function. 
Thus, δ(t − λ − a) = δ(λ − t + a) = δ(λ − (t − a)). The convo-
lution integral becomes

x t b t a

x b u b t a d t b a
t

– * –
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-ò

d

l l d l l
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(20.33)

There is no overlap if t < (b + a). The integrand is non-
zero over the duration of the impulse, from λ = (t − a)− to 
λ  =  (t − a)+. Assuming that the function is continuous 
at λ = t − a, this value is substituted for λ in the expres-
sion x(λ − b)u(λ − b), as usual in evaluating expressions 
involving impulses. The terms x(λ − b)u(λ − b) in the inte-
grand become x(t − a − b)u(t − a − b). The term x(t − a − b) 
is a constant as far as integration with respect to λ is con-
cerned and can be taken outside the integral. The step 
function u(t − a − b) is redundant since its argument is 
positive for t > (b + a). Equation 20.33 becomes

x t b t a

x t a b t a d x t b a t b a
t a

t
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The restriction t > (b + a) is removed by multiplying 
the function by u(t − b − a). Equation 20.34 becomes

 x t b t a x t a b u t a b– * –( ) ( ) = - -( ) - -( )d  (20.35)

In effect, as t increases beyond (a  +  b), the impulse 
sweeps over the x(λ − b)u(λ − b) function, returning the 
values of the function x(t − b), but after a further delay a.

Concept: Convolving a function with a unit impulse delays 
the function by the delay of the unit impulse, assuming the 
function to be continuous over given range of the shift t.

Note that whereas multiplication of a function by a 
unit impulse samples the function at the time of occur-
rence of the impulse (Example 18.1), convolving the 
function with a unit impulse delays the function by 
the delay of the impulse. If the unit impulse occurs at 
the origin, the function is unaltered.
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FIGURE 20.25
Delaying a function. (a) The functions x(t) = t and x(t) = tu(t), (b) the 
function (t – b)u(t), and (c) the function (t – b)u(t – b).
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FIGURE 20.26
Convolution of delayed function with delayed impulse. (a) A delayed 
function x(t – b)u(t – b) is to be convolved with δ(t – a), and (b) δ(λ – a) 
folded around the vertical axis and shifted by t to form the convolu-
tion integral.
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20.4.3  Convolution with Step Function

It is required to convolve a function x(t)u(t) with u(t), 
a unit step function at the origin. If t is replaced by λ, 
and u(λ) is folded around the vertical axis, the func-
tions become as shown in Figure 20.27. When u(−λ) is 
shifted to the right by t, it becomes u(t − λ). The product 
x(λ)u(λ)u(t − λ) is the part of the function x(λ) between 0 
and t. The area under the product, which is the convolu-
tion integral, is the shaded area. It is seen that this area is 
simply the integral of x(λ) between 0 and t. Thus,

 
x t u t x d

t

( ) ( ) = ( )ò* l l
0  

(20.36)

Suppose that u(t) is delayed by a  >  0, which is the 
same as shifting u(t) to the right by a, so it becomes 
u(t − a) (Figure 20.28a). Suppose that the function x(t) 
is delayed by b  >  0 (Figure 20.28a) to become x(t − b) 
u(t − b), as in Figure 20.28a. When t is replaced by λ, and 
the step function u(λ − a) is folded around the vertical 
axis and shifted by t to the right, λ is replaced by (t − λ) 
so that the step function becomes u(t − λ − a). It is seen 
from Figure 20.28b that if t < (a + b), there is no overlap 

between the functions u(t − λ − a) and x(λ − b)u(λ − b), 
so that the product is zero. The product is nonzero only 
for t  >  (a  +  b). The convolution integral is the shaded 
area under the product and is given by

 x t b u t a x b u b d t a b
b

t a

-( ) -( ) = -( ) -( ) > +( )
-

ò* ,l l l  
(20.37)

u(λ − b) in the integrand is redundant, because it is 
zero for λ  <  b, and the lower limit of integration is b, 
anyway. With t > (a + b), it follows that t − a > b, so that 
the step function is unity over the range of integration. 
The restriction that t > (a + b) can be accounted for by 
multiplying the integral by u(t − a − b). Equation 20.37 
becomes
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(20.38)

The following concept applies:

Concept: Convolving a function with a unit step is equiva-
lent to integrating the function and delaying it by the delay of 
the unit step. The range of integration is from the start of the 
function to a value of the time variable λ that is t minus the 
delay of the unit step.

If the unit step occurs at the origin, the function is 
 integrated up to t, as in Equation 20.36. Example 20.5 
illustrates convolution with step and impulse functions, 
as well as Equation 20.23.

Primal Exercise 20.6

Determine (a) y(t) = u(t)*u(t); (b) y(t) = u(t)*δ(t), consid-
ering the convolution as being either with a unit step 
at the origin or with a unit impulse at the origin; and 
(c) y(t) = u(t)*tu(t).
Ans. (a) tu(t); (b) u(t); (c) (1/2)t2u(t).

Primal Exercise 20.7

Determine the convolution of f(t) shown in Figure 20.29 
with δ(t − 0.5), where t is in s.
Ans. f(t) is delayed by 0.5 s.

Primal Exercise 20.8

Determine the value of the convolution integral at t = 0 
when f(t) in Figure 20.30 is convolved with the impulses 
2(δ(t + 1) + δ(t − 1)).
Ans. 8.
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FIGURE 20.27
Convolution with step at origin.
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FIGURE 20.28
Convolution of delayed function with delayed step.
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Example 20.5:  Convolution with Derivative 
of Trapezoidal Function

It is required to evaluate the convolution integral of 
Example 20.2 using Equation 20.23 with n = 1.

Solution:

Either vSRC(t) or h(t) can be identified with f(t) or g(t). 
Identifying vSRC(t) with f(t), the derivative of vSRC(t) is as 
shown in Figure 20.31a. vSRC(t) = 0, t < 0, with a step jump 
to vSRC(t) = 2 at t = 0, whose derivative is the impulse 
2δ(t). The derivative v tSRC

1 0( ) ( ) = , 0  <  t  <  2, v tSRC
1 1( ) ( ) = - , 

4 < t < 6 s, and v tSRC
1 0( ) ( ) = , t > 6 s. The rectangular func-

tion in the interval 4 < t < 6 s can be considered as the 
sum of two step functions −u(t − 4) and u(t − 6), shown 
dashed in Figure 20.31a. The integral of the response to 
the unit impulse is (Figure 20.31b)

 
h t e dt e u tt t
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(20.39)

For the interval between 0 and 4 s, h t-( ) ( )1  is convolved 
only with the impulse 2δ(t), that is,

 
¢( ) = ( ) ( ) = -( ) £ £-( ) -i t h t t e tt1 2 2 1 0 4* d s (20.40)

which is identical with Equation 20.13 over the interval 
0 4£ £t s.

Convolution with the negative step is obtained from 
Equation 20.38 with a = 4 and b = 0. This gives
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(20.41)

To obtain the convolution integral for the interval from 
4 to 6 s, the convolution with the step −u(t − 4) is added 
to the convolution integral with the impulse, because 
the convolution integral starts at t = 0− (Equation 20.5). 
Adding Equations 20.40 and 20.41 gives Equation 20.14.

Convolution with the positive step is obtained from 
Equation 20.38 with a = 6 and b = 0. This gives
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(20.42)

To obtain the convolution integral for t  ≥  6  s, 
Equation 20.42 should be added to Equations 20.40 and 
20.41, which gives Equation 20.15.

★20.4.4  Implications of Impulse Response

Convolution with impulse and step functions can be 
interpreted in terms of system memory and distortion. 
Consider Figure 20.32a, which is essentially the same 
as Figure 20.4. Recall that in evaluating the convolution 
integral at time t, a narrow-pulse constituent of the input 
such as x(λi) at λ = λi, shown in gray in Figure 20.32a, is 
interpreted as an impulse, and its contribution to the 
output at t is evaluated by multiplying x(λi) by the value 
of the impulse response h(t − λi), at a time (t − λi) after 
the start of the impulse response. Time t can be inter-
preted as the “present instant” at which the convolu-
tion integral, or output, is desired. Pulses occurring at 
λ > t are “future” inputs that have not yet occurred. As 
pointed out earlier, the contributions of these pulses to 
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Figure for Primal Exercise 20.7.
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Figure for Primal Exercise 20.8.
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Figure for Example 20.5.
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the present input are excluded by taking t as the upper 
limit of the convolution integral, on the basis that phys-
ical systems operating in real time are causal, that is, 
they do not anticipate, and hence do not respond, to an 
input before it occurs.

Pulses occurring at λ < t are “past” inputs whose contri-
butions are summed by the integration to obtain the total 
response at time t. The contributions of these pulses are 
weighted by the impulse response h(t − λi). It is seen from 
Figure 20.32a that this weighting depends on the shape 
of the impulse response. Because of the exponential 
decay of the impulse response shown, pulses occurring 
over part ‘ab’, shown crossed in Figure 20.32a, have more 
weight than pulses occurring earlier in time, over the part 
‘bc’. The contributions of pulses occurring at λ <  t can 
be interpreted as a kind of “memory” possessed by the 
circuit, in the sense that past inputs are not “f orgotten”, 
since they affect the output at the present time t. If the 
impulse response is itself an impulse (Figure 20.32b), 
the circuit is “memoryless” in the sense that the present 
output depends only on the present input. On the other 
hand, a circuit whose impulse response is a step function 
(Figure 20.32c) has “perfect memory” in the sense that 
past inputs are not only remembered, but their contribu-
tions to the present input are equally weighted.

It may be wondered as to the kind of circuit that is 
memoryless or has perfect memory. If we consider a 
unit impulse of current δ(t) applied to a resistor R, the 
voltage response is h(t)  =  Rδ(t), as in Figure 20.32b. 

An  ideal resistor is therefore memoryless, and by 
extension, purely resistive circuits are memoryless as 
well. On the other hand, if a unit impulse of current 
δ(t) is applied to a capacitor C, the voltage response is 

h t C t dt u t C
t

( ) = ( ) ( ) = ( )ò1
0

/ /d , which is a step function, 

as shown in Figure 20.32c. An ideal capacitor therefore 
has perfect memory, and by extension, purely capacitive 
circuits have perfect memory as well.

Another implication of the impulse response is that 
if this response is an impulse at the origin, the output 
is the same as the input, but scaled by the strength of 
the impulse (Equation 20.29). The output is therefore an 
undistorted form of the input, where distortion refers 
to deviation of the output waveform from that of the 
input. If the impulse response is a delayed impulse, 
the output is also undistorted but is delayed with 
respect to the input (Equation 20.32). In the frequency 
domain, a distortionless delay is produced by circuits 
 having a magnitude response that is independent of 
frequency and a phase shift that is directly proportional 
to frequency (Equation 23.32). On the other hand, if the 
impulse response is a step function, the output wave-
form is highly distorted by the integration of the input 
(Equation 20.38).

In conclusion, the larger the deviation of the impulse 
response of a circuit from an impulse, the more substan-
tial is the circuit memory and the larger is the distortion 
of the output, compared to the input.
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20.5  Some General Properties 
of the Convolution Integral

We will summarize in what follows some general prop-
erties of the convolution integral that can serve as a 
guide to its derivation and a check on its correctness.

Property 1: If both functions being convolved start with 
finite or zero values, the convolution integral starts with a 
zero value, at a value of t when overlap between the two func-
tions is just about to begin.

Thus, the two functions convolved in Examples 20.1, 
20.2, and 20.4 both start with finite values at t = 0+. The 
convolution integrals y(t) in Figures 20.10, 20.14, and 
20.22 all start at the origin. This follows from the fact that 
if one function is folded, without shift (t = 0), it extends 
from the origin in the negative direction of λ, whereas 
the other function extends from the origin in the posi-
tive direction of λ. The two functions do not overlap for 
t < 0, but overlap for t > 0. Hence, y(t) also starts at the ori-
gin. In Example 20.5, v tSRC

1( ) ( ) has an impulse at the origin, 
whereas h t-( ) ( )1  starts with a zero value at the origin. y(t) 
starts at the origin (Figure 20.31) because the product of 
an impulse and zero is zero (Example 18.1). Had h t-( ) ( )1  
started with a finite value, then y(t) would have started 
with a finite value.

Property 2: If both functions being convolved end with a 
value of zero, the convolution integral also ends with a value 
zero, at a finite value of t when there is no longer any overlap 
between the two functions.

In Example 20.4, both functions end with a zero value. 
y(t) ends with a zero value. In Examples 20.1 and 20.2, 
h(t) theoretically extends to infinity, so that y(t) also 
extends to infinity.

Property 3: If both functions being convolved are of finite 
duration, the duration of the convolution integral is the sum 
of the durations of the two functions.

Thus, f(t) and g(t) in Figure 20.18 are of durations of 
two and three units, respectively. The duration of the 
convolution integral in Figure 20.22 is five units. The 
justification follows from Figure 20.21b. The overlap 
between the two functions just ends, and y(t) becomes 
zero, for a value of t that is the sum of the durations of 
the two functions.

Property 4: Delaying one or both functions being convolved 
delays the start of the convolution integral by an interval that 
is the sum of the delays of the two functions.

In Equation 20.35, the convolution integral is delayed 
by the sum of the delays of x(t) and the impulse f unction, 
until overlap just begins. Similarly, in Equation 20.38, 

the convolution integral is delayed by the sum of the 
delays of x(t) and the step function.

Examples 20.6 and 20.8 illustrate convolution with 
a function that starts at a finite negative time. In such 
cases, the negative value of t at which a function starts 
is effectively a “negative delay”. Moreover, the time- 
invariant property of LTI systems can be invoked in 
these cases, as illustrated by Example 20.6.

Example 20.6:  Convolution of Pulse with Itself

f(t) in Figure 20.33a is usually denoted as Arect(t/τ). It is 
required to derive the convolution integral of f(t) when 
convolved with itself.

Solution:

Method 1: When t is replaced by λ, and f(λ) is folded around 
the vertical axis, its waveform does not change because 
of its even symmetry. The product is [Arect(t/τ)]2 and the 
area under the product is A2τ. Evidently, this is the maxi-
mum value of the convolution integral, for any shift to the 
right or left reduces the area under the product.

Because f(t) starts with a finite value at t  =  −τ/2, the 
convolution integral must start at zero, with no overlap. 
In order for overlap to just begin, the folded function 
should be shifted to the left by τ (Figure 20.33b), that is, 
t = −τ. For −τ ≤  t ≤ 0, the shifted function is shown in 
Figure 20.34a. The convolution function y(t) is reduced 
from its maximum value of A2τ by the product area A2t. 
The area under the product becomes A2(t + τ), −τ ≤ t ≤ 0, 
which is the equation of a straight line of slope 1 and 
which intersects the time axis at t = −τ. Thus, y(t) = A2τ for 
t = 0 and decreases linearly to zero at t = −τ (Figure 20.35). 
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Note that the leading edge of the folded and shifted func-
tion is at τ/2 − (−t) = τ/2 + t, −τ ≤ t ≤ 0, and its trailing 
edge is at τ/2 + t − τ = −τ/2 + t. The convolution integral 

is y t A d A t t
t

1
2 2

2

2

0( ) ,
/

/
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ò l t t
t

t

, as before.

If the folded function is shifted to the right by t, 
the area under the product is also reduced until there 
is no longer any overlap at t  =  τ (Figure 20.34b). For 
0 ≤ t ≤ τ, the maximum area is reduced by A2t, so that 
y(t) = A2(−t + τ), which is the equation of a straight line 
of slope − 1 and which intersects the time axis at t = τ. 
It is seen that y(t) = A2τ for t = 0 and decreases linearly 
to zero at t = τ (Figure 20.35). The leading edge of the 
folded and shifted function is at τ/2 + t, 0 ≤ t ≤ τ, and 
its trailing edge is at τ/2 +  t − τ = −τ/2 +  t, the same 
as for negative t, since t is a variable that can assume 
positive or negative values, so that as a symbol t can be 
treated like a positive number. The convolution integral 

is y t A d A t t
t

1
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2

2
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- +ò l t t
t

t

, as before.

Method 2: Let f(t) be shifted by τ/2 to the right, so that 
it starts at the origin (Figure 20.36a). When t is replaced 
by λ, and f(λ) is folded around the vertical axis, the right-
hand vertical edge of f(−λ) coincides with the vertical 
axis, so that no overlap occurs at t = 0 between f(λ) and 
f(−λ). The  convolution integral y(t) starts from zero at 

t = 0. When the folded function is shifted by t to the right, 
0 ≤ t ≤ τ (Figure 20.36b), the area under the product is A2t 
and reaches a maximum value of A2τ at t = τ. For τ ≤ t ≤ 2τ 
(Figure 20.36c), the area under the product is y(t) = A2(τ − 
(t − τ)) = A2(2τ − t). y(t) decreases linearly from A2τ at t = τ 
to zero at t = 2τ (Figure 20.36d).

Since the system is an LTI, then shifting the input by a 
certain time interval shifts the output by the same time 
interval. If f(t) in Figure 20.36a is shifted to the left by 
τ/2, it becomes as in Figure 20.33a. But since the func-
tion is convolved with itself, this means that two input 
functions are each shifted to the left by τ/2. The output 
is shifted to the left by τ. If y(t) in Figure 20.36d is shifted 
to the left by 2(τ/2) = τ, it becomes as in Figure 20.35.

An important consideration in convolution based on 
the graphical procedure is identifying the consecutive 
ranges of t of the convolution integral. In general, a dis-
tinct range of t of the convolution integral is defined by 
the following:

 1. The integrands of the convolution integral 
are the same over the given range of t, but are 
 different from those of the preceding range of t 
or the following range of t, where an integrand 
is the product, over the range, of the unshifted 
function and the folded and shifted function

 2. The integrands of the convolution integral are 
the same as those of a preceding range of t, or 
a following range of t, but the integration limits 
are different.

As mentioned previously, a useful test for the correct-
ness of the ranges of t is to verify that the convolution 
integral has the same value for values of t that are com-
mon between successive ranges of t. The following two 
examples illustrate these points.

Example 20.7:  Convolution of Pulse 
with Two Half-Sinusoids

It is required to derive the convolution integral of the 
functions f(t) and g(t) in Figure 20.37, where g(t) = 2sinπt, 
0 ≤ t ≤ 1 s, and g(t) = −2sinπt, 1 ≤ t ≤ 2 s.
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Solution: 
After replacing t in the given functions by λ, f(λ) is 
folded and shifted to the right by t. The first range of t 
is 0 ≤ t ≤ 1 s (Figure 20.38a). Over this range, the prod-
uct of f(t − λ) and g(λ) has the same expression, but this 
expression is different from that for t > 1. The convolu-
tion integral is

y t d t t
tt

1 00
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2 2
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(20.43)

The end values are y1(0)  =  0 and y1(1)  =  4/π. As 
f(t − λ) is shifted further to the right, the next range of t 
is 1 ≤ t ≤ 2 s (Figure 20.38b), over which the product of 
f(t − λ) and g(λ) has the same expression, but this expres-
sion is different from that for t < 1, because of the nega-
tive sine function and the added product with the first 
sine function. The convolution integral is
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The end values are y2(1)  =  4/π and y2(2)  =  8/π. As 
f(t − λ) is shifted further to the right, the next range of t 
is 2 ≤ t ≤ 3 s (Figure 20.39a). The convolution integral is
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y3(t) is independent of t over this range. Note that the 
integrands in Equations 20.44 and 20.45 are the same, 
but the upper integration limit of the second integral is 
different. This gives a different convolution integral and 
hence defines a distinct range of t.

As f(t − λ) is shifted further to the right, the next range 
of t is that for which the trailing edge of f(t − λ), at (t − 3), 
is between 0 and 1 (Figure 20.39b), that is, 3 ≤ t ≤ 4 s. Over 
this range, the product of f(t − λ) and g(λ) has the same 
integrands as in Equation 20.45 but a different lower 
limit of the first integral. The convolution integral is

y t d d
t t4

3

1

3

1

1

2

2 2
2

2

( ) = + - = -éë ùû

+ é

- -ò òsin sin cos

cos

pl l pl l
p

pl

p
plëë ùû = -( ) £ £

1

2 2
3 3 4

p
pcos ,t t s

 
(20.46)

The end values are y4(3)  =  8/π and y4(4)  =  4/π. As 
f(t − λ) is shifted further to the right, the next range of t 
is that for which the trailing edge of f(t − λ), at (t − 3), is 
between 1 and 2 (Figure 20.40a), that is, 4 ≤ t ≤ 5 s. Over 
this range, the product of f(t − λ) and g(λ) has the same 
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expression, but this expression is different from that for 
t < 4. The convolution integral is

y t d t
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The end values are y5(4) = 4/π and y5(5) = 0. For t ≥ 5, 
the there is no overlap and y(t)  =  0. The convolution 
integral y(t) is shown in Figure 20.40b.

In convolving functions starting at a finite negative 
time, specifying the different ranges of t of the convolu-
tion integral is considerably facilitated by identifying a 
part of the function whose abscissa has the same value as 
the shift in t. This is illustrated by the following example.

Example 20.8: Convolution of Triangular 
and Biphasic Pulses

It is required to derive the convolution integral of the 
functions f(t) and g(t) shown in Figure 20.41.

Solution:

g(t) extends into negative time. When t is replaced by 
λ, and g(λ) is folded around the vertical axis, its wave-
form does not change because of its even symmetry 
(Figure 20.42a). For t = 0, that is, without any shift of g(−λ), 
the product g(−λ)f(λ)  ≠  0, and the convolution integral 
y(0) is the shaded area under the product, which is 0.5. 
This is not the start of the convolution integral, because 
when the two functions being convolved start with zero 
or finite values, the convolution integral should start with 
a zero value, corresponding to no overlap between the 
unshifted function and the other function that has been 
folded. These functions just overlap if g(−λ) is shifted to 
the left by 1 s (Figure 20.42b). Note that the λ-coordinate 
of the vertex of the shifted function g(t − λ) is equal to the 
shift: with no shift (t = 0), the vertex is on the vertical axis 
(λ = 0), whereas with a shift of t = −1, the λ-coordinate of 
the vertex is −1. Hence, the amount of shift is the same 

as the λ-coordinate of the vertex. The leading endpoint 
of g(t − λ) is at λ = (t + 1) and its trailing endpoint is at 
λ = (t − 1). Note that in terms of t as a symbol, the coor-
dinates of the vertex and the two endpoints are the same 
for any shift of t, positive or negative.

The convolution integral y(t) is obtained by increas-
ing t over consecutive ranges until there is no overlap 
between f(λ) and g(t − λ). As g(t − λ) in Figure 20.42b is 
shifted to the right, the first range of t is when the vertex 
is between λ = −1 and λ = 0 or when the leading end-
point, t + 1, is between λ = 0 and λ = 1 (Figure 20.43a). 
That is, 0 ≤ t + 1 ≤ 1 or −1 ≤ t ≤ 0. Over this range, f(λ) = 1 
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and g(t − λ) = (−λ + t + 1), the equation of the negatively 
sloping line. This equation is most easily obtained by 
noting that the slope of the line is −1, and its ordinate is 
zero at λ = (t + 1). The product has the same expression 
over this range, but a different expression for (t + 1) > 1 
or t > 0. The convolution integral y1(t) over this range is
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t t
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This is in fact the area (t + 1)2/2 of a right isosceles tri-
angle having a side (t + 1). The end values are y1(−1) = 0 
and y1(0) = 0.5 (Table 20.1).

As g(t − λ) is shifted further to the right, the next 
range of t is that when the vertex is between λ = 0 and 
λ = 1 or the leading endpoint, t + 1, is between λ = 1 and 
λ = 2 (Figure 20.43b). That is, 1 ≤ t + 1 ≤ 2 or 0 ≤ t ≤ 1. 
Over this range, the product of f(λ) and g(t − λ) has the 
same expression, but this expression is different from 
that for (t + 1) < 1 or for (t + 1) > 2. The equation of the 
positively sloping line is g(t − λ) = (λ − t + 1). The slope 
of the line is +1 and its ordinate is zero at λ = (t − 1). 
The convolution integral is
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Note that, geometrically, the area under the product 
is the algebraic sum of areas of the three figures: (i) a 
trapezoid of width t and of sides 1 and (1 − t) (this area 
is t(2 − t)/2 = t − t2/2); (ii) a trapezoid of width (1 − t) 
and of sides 1 and (1 − (1 − t)) =  t (this area is (1 + t)
(1 − t)/2 = 1/2 − t2/2); and (iii) a right isosceles trian-
gle of side t and area t2/2. Adding the positive areas of 

the trapezoids to the negative area of the triangle gives 
the same area as in Equation 20.49. The end values are 
y2(0) = 0.5 and y2(1) = 0 (Table 20.1). It should also be 
noted that the equations of the two lines in terms of t as 
a symbol are the same for all ranges of t.

As g(t − λ) is shifted further to the right, the next 
range of t is that when the vertex is between λ  =  1 
and λ  =  2 or the trailing endpoint, t − 1, is between 
λ = 0 and λ = 1 (Figure 20.44a). That is, 0 ≤ t − 1 ≤ 1 
or 1 ≤ t ≤ 2. Over this range, the product of f(λ) and 
g(t − λ) has the same expression, but this expression is 
different from that for (t + 1) < 2 or for (t + 1) > 3. The 
convolution integral is
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As in the preceding range, the product area can be 
considered the algebraic sum of three areas: (i) the area 
(2  −  t)2/2  =  2 − 2t  +  t2/2 of a right isosceles triangle, 
(ii) the area −(t − 1)(3 − t)/2 = 3/2 − 2t + t2/2 of the trape-
zoid on the left, and (iii) the area −t(2 − t)/2 = −t + t2/2 of 
the trapezoid on the right. The sum of these areas is the 
same as in Equation 20.50. The end values are y3(1) = 0 
and y3(2) = −0.5 (Table 20.1).

As g(t − λ) is shifted further to the right, the next 
range of t is that when the vertex is between λ = 2 and 
λ = 3 or the trailing endpoint, t − 1, is between λ = 1 and 
λ = 2 (Figure 20.44b). That is, 1 ≤ t − 1 ≤ 2 or 2 ≤ t ≤ 3. 

TABLE 20.1

Convolution Integral

Component Range

y(t) at Range Limits

Low End High End

y t t t1
20 5 0 5( ) = + +. . −1 ≤ t ≤ 0 s 0 0.5

y t t t2
21 5 0 5( ) = - + +. . 0 ≤ t ≤ 1 s 0.5 0

y t t t3
21 5 5 3 5( ) = - +. . 1 ≤ t ≤ 2 s 0 −0.5

y t t t4
20 5 3 4 5( ) = - + -. . 2 ≤ t ≤ 3 s −0.5 0
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Over this range, the product of f(λ) and g(t − λ) has the 
same expression, but this expression is different from 
that for (t − 1) < 1 or for (t − 1) > 2, where there is no 
more overlap. The convolution integral is
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which is the area (3 − t)2/2 of a right isosceles trian-
gle of side (3 − t). The end values are y4(2) = −0.5 and 
y4(3) = 0 (Table 20.1). Beyond t = 3 s, there is no over-
lap, so that y(t) = 0. The convolution integral is plotted 
in Figure 20.45.

Problem-Solving Tip

• After a function is folded, and if the convolution 
integral is not zero at t = 0, it is advisable to first 
shift the function using a positive value of t, as 
this will easily define the coordinates on the λ-axis 
of the salient features of the folded function, 
such as leading or trailing edges or endpoints. 
The expressions of these coordinates in terms of 
t remain the same for all values of t, positive or 
negative.

Exercise 20.9

Apply time invariance to Example 20.8 by shifting g(t) 
1 s to the right so that it starts at t = 0. Derive the convo-
lution integral and then shift it back 1 s to the left and 
compare with y(t) of Figure 20.45.

Exercise 20.10

Assume that g(t) in Figure 20.41 is as in Figure 20.46. 
When g(λ) is folded around the vertical axis, and shifted 
by t to the right, specify the λ-coordinate of the vertex 
in terms of t so that it gives the correct value of λ when 
t = 0. Note that this expression applies for any shift t.

Ans. λ = t + 3, so that the vertex is at λ = 3 when there 
is no shift (t = 0) and λ = −1 when the triangle is shifted 
4 units to the left (t = −4) so there is no overlap at the 
start of the convolution integral.

Primal Exercise 20.11

Determine the maximum value of the convolution inte-
gral f(t)*g(t) in Figure 20.47 and the time at which it 
occurs.

Ans. 3 units at t = 2 units.

Learning Checklist: What Should 
Be Learned from This Chapter

• If a function is shifted to the right along the 
x-axis by a positive number a, the x-axis variable 
in the function is replaced by (x − a). Conversely, 
if a function is shifted to the left along the x-axis 
by a positive number a, the  x-axis variable in 
the function is replaced by (x + a). If the func-
tion is shifted by a variable amount denoted by 
a symbol such as t, which could have positive or 
negative values, the x-axis variable in the func-
tion is replaced by (x − t).

• If a function is folded around the y-axis, the 
x-axis variable in the function is negated. If 
the  folded function is shifted along the x-axis, 
the same aforementioned rules for shifting 
apply to only the x-axis variable in the function, 
not including any minus sign of this variable.
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• The response of an LTI circuit to an arbitrary 
input can be considered as the superposition 
of responses to sufficiently narrow pulses, each 
having an amplitude determined by the input. 
These narrow pulses can be approximated by 
impulses, which naturally leads to a convolu-
tion integral involving the input function and 
the impulse response of the circuit.

• The convolution integral that is con-
ventionally applied in circuit analysis is 

y t x h t d
t

( ) = ( ) -( )
-ò l l l

0
, where t is constant 

with respect to the integration and the integral 
gives the value of the convolution function at t.

• The procedure for graphical derivation of the 
convolution integral is as follows:

 1. Express h(t) and x(t) as function of λ.

 2. Fold the impulse response around the verti-
cal axis, that is, draw it backward as h(−λ).

 3. Shift h(−λ) by t to obtain h(t − λ).

 4. Determine the area under the product x(λ) 
h(t − λ) over the given range of t. The result 
is y(t) for this range of t.

 5. Repeat steps 3 and 4 for various values of t 
to obtain y(t) over the whole range of t.

• The convolution integral is not restricted to the 
interpretation in terms of the impulse response 
but can be regarded simply as a mathematical 
operation on two functions of time, which may 
be denoted as f(t) and g(t), which need not be 
interpreted in terms of the input to a system and 
its impulse response.

• The convolution integral is commutative, 
distributive, associative, and invariant with 
 integration of one function a number of times 
and differentiation of the other function the 
same number of times.

• Practical functions may be approximated by stair-
case functions. The convolution integral of two 
staircase functions is a piecewise-linear function 
consisting of a series of straight line segments. 
The breakpoints between these  segments occur at 
the discrete values of the shift of the folded func-
tion. The value of the convolution integral at each 
breakpoint is equal to the area under the product 
of the unshifted function and the shifted func-
tion, for each discrete shift of the folded function. 
Graphically, this area need only be calculated at 
the boundary values of the discrete shifts, and 
not at intermediate values of the shifts.

 1. Analytically, convolution of staircase  functions 
reduces to multiplication of two polynomials 

representing the functions being convolved. 
The coefficients of the terms of a given poly-
nomial are equal to the various levels of the 
respective staircase approximation of the 
function, in the order of decreasing power of 
the assigned variable of the polynomial, with 
the last nonzero level in the positive direction 
of the time variable t of the function being the 
constant term of the polynomial. The coeffi-
cients of the terms of the polynomial product 
of the two polynomials are the values of the 
convolution integral at the successive break-
points between the first and last zero values 
of the convolution integral.

• Convolving a function with a unit impulse 
delays the function by the delay of the unit 
impulse, assuming the function to be continu-
ous over the given range of the shift t.

• Convolving a function with a unit step is equiv-
alent to integrating the function and delaying 
it by the delay of the unit step. The range of 
integration is from the start of the function to 
a value of the time variable λ that is t minus the 
delay of the unit step.

• The larger the deviation of the impulse response 
of a circuit from an impulse, the more substan-
tial is the circuit memory and the larger is the 
distortion of the output, compared to the input.

• The convolution integral of two functions has 
the following properties:

 1. If both functions being convolved start with 
finite or zero values, the convolution  integral 
starts with a zero value, at a value of t when 
there is no overlap between the two functions.

 2. If both functions being convolved end with 
a value of zero, the convolution integral also 
ends with a value zero, at a finite value of t 
when there is no longer any overlap between 
the two functions.

 3. If both functions being convolved are of 
finite duration, the duration of the convolu-
tion integral is the sum of the durations of 
the two functions.

 4. Delaying one or both functions being 
 convolved delays the start of the convolu-
tion integral by an interval that is the sum of 
the delays of the two functions.

• In general, a distinct range of t of the  convolution 
integral is defined by the following:

 1. The integrands of the convolution integral are 
the same over the given range, but are dif-
ferent from those of a preceding range of t or 
a following range of t, where an integrand is 
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the product, over the range, of the unshifted 
function and the folded and shifted function

• The integrands of the convolution integral 
are the same as those of a preceding range of 
t, or a following range of t, but the integra-
tion limits are different

Problem-Solving Tips

 1. A simple check on convolution is that the con-
volution integral should have the same value at 
the limits of overlapping ranges of t.

 2. It is generally advisable to fold and shift the 
simpler function, having the fewer number of 
distinct ranges of values, or to fold and shift a 
function that starts at negative time.

 3. After a function is folded, and if the convolu-
tion integral is not zero at t = 0, it is advisable 
to first shift the function using a positive value 
of t, as this will easily define the coordinates on 
the λ-axis of the salient features of the folded 
function, such as leading or trailing edges or 
endpoints. The expressions of these coordinates 
in terms of t remain the same for all values of t, 
positive or negative.

Problems

Verify solutions by PSpice simulation.

Analytical Convolution

P20.1 Convolve 2u(t) and sintcost.

 Ans. 0.5(1 – cos2t).

P20.2 Evaluate δ(t + 1)*δ(t)*δ(t − 1).

 Ans. δ(t).

P20.3 Convolve e t-  with 1 2-( )-e t .

 Ans. 1 22+ -- -e et t .

P20.4 Evaluate the following convolution operations: (a) 
sin * cos ,w wt t  (b) cos * cos ,w wt t  and (c) sinh * sin .at tw  
(Note that sinhx = −jsinjx.)

 
Ans. (a)

 
t

t
2

sinw ; (b)
 
t

t
t

2 2
cos

sin
w

w
w

+ ; (c)
 
w w

w
sinh sinat a t

a
-
+2 2 .

P20.5 The impulse response of a circuit is h(t)  =  4u(t) − 2u 
(t − 5). Determine the circuit output when an excitation 
x(t) = 2δ(t − 1) − 3δ(t − 3) is applied with zero initial 
conditions. Calculate the output at t = 7 s.

 Ans. 8u(t − 1) − 12u(t − 3) − 4u(t − 6) + 6u(t − 8); −8.

P20.6 Given f(t)  =  cost, −π/2  ≤  t  ≤  +π/2, and f(t)  =  0 else-
where. Determine the maximum value of the convolu-
tion integral when f(t) is convolved with itself.

 Ans. π/2.

P20.7 Evaluate t u t t-( ) -( ) -( )2 2 4*d  at t = 7 s.

 Ans. 1.

P20.8 Evaluate t2u(t)*costu(t).

 Ans. 2(t − sint).

P20.9 The switch in Figure P20.9 is moved at t  =  0 from 
position ‘a’ to position ‘b’ after being in position 
‘a’ for a long time. Determine i for t  ≥  0, assuming 
v te u tSRC

t= ( )-2 3 V.

 Ans. 4 2 3 2 32 3 3e e te u tt t t- - -- ( ) - ( )( ) ( )/ / A.

P20.10 An input defined as vI  =  (t  +  1) V, −1  ≤  t  ≤  0, 
vI = (−t + 1) V, 0 ≤ t ≤ 1, and vI = 0 elsewhere is applied 
to a circuit having the impulse response h t e u tt( ) = ( )- . 
Determine the output for all t.

 Ans. t e t+ - +( )1 , −1 ≤ t ≤ 0, e t et t- +( ) -- + -1 2 2 , 0 ≤ t ≤ 1, 
and e e et t t- +( ) - - -( )- +1 12 , t ≥ 1.

P20.11 An input voltage e at-  is applied from t = −∞ to R and C 
in series. Obtain an expression for the output voltage 
across C in terms of a convolution integral taking the 
lower limit as t = -¥. Show that the response at t = 0 is 
(a) finite if a < 1/CR and (b) infinite if a ≥ 1/CR, where 
s CR= -1/  is the pole of the circuit transfer function.

P20.12 The response of a linear, time-invariant circuit to a unit 
step input, u(t), is 1-( ) ( )-e u tt . Determine the response 

to an input e u tt- ( ).
 Ans. te u tt- ( ).

Graphical Convolution

P20.13 Given h(t) and x(t) in Figure P20.13, determine h(t)*x(t) 
at t = 8.1 s.

 Ans. 160.

–

+

2 H
1 H

t = 0 5 A

1

6vSRC

i

a

b

FIGURE P20.9 
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P20.14 Given f(t) in Figure P20.14, determine f(t)*2u(t) at 
t = 5 s.

 Ans. 12.

P20.15 Given h(t) and x(t) in Figure P20.15, determine h(t)*x(t) 
at t = 6 s.

 Ans. 108.

P20.16 Given the function 4e u tt- ( ) and f(t) in Figure P20.16, 
determine h(t)*x(t) at t = 3 s. Verify the result by direct 
integration.

 Ans. 8 1 3e e- --( ).
P20.17 Determine y(0), where y(t)  =  f(t)*g(t) and f(t) is the 

semicircle shown in Figure P20.17.

 Ans. 4 − π.

P20.18 Given f(t) and g(t) as in Figure P20.18, where 
g(t) = sin(πt/2), 0 ≤ t ≤ 2, and g(t) = 0 elsewhere, determine 
f(t)*g(t) for all t. Verify the result by direct integration.

 Ans.  y t t t( ) = - ( )( ) £ £
2

1 2 0 1
p

pcos ,/ ;

 
y t t t t( ) = ( ) - ( )( ) £ £

2
2 2 1 2

p
p psin cos ,/ / ;

y t t t( ) = + ( )( ) £ £
2

1 2 2 3
p

psin ,/ ; y(t) = 0, t ≥ 3

P20.19 Given f(t) and g(t) as in Figure P20.19, evaluate f(t)*g(t) 
for all t.

 Ans. y(t) = 2 t − 2.

P20.20 Given f(t) and g(t) as in Figure P20.20, evaluate f(t)*g(t) 
for all t. Verify the result using multiplication of 
 polynomials. Determine the value of the convolution 
integral at t = 2.5 s.

 Ans. B(t) = 6t2 + 7t − 3; 2.

P20.21 Given f(t) and g(t) as in Figure P20.21, evaluate f(t)*g(t) for 
all t. Verify the result using multiplication of polynomials.

 Ans. y(3) = 0, y(4) = 6, y(5) = 4, y(6) = 2, y(7) = 4, y(8) = 0.
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P20.22 Given f(t) and g(t) as in Figure P20.22, evaluate f(t)*g(t) 
for all t. Verify the result using multiplication of 
polynomials.

 Ans. B(t) = 9t4 + 2t2 + 1.

P20.23 Given f(t) and g(t) as in Figure P20.23, evaluate f(t)*g(t) 
for all t. Verify the result using multiplication of 
polynomials.

 Ans. B(t) = t4 + 2t2 + 9.

P20.24 Given f(t) and g(t) as in Figure P20.24, where g(t)  = 
sinπ(t – 1), 1  ≤  t  ≤  2, and g(t)  =  0 elsewhere, deter-
mine f(t)*g(t) for all t. Verify by convolving with step 
functions.

 Ans. y t t t( ) = +( ) £ £
1

1 1 2
p

pcos , ; y t t( ) = £ £
2

2 3
p

, ; 

y t t t( ) = -( ) £ £
1

1 3 4
p

pcos , ; y(t) = 0, t ≥ 4.

P20.25 Given f(t) and g(t) in Figure P20.25, determine f(t)*g(t).

 Ans. y t t t t( ) = - + £ £3 6 0 1/ , ;

 y t t t t t( ) = - + - £ £3 22 2 3 2 3 1 2/ / , ; 

y t t t t( ) = - + - +3 22 4 11 34 3/ / , y(t) = 0 for t ≥ 4.2

 ≤ t ≤ 3; y t t t t t( ) = - + - £ £3 26 2 7 20 3 3 4/ / , .

P20.26 Given f(t) in Figure P20.26, determine the convolution 
integral when f(t) is convolved with itself. Verify the 
result analytically, by convolution of step functions 
and by product of polynomials.

 Ans. y(t) = (t + τ/2)u(t + τ/2) − 2tu(t) + (t − τ/2)u(t − τ/2).

P20.27 Given f(t) and g(t) in Figure P20.27, (a) evaluate f(t)*g(t); 
(b) if the impulse response of a circuit is 4e u tt- ( ), deter-
mine the response of the circuit to f(t).

 Ans. (a) y(t) = (t + 3)u(t + 3) − 2tu(t) + (t − 3)u(t − 3); 

(b)  y t e u t e u tt t( ) = -( ) +( ) - -( ) -( )- +( ) - -( )1 2 1 12 2
.
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P20.28 Given f(t) and g(t) in Figure P20.28, evaluate f(t)*g(t) for 
all t.

 Ans. y(t)  =  −t, 0  ≤  t  ≤  1; y(t)  =  (t − 2), 1  ≤  t  ≤  3; 
y(t) = −(t − 4), 3 ≤ t ≤ 4; y(t) = 0, t ≥ 4.

P20.29 Verify the commutative property for the functions of 
Example 20.2 by folding and shifting vSRC instead of h(t).

P20.30 Derive the convolution integral in Example 20.7 by 
considering f(t) as the sum of step functions.

P20.31 Derive the convolution integral in Example 20.7 by 
 differentiating f(t) and integrating g(t).

P20.32 Convolve f(t) = sinπt, 0 ≤ t ≤ π, and g(t) in Figure P20.32.

 Ans. 
1

1 0 1
p

p-( ) £ £cos ,t t ;
  - £ £

2
1 2

cos
,

p
p

t
t ; 

- +( ) £ £
1

1 2 3
p

pcos ,t t ; 0, t ≥ 3.

P20.33 Convolve f(t) and g(t) in Figure P20.33.

 
Ans. t

t
+( )

- £ £
1

2
1 0

2

, ;
 
- + + £ £

t
t t

2

2
2

1
2

0 1, ;
 

- + £ £
t

t
2

2
5
2

1 2, ;
 

3
2

2 3
2-( )

£ £
t

t, ; 0, t ≥ 3.

P20.34 Convolve f(t) and g(t) in Figure P20.34, where f(t) is a 
pulse of 2 units amplitude and 1 unit duration and g(t) 
consists of two sinusoidal half-cycles represented by 
g(t) = sinπt, 0 ≤ t ≤ 1, and g(t) = −sinπt, 1 ≤ t ≤ 2.

 Ans. y t t t1
2

1 0 1( ) = -( ) £ £
p

pcos , ; y t t2
4

1 2( ) = £ £
p

,  ; 

y t t t3
2

1 2 3( ) = +éë ùû £ £
p

pcos , ; y4(t) = 0, t ≥ 3.

P20.35 Convolve f(t) and g(t) in Figure P20.35.

 
Ans. y t

t
t t1

2

2
1
2

1 0( )= + + - £ £, ;
 
y t t t2

2 1
2

0 1( ) = - + £ £, ;
 

y t
t

t t3

2

2
1 2( ) = - £ £, ; y4(t) = 0, t ≥ 2.

P20.36 Convolve f(t) and g(t) in Figure P20.36. Sketch y(t).

 Ans. y t u t t1 4 3( ) = +( ) £ -, ; y t t t2 2 7 3 1( ) = + - £ £ -, ; 
y3(t) = 5, −1 ≤ t ≤ −1; y t t t4 2 7 1 3( ) = - + £ £, ; y5(t) = u 
(4 − t), t ≥ 3.
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Objective and Overview

This chapter and the next are concerned with the Laplace 
transform (LT), which provides an extremely powerful 
tool for analyzing linear systems. Recall that the power 
and usefulness of the phasor approach is in transform-
ing linear, ordinary differential equations with constant 
coefficients to algebraic equations for analyzing the sinu-
soidal steady state only. The LT extends this approach by 
transforming linear, ordinary differential equations also 
to algebraic equations, but for deriving the complete 
response, that is, steady-state plus transient. Moreover, 
the excitation is not limited to sinusoidal excitation but 
could be any arbitrary excitation that has an LT.

The present chapter first introduces the LT before pre-
senting its most important properties. This is followed 
by a discussion of the solution of linear,  ordinary dif-
ferential equations using the LT, and the inversion of 
the LT to obtain the time function. The power of the LT 
method is extended by some useful theorems, which 
are presented and applied at the end of the chapter. 
Of special interest are the initial-value theorem and 
the convolution theorem. The latter theorem provides 
the important link between the convolution integral 
and the LT.

21.1  General

Before defining the LT, the notion of complex frequency 
is explained. A complex frequency s can be expressed as 
the sum of a real component σ and an imaginary compo-
nent jω, that is, s = σ + jω. An s-plane can be postulated 
as an Argand diagram whose real axis is σ and whose 
imaginary axis is jω, as illustrated in Figure 21.1. The 
point ‘P’, for example, having coordinates −2 and 3, rep-
resents a complex frequency s = −2 + j3 rad/s.

We have encountered such a frequency in deriving 
the roots of an underdamped, second-order circuit as 
s1 = −α + jωd and s2 = −α – jωd (Equation 12.20). Both 
s1 and s2 are complex frequencies, where ωd is a physical 
frequency of sinusoidal functions, such as sinωdt and 
cosωdt. On the other hand, α, although having the units 
of frequency, is not a physical frequency in the same 

sense as ωd. Rather, it appears in circuit responses in 
the exponent of the term e−αt. Similarly, in the general 
expression s = σ + jω, ω is a physical frequency of sinu-
soidal functions and σ is a quantity that appears in the 
exponents of exponential terms.

Formally, the LT is a transformation from the time 
domain to the s-domain, which means that a function 
of time, f(t), becomes a function of s, according to some 
defining mathematical relation. Given an arbitrary func-
tion f(t) defined over all time, the general, or two-sided, 
LT of f(t) is defined as

 
Two-sided ofLT f t f t e dtst( ) = ( ) -

-¥

+¥

ò  
(21.1)

The integral, assuming it exists, is clearly a function 
of s alone. Let the interval from −∞ to +∞ be divided 
into two intervals, one from −∞ to 0−, the other from 
0− to +∞: 

 
Two - sided ofLT f t f t e dt f t e dtst st( ) = ( ) + ( )-

-¥

-
+¥-

-ò ò
0

0  
(21.2)

In circuit analysis, and for reasons that will become 
clear in the following chapter, a one-sided LT is defined 
as the second integral in Equation 21.2, considering the 
first integral to be zero. This is tantamount to ignoring 
 values of f(t), for t < 0−.

21
Properties of the Laplace Transform

j
s-plane

–2

j3P

FIGURE 21.1
A complex frequency in the s-plane.
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The single-sided LT will henceforth be denoted as 
L {f(t)} or F(s). From the preceding discussion,

 
L f t F s f t e dt tst( ){ } = ( ) = ( ) ³- -

¥

-ò , 0
0  

(21.3)

Concept: In the one-sided LT F(s), values of f(t) for t < 0− 
are ignored.

Specifying the lower limit of integration in Equation 
21.3 as 0− includes in the integration any impulse at the 
origin. This is desirable, because such an impulse is 
commonly encountered in circuit analysis.

Let the interval of integration in Equation 21.3 be 
divided as follows:

 
f t e dt f t e dt f t e dtst st st( ) = ( ) + ( )-

¥
- -

¥

- -

+

+ò ò ò0 0

0

0  
(21.4)

According to Equation 18.22, the integral from 0− to 
0+ is zero as long as f(t) remains finite during this inter-
val, as when f(t) does not have an impulse at the origin. 
Hence, Equation 21.4 becomes for a function f(t) that does 
not have an impulse at the origin

 
F s f t e dt f t e dtst st( ) = ( ) = ( )-

¥
-

¥

- +ò ò0 0  
(21.5)

In other words, if a function does not have an impulse 
at the origin, although it may have a finite step at the 
origin, the lower limit in the integral for the LT could 
just as well be 0+ instead of 0−. In this case, the LT of 
f(t) is the same as the LT of f(t)u(t), irrespective of the 
lower limit of integration being 0− or 0+ or 0. That is, as 
long as f(t) does not have an impulse at the origin, the 
integral of f(t)u(t) is zero between the two infinitesimal 
limits 0− and 0+. Hence, for a function that does not have 
an impulse at the origin,

 

F s f t e dt f t e dt

f t u t e dt f t

st st

st

( ) = ( ) = ( )

= ( ) ( ) = ( )

-
¥

-
¥

-
¥

- +

-

ò ò

ò
0 0

0
uu t e dtst( ) -

¥

+ò0  
(21.6)

Some useful LTs can be readily derived from the basic 
definition of Equation 21.5. Thus,

 
L u t u t e dt e dt

s
e

s
st st st( ){ } = ( ) = = -éë ùû =-

¥
- - ¥¥

- ++ò ò0 00

1 1
 

(21.7)

If K is a constant, which by definition is independent 
of time,

 
L K Ke dt

K
s

e
K
s

st st{ } = = -éë ùû =- - ¥¥

++ò 00  
(21.8)

Note that since K does not have an impulse at the ori-
gin, its LT is the same as that of Ku(t).

If f(t) = e−at,

 
L e e e dt

s a
e

s a
at at st s a t- - - - +( ) ¥¥

{ } = =
+

-éë
ù
û =

+--ò 1 1
00  

(21.9)

To evaluate L{δ(t)}, we note that δ(t) = 0 for t ≤ 0− and 
δ(t) = 0 for t ≥ 0+. Hence,

 

L d d d

d

t t e dt t e dt

t dt

st st( ){ } = ( ) = ( )

= ( )´ + =

-
¥

-

- -

+

-

+

ò ò

ò

0 0

0

0

0

1 0 1  (21.10)

The following should be noted concerning the LT:

 1. Mathematically, sufficient conditions for the 
existence of the LT are (a) convergence of the 
defining integral of the LT and (b) the func-
tion is piecewise continuous on a finite inter-
val of time for t ≥ 0, which means that f(t)e−st 
is integrable over any such interval of time. 
Functions of interest in circuit analysis nor-
mally possess LTs.

 2. Theoretically, σ can be chosen to be greater than 
some constant c so that multiplying f(t) by e−ct 
ensures convergence of the integral, that is, 
gives a finite value of the integral. However, 
some functions, such as tt or et

n
, increase so rap-

idly with t that tte−σt and et
n
e−σt do not tend to 

zero as t →  ∞, no matter how large is σ. Such 
functions do not have LTs, but generally, are not 
of practical interest.

 3. The inverse LT (ILT) transforms the function 
F(s) back to f(t) according to the following inte-
gral relation:

 
L-

- ¥

+ ¥

( ){ } = ( ) = ( )ò1 1
2

F s f t
j

F s e dsst

j

j

p s

s

 
(21.11)

  Because this is integration in the complex 
plane, and requires some specialized pro-
cedures, it is seldom used in practice. Other 
methods, discussed later, are used for invert-
ing the LT.

 4. The LT of a given function, as defined by 
Equation 21.5, is unique. Conversely, if two 
functions have the same LT, these functions can-
not differ over any time interval of finite length, 
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although they may differ at isolated points. 
Functions having finite values at isolated points 
in time are not of practical interest.

 5. Because F(s) is derived through integration with 
respect to time, its units are those of f(t) multi-
plied by the unit of time used in the integration.

The LT is, in general, derived in the following ways:

 1. Direct evaluation of the integral, as in Equations 
21.7 through 21.10.

 2. From known LTs of functions, using the proper-
ties of the LT discussed in Section 21.2.

 3. Lookup in tables of LT pairs. Extensive tables 
are available of the LTs of many types of func-
tions and their inverse functions.

 4. Use of MATLAB’s ‘laplace’ command. For exam-
ple, if we enter

>>syms a t
>>laplace(exp(−a*t))
MATLAB returns: 1/(s+a)

21.2  Operational Properties 
of the Laplace Transform

Multiplication by a constant. If L{f(t)} = F(s), then

 L Kf t KF s( ){ } = ( ) (21.12)

Proof:
 
L Kf t Kf t e dt K f t e dt KF sst st( ){ } = ( ) = ( ) = ( )-

¥
-

¥

- -ò ò0 0
.
 

Thus, the LT of Kδ(t) is K, and the LT of Ke−at is 
K
s a+

.

Addition/subtraction. If L{f1(t)} = F1(s), and L{f2(t)} = F2(s), 
then

 L f t f t F s F s1 2 1 2( ) ± ( ){ } = ( ) ± ( ) (21.13)

Proof:
 

L f t f t f t f t e dtst
1 2 1 2

0
( ) ± ( ){ } = ( ) ± ( )éë ùû =-

¥

-ò   

f t e dt f t e dt F s F sst st
1

0
2 1 2

0
( ) ± ( ) = ( ) ± ( )

- -

¥
- -

¥

ò ò . We can use 

this property to derive the LTs of cosωt and sinωt using 
Equation 21.9. Thus,

 
L Lcosw

w w w

w w

t
e e

s j s j
s

s

j t j t

{ } = +ì
í
î

ü
ý
þ
=

-
+

+
é

ë
ê

ù

û
ú = +

-

2
1
2

1 1
2 2

 
(21.14)

 
L Lsinw

w w
w
w

w w

t
e e

j j s j s j s

j t j t

{ } = -ì
í
î

ü
ý
þ
=
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Time scaling. If L{f(t)} = F(s), then
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integration to x = at,
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The restriction a > 0 ensures that f(at) is defined only 
for t > 0.

Primal Exercise 21.1

(a) Apply time scaling to the LT of e−tu(t) to show 
that  the  LT of  e−atu(t) is 1/(s + a) and (b) derive the 
LT of the following functions: (i) coshat = (eat + e−at)/2, 
(ii) 2δ(t) – 4 + 5e−3t.
Ans. (b) (i) s/(s2 – a2), (ii) 2 – 4/s + 5/(s + 3).

Integration in time. If L{f(t)} = F(s), then
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and e−stdt = dv. Integrating by parts 
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The first term vanishes at both limits, and 

the second term is
 
1
s
F s( ).

Equation 21.17 can be generalized to
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where f (−n) is the nth integral of f(t).

If
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Equations 21.7 and 21.18
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Example 21.1: Laplace Transform of Powers of t

It is required to prove that
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Solution:

We will successively apply the integration-in-time prop-
erty, starting with L{δ(t)} = 1 (Equation 21.10):
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and
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Primal Exercise 21.2

Verify that L xdx
t

0-ò
ì
í
î

ü
ý
þ

 according to the integration-in-

time property is the same as that obtained by first inte-
grating x, and then taking the LT.

Differentiation in time. If L{f(t)} = F(s), then
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and in general,

 

L
df t
dt

s F s s f

s f f

n

n
n n

n n

( )ì
í
ï

îï

ü
ý
ï

þï
= ( ) - ( )

- ( ) - -

- -

- ( ) - -(

1

2 1 1

0

0 � )) -( )0  (21.23)

where f (m)(0−) is the mth derivative of f(t) evaluated 
at t = 0−.

Proof:
 

L
df t
dt

df t
dt

e dt f t est st( )ì
í
î

ü
ý
þ
=

( )
= ( )éë ùû

- - ¥¥

--ò 00   

- -( ) ( ) = ( ) - ( )
-

¥
- -ò s f t e dt sF s fst

0
0 . Note that f(t)e−st 

 evaluates to zero as t → ∞. Otherwise, the integral of 
Equation 21.5 does not converge, and f(t) will not have 
an LT F(s), as assumed.

Similarly, if g t
df t
dt

( ) = ( )
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sF s f( ) - ( )-0 , and g(0−) = f (1)(0−). Substituting term by 

term,
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s2F(s) − sf(0−) − f(1)(0−). Successive application of the dif-
ferentiation property leads to Equation 21.23.

According to the differentiation-in-time property, 
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To illustrate the differentiation-in-time property, 
consider the differentiation of a constant, K. Evidently, 
dK/dt  = 0. Let us apply the differentiation-in-time 
property to see how the same result is obtained. The 
LT of K is the LT of Ku(t), which is K/s (Equation 21.8). 
According to the differentiation-in-time property, the 
LT of dK/dt is
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where K, being independent of time, is K at t = 0−. Since 
the LT of dK/dt is zero, dK/dt must be zero, as expected. 
Note that f(0−) is that of the function as given, which is K 
in this case, and not that of f(t)u(t), which is zero.

Primal Exercise 21.3

Verify that L d
e
dt

t-ì
í
î

ü
ý
þ 

according to the differentiation-in-

time property is the same as that obtained by first 
 differentiating e−t, and then taking the LT.

Example 21.2: Laplace Transforms of sine 
and cosine Functions

It is required to verify that the LTs of sinωt and cosωt, 
as given by Equations 21.14 and 21.15, satisfy the 
 integration-in-time and differentiation-in-time properties.

Solution:

 (a) Consider the integral of the sine function:
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According to the integration-in-time property 
(Equation 21.17) and using Equation 21.15, the LT 
of the LHS of Equation 21.26 is ω/s(s2 + ω2). We 
have to show that this is equal to the LT of the RHS 
of Equation 21.26. This LT is
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  which gives the same expression, as required.
The derivative of sinωt is
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w
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According to the differentiation-in-time prop-
erty (Equation 21.22) and using Equation 21.15, the 
LT of the LHS of Equation 21.28 is sω/(s2 + ω2) − 0, 
since the value of sinωt at t = 0− is zero. From 
Equation 21.14, the LT of the RHS of Equation 
21.28 is also sω/(s2 + ω2).

 (b) Consider the integral of the cosine function:
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According to the integration-in-time property 
(Equation 21.17) and using Equation 21.14, the 
LT of the LHS of Equation 21.29 is s/s(s2 + ω2) = 
1/(s2 + ω2). From Equation 21.15, the LT of the RHS 
of Equation 21.29 is also ω/ω(s2 + ω2) = 1/(s2 + ω2).

The derivative of cosωt is
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w
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According to the differentiation-in-time prop-
erty and using Equation 21.14, with cosωt at t = 1 
at t = 0−, the LT of the LHS of Equation 21.30 is
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The RHS of Equation 21.31 is indeed the LT of 
the RHS of Equation 21.30.

It should be emphasized that, whereas the LTs of f(t) 
and f(t)u(t) are the same, when f(t) does not have an 
impulse at the origin, the function being differentiated 
in the differentiation-in-time property is f(t) and not 
f(t)u(t). Thus, the derivative of (cosωt)u(t) is (cosωt)δ(t) – 
ω(sinωt)u(t) = δ(t) – ω(sinωt)u(t), which has an impulse 
at the origin, because of the sudden jump of (cosωt)u(t) 

at the origin from 0 at t = 0− to unity at t = 0+. The LT of 
this derivative is 1 – ω2/(s2 + ω2) = s2/(s2 + ω2), whereas 
the LT of the derivative of (cosωt) is −ω2/(s2 + ω2). 
Nevertheless, the differentiation-in-time property also 
applies to (cosωt)u(t). For according to this property,
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Translation in s-domain. If L{f(t)} = F(s), then
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dt = F(s + a).
Equation 21.32 allows easy derivation of LTs of func-

tions multiplied by e−at. For example, L e u t
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(Equation 21.9), given that L u t
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 (Equation 21.7). 

It also follows that
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and
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Translation in time. If a unit impulse δ(t) at the origin 
is translated in time by a positive constant a, to become 
δ(t – a) in positive time, its LT is
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Substituting t′ = t − a, Equation 21.35 becomes
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Changing the dummy variable t′ to t and noting that 
the integrand is nonzero only over the range 0− to 0+, it 
follows that
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Consider next a function f(t)u(t) that is translated in 
time by a positive constant a, to become f(t – a)u(t – a), 
as was explained in connection with Figure 20.25. The 
LT of f(t – a)u(t – a) is

 
L f t a u t a f t a u t a e dtst-( ) -( ){ } = -( ) -( ) -

¥
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(21.38)

Because of the presence of u(t – a), the integrand is zero 
for t ≤ a− and is f(t – a) for t ≥ a+. Assume to begin with that 
f(t) does not have an impulse at the origin, so that f(t – a) 
does not have an impulse at t = a. The integral of Equation 
21.38 is therefore the same if the lower limit is a− or a+. 
Taking the lower limit as a+ and substituting t′ = t – a: 
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where the dummy variable of integration was changed 
back from t′ to t, and e−as was taken outside the integra-
tion sign because it is a constant as far as integration with 
respect to t′ is concerned. If f(t) has an impulse Kδ(t) at the 
origin, then it could be expressed as f(t) = Kδ(t) + f ′(t), where 
f ′(t) does not have an impulse at the origin. The shifted 
function becomes f(t – a)u(t – a) = Kδ(t – a) + f ′(t − a) u(t – a). 
From Equations 21.37 and 21.39, the LT of the RHS of this 
equation is Ke−as + e−asF′(s) = e−as(K + F′(s)) = e−asF(s), where 
F′(s) is the LT of f ′(t). It follows that

 L f t a u t a e F sas-( ) -( ){ } = ( )-
 

(21.40)

irrespective of whether or not f(t) has an impulse at the 
origin. Note the similarity to the Fourier series, where a 
delay td multiplies Cn by e−jnω0td (Equation 16.42).

As a simple example, consider the rectangular pulse of 
Figure 21.2. The pulse can be expressed as f(t) = Ku(t) − 

Ku(t − a). Since L Ku t
K
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( ){ } =  and L Ku t a
K
s
e as-( ){ } = - , 

it follows that
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The translation-in-time property can be used to deter-
mine the LT of a periodic function f(t) of period T that 
starts at t = 0, given that the LT of the first period is G(s). 
Since periods after the first are successively translated 
by T, it follows that

 
L f t G s e e

G s
e

sT sT
sT( ){ } = ( ) + + +éë ùû =

( )
-

- -
-1

1
2 �

 
(21.42)

A useful generalization of the translation-in-the-time-
domain property is when f(t) is delayed by b and the step 
function is delayed by a, where a and b are positive con-
stants with b ≥ a. The LT becomes L f t b u t a-( ) -( )( ){ } =  

f t b u t a e dtst-( ) -( ) -
¥

-ò .
0

 Proceeding as in Equation 21.39 

and substituting t′ = t − a, it follows that

 L Lf t b u t a e f t b a b aas-( ) -( ){ } = - +( ){ } ³- ,  (21.43)

irrespective of whether or not f(t) has an impulse at the 
origin. The restriction b ≥ a ensures that f(t – b + a) is 
not shifted to negative time, which is excluded by the 
single-sided LT.

Multiplication by t. If L{f(t)} = F(s), then
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We can deduce that
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Primal Exercise 21.4

Derive the LT of 2u(t) + 3δ(t – 1).
Ans. 2/s + 3e−s.

f(t)

t

K

a

–K

Ku(t)

–Ku(t – a)

FIGURE 21.2
A rectangular pulse as the sum of step functions.
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Primal Exercise 21.5

Derive the LT of a half-sinusoid defined by f(t) =  sint , 
0 ≤ t ≤ π, and f(t) = 0 , t ≥ π, using (a) translation in time, by 
adding sin(t – π)u(t – π) to sintu(t), and (b) direct evalu-
ation, considering sint = Im(ejt). Note that in (a) sint is 
added to sin(t – π)u(t – π) and not to sin(t – π).

Ans.
 
1

12

+
+

-e
s

sp
.

Primal Exercise 21.6

Verify that the LT of te−t is the same if multiplication by t is 
applied to e−t or translation in the s-domain is applied to t.

Primal Exercise 21.7

Derive the LT of tu(t – 2)
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e
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22 .

Division by t. If L{f(t)} = F(s), then, assuming that 
f t
t
( )

 
has an LT,

 
L

f t
t

F s ds
s

( )ì
í
î

ü
ý
þ
= ( )

¥

ò
 

(21.48)

Proof: F s ds f t e dt ds
s

st

s
( ) = ( )

é

ë

ê
ê

ù

û

ú
ú

¥
¥

-
¥

ò òò
-0

.
 
Reversing the order

 
of integration,
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For example,
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The reader may have noted that in Section 21.1 we 
referred to the region of convergence in the s-plane, which 
assured convergence of the integral (Equation 21.3), yet 
no reference to this region of convergence was made in 
subsequent discussions of the LT. In fact, the validity of 
the unilateral LT is not restricted to the region of conver-
gence but extends to the whole of the s-plane except at 
the poles (Section 21.3), where the LT becomes infinite.

Table 21.1 summarizes the basic properties of the LT.

Example 21.3: Laplace Transform of a Sawtooth Pulse

As an illustrative example of the properties of the LT 
and of graphical manipulation of basic waveforms, 
we will consider the derivation of the LT of the single 
sawtooth pulse of Figure 21.3 by four methods.

Solution:
Method 1: The LT can be evaluated by direct integration:
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Method 2: The sawtooth pulse, f(t), can be considered 
as the sum of three components: (1) A ramp function 

TABLE 21.1

Basic Properties of the LT L{f(t)} = F(s)

L{Kf(t)} KF(s)
L{f1(t) ± f2(t)} F1(s) ± F2(s)
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(A/T)tu(t), as shown by the line having the long dashes 
in Figure 21.4a; (2) a delayed and negated ramp func-
tion −(A/T)(t – T)u(t – T) having the same magnitude of 
slope as the first component, and illustrated by the blue 
line in Figure 21.4a. The delayed ramp, before negation 
is (A/T)(t – T)u(t – T), as explained in connection with 
Figure 20.25. When these two components are added, 
the opposing slopes cancel one another for t ≥ T, result-
ing in the solid line plot in Figure 21.4a; (3) to obtain 
the sawtooth from this function, a third component, the 
negated and delayed step function, −Au(t – T) should be 
added. It follows that
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The LT of Equation 21.50 is
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Method 3: Consider the rectangular pulse of amplitude 
A/T and duration T (Figure 21.5a). The integral of this 
pulse increases linearly with a slope A/T over the range 
0 ≤ t ≤ T, and equals A at t = T. The integral remains at 
this value for t ≥ T (Figure 21.5b). The LT of the rectan-
gular pulse of Figure 21.5a is given by Equation 21.36 for 
Figure 21.2, with A/T replacing K and T replacing a, to 
give (A/T)(1 − e−Ts)/s. Dividing this by s gives the LT of 
the integral function. When the delayed step −Au(t – T), 

whose LT is −Ae−Ts/s, is added to the integral function, 
the LT of the given pulse is obtained. The sum of the LT 
of the integrated function and that of the delayed step 
gives the same result as in Equation 21.51.

As a variation on this method, the derivative of 
f(t) is the rectangular pulse of Figure 21.5a plus an 
impulse −Aδ(t  –  T). The LT of the combination is 
(A/T)(1 − e−Ts)/s − Ae−Ts. Dividing by s to obtain the LT of 
the integral gives the same result.

Method 4: Consider a rectangular pulse of unit ampli-
tude and unit duration (Figure 21.6a). If a ramp func-
tion x(t) = t is multiplied by this unit rectangular pulse, 
the product is a sawtooth pulse of unit amplitude and 
unit duration (Figure 21.6b). The LT of the unit rectan-
gular pulse is (1 − e−s)/s (Equation 21.41). Multiplication 
by t is equivalent to differentiating this with respect to 
s and changing the sign (Equation 21.44). This gives 
(1 − e−s − se−s)/s2. If the sawtooth pulse is of height 1 
and duration T, then the ramp function becomes t/T, 
so that the value is unity at t = T rather than t =  1.
This is equivalent to time scaling (Equation 21.16) 
with a = 1/T. The LT and s are multiplied by T, which 
gives (1 − e−sT − sTe−sT)/Ts2. Multiplying this by A gives 
Equation 21.51.

21.3  Solution of Linear, Ordinary 
Differential Equations

To illustrate the application of the LT to the solution 
of linear, ordinary differential equations with constant 
coefficients, consider, for simplicity and without loss 

f(t)

t
T

A
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of generality, a second-order differential equation 
of the form

 
a
d y t
dt

b
dy t
dt

cy t f t
2

2

( )
+

( )
+ ( ) = ( )

 
(21.52)

where f(t), referred to as the forcing function, is some 
arbitrary function that has an LT. Taking the LT of both 
sides, making use of the differentiation-in-time property:

 

as Y s ay asy bsY s by

cY s F s

2 1 0 0 0( ) - ( ) - ( ) + ( ) - ( )
+ ( ) = ( )

( ) - - -

 (21.53)

where Y(s) and F(s) are the LTs of y(t) and f(t), respec-
tively. Solving for Y(s),

 
Y s

as b y ay

as bs c
F s

as bs c
( ) =

+( ) ( ) + ( )
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+ +

- ( ) -0 01

2 2  
(21.54)

The following concept should be noted in connection 
with Equation 21.54 that is an important feature of the 
LT method:

Concept: A linear, ordinary differential equation with con-
stant coefficients is transformed by the LT to an algebraic 
equation in powers of s that can be solved for the LT of the 
variable of the equation Y(s), as in any algebraic equation. 
When this is done, the initial conditions y(0−) and y(1)(0−) 
appear like applied inputs.

Formally, the solution to the differential equation, y(t) 
can be expressed as

 
y t
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(21.55)

where L−1 denotes the ILT.
The first term on the RHS of Equation 21.55 is the 

response y(t) for nonzero initial conditions, with no forc-
ing function. It is the natural response or zero-input 
response. The second term is the response y(t) to the 
forcing function alone. It is the steady-state response, the 
forced response, or zero-state response. Because the sys-
tem is linear, the total response is the sum of the natural 
and forced responses, the initial conditions being treated 
as inputs at t = 0 (Section 22.1). The denominator as2 + bs + c 
is analogous, term by term to the LHS of Equation 21.52 
with the first and second derivatives replaced by s and s2, 
respectively. The equation as2 + bs + c = 0 is the character-
istic  equation previously derived from the homogenous 
differential equation (Equation 12.6).

Concept: The characteristic equation of a linear differen-
tial equation is a polynomial in s obtained by taking the 
LT of the equation with zero forcing function (the homo-
geneous equation), zero initial conditions, and assuming 
a nonzero value of the variable of the equation. The LHS 
of the characteristic equation appears in the denominator 
of the LT of all the responses derived from the differential 
equation.

Thus, if we take the LT of Equation 21.52, with f(t) = 0 
and zero initial conditions, we obtain (as2 + bs + c)Y(s) = 0. 
In general, Y(s) ≠ 0, so that as2 + bs + c = 0 is the character-
istic equation.

21.3.1  Inverse Laplace Transform

The ILT can be obtained in one of the following ways:

 1. Lookup in tables of LT pairs, as previously 
mentioned.

 2. Numerical inversion of the LT.
 3. The LTs of responses of LTI circuits having 

lumped circuit parameters are rational functions 
of s. These can be expressed, at least in part, as 
proper rational functions. Such functions can be 
expanded as partial fractions, which are then 
inverted term by term.

 4. Use of MATLAB’s ‘ilaplace’ command. For 
 example, if we enter:

>> syms s
>> ilaplace (1/s^5)
MATLAB returns: 1/24*t^4

For convenience in determining ILTs, Table 21.2 
 summarizes the LTs of some commonly encountered 
functions in circuit analysis, based on the properties of 
the LT discussed in the previous section.

21.3.2  Partial Fraction Expansion

Consider an LT F(s) that is a rational function of s, that is, 
a ratio of two polynomials in s:

 
F s

a s a s a s a
b s b s b s b
m

m
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n
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1 0

1
1

1 0

�
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(21.56)

where the a’s and b’s are real coefficients, and m and n 
are integers. F(s) can be expressed in terms of factors of 
the numerator and denominator as

 
F s K

s z s z s z
s p s p s p

m

n
( ) = +( ) +( )¼ +( )

+( ) +( )¼ +( )
1 2

1 2  
(21.57)
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where K = am/bn. The values −z1, −z2, …, −zm are zeros 
of F(s) since F(s) = 0 when s assumes any of these val-
ues. The values −p1, −p2, …, −pn are poles of F(s), since 
F(s) → ∞ when s assumes any of these values. In gen-
eral zeros and poles may be complex, in which case 
they must occur in complex conjugate pairs, because 
the a’s and b’s are real in the LTs of physical systems. 
Note that Y(s), derived from the differential equation 

of a circuit response (Equation 21.54), is a rational 
function.

In general, m > n in Equation 21.56, so by divid-
ing the numerator by the denominator, F(s) can be 
expressed as

 

F s k s k s k s

k
c s c s c s c

m n
m n

m n
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(21.58)

where r < n. This makes the ratio of polynomials on the 
RHS a proper rational function. The inverse transform of 
k0 is k0δ(t), that of k1s is k1δ(1)(t), and that of km − nsm − n is 
km − nδ(m − n)(t) (Table 21.2). It remains to determine the ILT 
of the proper rational function, which we will denote 

as  N s
D s
( )
( ) .

Most textbooks discuss methods for deriving the par-
tial fraction expansion (PFE) of proper rational func-
tions. These methods are based on examples in which 
the coefficients of s in N(s) and D(s) are relatively small 
whole numbers, and the power of s in D(s) is usually 
2 or  3. Such examples, however, are rather artificial, 
and the aforementioned methods become impractical 
in more realistic cases where the coefficients of s are 
not small whole numbers and the power of s in the 
denominator exceeds 3. In practice, the ILT is obtained 
in these cases using MATLAB’s ‘ilaplace’ command, 
without deriving the PFE, as illustrated by Example 
21.4. Moreover, this command can be used irrespec-
tive of whether or not the rational function is proper. 
Nevertheless, the PFE is of theoretical importance. We 
will therefore consider in the following paragraphs 
some aspects of the PFE that are important for future 
discussions.

Consider the proper rational function:

 
F s

N s
s p s p s pn

( ) = ( )
+( ) +( )¼ +( )1 2  

(21.59)

where N(s) is a polynomial of power less than n and 
all the poles have different, real values. F(s) can be 
expressed in partial fraction form as
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(21.60)

where the K’s are constant coefficients known as the res-
idues of F(s). An easy way of determining any of these 
coefficients, say, K1, is to multiply both sides of Equation 
21.60 by the corresponding denominator, (s + p1) in this 

TABLE 21.2

LT Pairs

f(t) F(s) Reference Equation

δ(t) 1 (21.10)
δ(t − a) e−as (21.37)
δ(n)(t) sn (21.24)

u(t)
1
s (21.7)

tu(t)
1
2s

(21.20)

tnu(t)
n

s n

!
+( )1 (21.20)

e−atu(t)
1

s a+
(21.9)

te−atu(t)
1

2
s a+( ) (21.20) and (21.32)

tne−atu(t)
n

s a
n

!

+( ) +( )1 (21.20) and (21.32)

sinωtu(t)
w
ws2 2+

(21.15)

cosωtu(t)
s

s2 2+w
(21.14)

sin(ωt + θ)u(t)
s

s
sin cosq w q

w
+
+2 2 (21.14) and (21.15)

cos(ωt + θ)u(t)
s

s
cos sinq w q

w
-
+2 2 (21.14) and (21.15)

e−atsinωtu(t)
w

ws a+( ) +
2 2 (21.34)

e−atcosωtu(t)
s a

s a

+

+( ) +
2 2w (21.33)

tsinωtu(t)
2

2 2 2

w

w

s

s +( ) (21.47)

tcosωtu(t)
s

s

2 2

2 2 2

-
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w
(21.46)

te−atsinωtu(t)
2

2 2
2

w

w

s a

s a

+( )
+( ) +( ) (21.32) and (21.47)

te−atcosωtu(t)
s a

s a

+( ) -

+( ) +( )
2 2

2 2
2

w

w
(21.32) and (21.46)
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case, and set s =  − p1. The RHS of Equation 21.60 reduces 

simply to K1. The LHS becomes
 

N s
s p s pn

s p
( )

+( )¼ +( ) =-
2

1 ,
 

which can be readily evaluated to give K1. This is the 
 residue method for determining the PFE. For example, 

consider
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s s s
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form
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(21.61)

To determine K1, both sides of Equation 21.61 are mul-
tiplied by (s + 1). The resulting equation is
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(21.62)

Substituting s = −1, the LHS of Equation 21.62 gives 1, 
and the RHS reduces to K1, so that K1 = 1. Similarly, 
multiplying both sides of Equation 21.61 by (2s + 3) and 
setting s = −3/2 gives K2 = 2, whereas multiplying both 
sides of Equation 21.61 by (s + 2) and  substituting s = −2 
gives K3 = −1. It follows that the PFE of F(s) is
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(21.63)

The ILT of F(s) is

 
f t e e e u tt t t( ) = + -éë ùû ( )- - -1 5 2.

 
(21.64)

Note that the ILT of terms in the PFE other than those 
involving δ(t) and u(t), is automatically multiplied by u(t), 
because the time function is assumed to be zero for t ≤ 0−.

Consider, next, the proper rational function 

F s
s s

s
( ) = + +

+( )
3 8 4

1

2

3 .
 
To see how F(s) can be represented 

by a PFE, we express the numerator in terms of powers 
of (s + 1). To do so, the numerator is written as k1(s + 1)2 + 
k2(s + 1) + k3. This is set equal to 3s2 + 8s + 4, and k1, k2, 
and k3 are determined by comparing coefficients of the 
terms having the same power of s and the constant term. 
It follows that k1 = 3, k2 = 2, and k3 = −1. Hence,
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Similar reasoning leads to the conclusion that if the 
denominator of F(s) consists of the repeated root (s + p)n, 
the PFE of F(s) is of the general form
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(21.66)

The residue method can only be used to determine Kn 
by multiplying both sides of Equation 21.66 by (s + p)n 
and setting s = −p. Thus, if both sides are multiplied 
by (s + p)n − 1, for example, in order to determine Kn−1, 
the LHS becomes N(s)/(s + p), and the term in Kn on 
the RHS becomes Kn/(s + p). Setting s = −p makes both 
sides infinite. The same is true if both sides are multi-
plied by (s + p) raised to any of the smaller powers in the 
denominator. The residues K1 to Kn–1 can be determined 
analytically either through differentiation or by equat-
ing the coefficients of the same power of s, as well as the 
constant term, on both sides of the equation (Examples 
21.4 and 21.6, respectively). It should be noted that 
whereas the poles in Equation 21.60 are simple poles, 
−p in Equation 21.66 is referred to as a multiple pole of 
order n.

The roots considered so far are real, but the same con-
siderations apply if the roots are complex, except that, 
since the coefficients in N(s) and D(s) are real, complex 
poles must occur in conjugate pairs and their residues 
must also be conjugate pairs. We will illustrate working 
with simple complex poles in Example 21.4, but as men-
tioned earlier, the ILT can be derived using MATLAB’s 
‘ilaplace’ command without   determining  the resi-
dues, and irrespective of whether the poles are real or 
 complex, single or multiple.

Example 21.4: Inverse Laplace Transform

It is required to determine the ILT of F s
s s s

( ) =
+ +( )
25
2 52

 
using MATLAB and by PFE.

Solution:

We invoke MATLAB’s ‘ilaplace’ command by entering

>> syms s
>> ilaplace (25/(s*(s^2+2*s+5)))
MATLAB returns: 5 – (5*(cos(2*t) + 

sin(2*t)/2))/exp(t)

This can be rearranged as
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(21.67)
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To determine the ILT by using the PFE, we note that 
s2 + 2s + 5 = (s + 1 + j2)(s + 1 – j2), so that the roots are 
complex. The PFE is therefore
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(21.68)

where the residues K2 and K2
* are complex conjugates 

because their respective poles are complex conjugates. 
This ensures that the coefficients in the numerator of 
F(s) are real quantities, as they should be for any physi-
cal system. K1 is determined in the usual manner by 
multiplying both sides of Equation 21.68 by s and set-
ting s = 0. This gives K1 = 5. K2 is determined in the same 
manner by first multiplying both sides of Equation 21.68 
by (s + 1 + j2). Thus, 
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Substituting s = −1 – j2, and simplifying gives 

K j2
5
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5
4

=- +æ
è
ç
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ø
÷, so that K j2

5
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5
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÷. The PFE becomes
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Referring to Table 21.2, the ILT is
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(21.71)

Simplifying and expressing the complex exponents in 
terms of sinusoidal functions gives Equation 21.67.

It is seen that working with complex numbers is 
rather awkward and error prone. This can be avoided 
by expressing Equation 21.68 as
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(21.72)

Note that in the PFE, if the denominator is a term for a 
simple pole, real or complex, the numerator is a constant 
and equal to a residue of the function, as in Equations 21.61 

and 21.68. If the denominator is a term for a multiple pole 
pn, the PFE includes all terms having in the denominator 
(s + p) raised to all integral powers from 1 to n, the numer-
ators of these terms being constants, as in Equation 21.66. 
However, when the two terms involving simple, complex 
conjugate poles are combined, the denominator is qua-
dratic in s, and the numerator is, in general, linear in s, as 
it should be in a proper rational function. The numera-
tor is therefore expressed as k2s + k3 in the second term 
on the RHS in Equation 21.72. k1 is determined as before 
by multiplying both sides of Equation 21.72 by s and set-
ting s = 0, which gives k1 = 5; k2 and k3 are obtained by 
combining the two terms on the RHS of Equation 21.72 
into a single term having a common denominator. The 
coefficients of terms having s raised to the same integral 
power in the numerator on both sides of the equation are 
then compared, as well as the constant term. With k1 = 5, 
Equation 21.72 is expressed as
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To have equal numerators on both sides of this equa-
tion, we must have k2 = −5 and k3 = −10. Equation 21.72 
becomes
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The next step is to complete the square of the qua-
dratic in the denominator on the RHS. Thus, s2 + 
2s + 5 = [(s  +  1)2  +  22]. The numerator is expressed 
in terms of the squared term in s in the denominator, 
that resulted from completing the square. This term is 
(s + 1). Thus, 5s + 10 = 5(s + 1) + 5. F(s) becomes
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(21.75)

Referring to Table 21.2, the ILT of the first term on the 
RHS is 5u(t), that of the second term is −5e−tcos(2t)u(t), 

and that of the third term is - ( ) ( )-5
2

2e t u ttsin . Adding 

these terms gives Equation 21.67.

Problem-Solving Tip

• Working with complex quantities can be 
avoided by combining complex conjugate poles 
in the PFE into a single term. The numerator of 
this term is linear in s when its denominator is 
quadratic in s and the complex poles are simple.
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Primal Exercise 21.8

Derive the ILT of the following functions: (a) 
5
3 22s s+ +

; 

(b) 
3

1 2
s+( )

; (c) 
2 3

4 62

s
s s

+
+ +

.

Ans. (a) 5(e−t − e−2t); (b) 3e−t(1 − t); 

(c) e t tt- -æ
è
ç

ö
ø
÷

2 2 2
1
2

2cos sin .

21.4  Theorems on the Laplace Transform

21.4.1  Final-Value Theorem

This is a useful theorem that gives the final value of a 
function of time from its LT without having to invert the 
transform:

If L{f(t)} = F(s), where all the poles of F(s) have negative 
real parts, except for a simple pole at the origin, if such a pole 
exists, then

 
lim lim
t s

f t sF s
®¥ ®

( ) = ( )
0  

(21.76)

Proof: If F(s) has only a simple pole at the origin, its PFE 
can be expressed as
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where
p(s) is a polynomial in s
the pole −ar is negative real, of order m, or complex of 

order m but having a negative real part
m is an integer equal to or larger than 1

Note that −ar cannot be a purely imaginary pole, like 
that of the LT of cosωt and sinωt because such poles are 
on the imaginary axis, with no negative real part. They 
are excluded in the statement of the final-value theorem. 
Multiplying both sides of Equation 21.77 by s and set-
ting s = 0 gives F(s) = K1. It follows from this equation 
that lim

s
sF s K

®
( ) =

0 1.

The ILT of the RHS of Equation 21.77 is
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The impulse function and its derivatives are over at 
t = 0+. When −ar is real, the ILT of the term Kr/(s + ar)m 
is, from Table 21.2, of the form e a tr-  multiplied by an 

integral power of t. When −ar is complex, equal to −σr ± 
jωr, where σr and ωr are positive numbers, the ILT is of 
the form e a tr-  multiplied, in general, by terms contain-
ing cosωrt and sinωrt, which in turn may be multiplied 
by t raised to some power. In all these cases the expo-
nential multiplier e a tr-  approaches zero as t → ∞, so that 
these terms vanish. It follows that f(t) → K1 as t → ∞. 
Note that a multiple pole at the origin makes  sF(s) → 
∞ for s = 0 and is not in accordance with the statement 
of the final-value theorem. In this case f(t) → ∞ as t → ∞ 
(Primal Exercise 21.9). However, the equal limits at infin-
ity cannot be considered as satisfying Equation  21.76.

21.4.2  Initial-Value Theorem

If L{f(t)} = F(s) where F(s) is a proper rational function, then

 
lim lim
t s

f t sF s
® ®¥+

( ) = ( )
0  

(21.79)

Proof:
 
L
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dt

sF s f
( )ì
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þ
= ( ) - ( )-0 . The LT of the  derivative 

of  f(t) is 
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If we 

take the limit as s → ∞, the last integral vanishes because 
of the term e−st. Since F(s) is a proper rational function, 
f(t) does not have any impulses or their derivatives at the 

origin, and 
df t
dt

dt f f
( )

= ( ) - ( )+ -

-

+

ò 1 0 0
0

0

. It follows that 

lim
s s

sF s f
df t
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f f f f
®¥

-

®¥

- + -( )= + ì
í
î

ü
ý
þ
= + - =( ) lim

( )
( ) ( ) ( )0 0 0 0L (( ).0+

If F(s) is not a proper rational function, f(t) has 
impulses or their derivatives at the origin. But these are 
over at t = 0+. The correct value of f(0+) is obtained by 
applying the initial-value theorem to the proper rational 
fraction part of F(s).

The initial- and final-value theorems are useful for 
checking the LT for a given variable, because it is often 
obvious from the nature of the problem what the initial and 
final values of the variable are. Moreover, the initial-value 
theorem is particularly useful in the case of impulsive 
readjustments at t = 0 when the voltage across a capaci-
tor, or the current through an inductor, is forced to change 
instantaneously. The initial-value theorem gives the cor-
rect values at t = 0+ after the impulsive readjustments are 
over, as will be demonstrated in the next chapter.

Example 21.5: Final-Value 
and Initial-Value Theorems

Apply the final-value and initial-value theorems to the 

following: (a)
 

3 10
7 122

s
s s

+
+ +

; (b)
 

2 5
42

s
s
+
+

; (c)
 
3

6 15 40
4 5

3 2

2

s s s
s s s
- + +

+ +( )
.
 

Compare to the limiting values of the ILT.
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Solution:

 
(a)

 
F s

s
s s

s
s s

( ) = +
+ +

= +
+( ) +( )

3 10
7 12

3 10
3 42 . The conditions 

for applying the final-value theorem are satisfied. 
Multiplying by s and setting s = 0 gives sF(s) = 0, 
so that f(∞) = 0. The conditions for  applying the 
initial-value theorem are also satisfied. Multiply-
ing by s and letting s → ∞ gives sF(s) = 3, so that 
f(0+) = 3.

To derive the ILT, F(s) is expressed as a PFE:

 
F s

s
s s

k
s

k
s

( ) = +
+( ) +( )

=
+

+
+

3 10
3 4 3 4

1 2

 
(21.80)

Multiplying both sides by (s + 3) and setting 
s  =  −3 gives k1 = 1. Multiplying both sides by 
(s + 4) and setting s = −4 gives k2 = 2. It follows 
that f(t) = e−3t + 2e−4t. It is seen that f(0+) = 3 and 
f(∞) = 0.

 (b) Multiplying by s and setting s = 0 gives sF(s) = 0, 
so that f(∞) = 0. This, however, is not correct, 
because the conditions for applying the final-
value theorem are not satisfied since there are 
two complex poles on the imaginary axis at ±j2, 
without having negative real parts. The condi-
tions for the initial-value theorem are satisfied. 
Multiplying by s and letting s → ∞ gives sF(s) = 2, 
so that f(0+) = 2.

The ILT is

 
f t t t( ) = +2 2

5
2

2cos sin
 

(21.81)

It is seen that f(0+) = 2, in accordance with the 
 initial-value theorem, but as t → ∞, f(t) alternates 
between two finite values.

 (c) The conditions for applying the final-value theo-
rem are satisfied: (i) the pole at the origin is sim-
ple, and (ii) the complex poles are at −2 ± j have 
negative real parts. Multiplying by s and setting 
s = 0 gives sF(s) = 24, so that f(∞) = 24. To apply 
the  initial-value theorem, we note that the func-
tion is not a proper rational function. If multi-
plied by s and s  → ∞, F(s) → ∞. To obtain the 
value at t = 0+, the numerator is divided by the 
denominator to give a proper rational function. 
This gives
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(21.82)

Considering the proper fraction, multiplying 
it by s, and letting s → ∞ gives 3 × (−10) = −30. 
Hence, f(0+) = −30.

To derive f(t), the proper fraction is expressed 
as a PFE:

 

- + +
+ +( ) = + +

+ +
10 10 40

4 5 4 5

2

2
1 2 3

2

s s
s s s

k
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k s k
s s

 

(21.83)

Multiplying both sides by s and setting s = 0 
gives k1 = 8. Multiplying out on the RHS and col-
lecting terms in the numerator,
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(21.84)

Comparing coefficients on both sides, k2 = −18 
and k3 = −42. It follows that

 

- + +
+ +( ) = - +

+ +
10 10 40

4 5
8 18 22

4 5

2

2 2

s s
s s s s

s
s s

 

(21.85)

We next complete the square in the quadratic as 
(s + 2)2 + 1, and express the numerator as 18s + 22 = 
18(s + 2) – 10. Hence, F(s) becomes
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(21.86)

Taking the ILT,

 f t t u t e t e tt t( ) = ( ) + ( ) - +( )- -3 8 18 102 2d cos sin  (21.87)

It is seen that f(0+) = 3(0 + 8 – 18 + 0) = −30 in 
accordance with the initial-value theorem, and 
f(∞)  = 24, in accordance with the final-value 
theorem.

Primal Exercise 21.9

Given (a)
 
F s

s
s s s

( ) = +
+( ) +( )

2
1 3  

and (b) F s
s

s s s
( )= +

+( ) -( )
2

1 32 ,

determine f(0+) and f(∞) and verify by deriving f(t).

Ans. (a) f f f t u t u t0 0 2 3
2
3

1
9

+( ) = ¥( ) = ( ) = ( ) - ( ) -, / ,   

e
u t

e
u t

t t- -

( ) - ( )
2 6

3

; (b) f(0+) = 0, final-value theorem 

does not apply, because of a double pole at the origin. 

f t tu t u t
e

u t
e

u t
t t

( ) = - ( ) + ( ) - ( ) + ( )
-2

3
1
9 4

5
36

3

. Both limits 

are infinite.
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21.4.3  Convolution Theorem

If F(s) = L{f(t)} and G(s) = L{g(t)}, then

 F s G s f t g t( ) ( ) = ( ) ( ){ }L *  (21.88)

Proof: We start with F s f e ds( ) = ( ) -
¥

-ò l ll ,
0  where λ is 

considered the time variable in the definition of the LT. 
Since G(s), being a function of s, is a constant as far as 
integration with respect to λ is concerned, F(s)G(s) can 
be written as

 
F s G s G s e f ds( ) ( ) = ( ) ( )-

¥

-ò l l l
0  

(21.89)

G(s)e−sλ in the integrand on the RHS of Equation 21.89 
can be expressed in terms of the time-shift property of 
the LT as

 
G s e g t u t g t u t e dts s( ) = ( ) ( ){ } = ( ) ( )- -

¥

-òl ll l l lL - - - -
0  

(21.90)

Substituting for G(s)e−sλ in Equation 21.89,
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(21.91)

f(λ) and e−sλ are constants as far as integration with 
respect to t is concerned. Hence, f(λ) could be moved 
inside the inner integral and e−sλ could be moved  outside 
it. Thus,
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Interchanging the order of integration by interchang-
ing dλ and dt,
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u(t − λ) in the inner integral ensures that g(t − λ)u(t − λ) = 0 
for t < λ or λ > t. Hence, it can be omitted if the upper 
limit of integration in the inner integral is made t instead 
of infinity.

 
F s G s f g t d e dt

t
s( ) ( ) = ( ) -( )é
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¥

l l l l

00  
(21.94)

The inner integral is f(t) * g(t), and the outer integral is 
its LT, which proves the convolution theorem.

The convolution theorem allows the derivation of the 
convolution integral of two functions of time, other than 
by direct evaluation or using the graphical method, as 
illustrated by Example 21.6.

The convolution theorem can be used to prove the 
invariance of convolution with inverse integration and 
differentiation (Equation 20.23) for functions that are 
zero for t < 0–. Thus, if F(s) is the LT of f(t) that is zero for 
t < 0–, then the LT of f (n)(t), the nth derivative of f(t), is 
snF(s) (Equation 21.23). The LT of f (−n)(t), the nth integral 
of f(t), is F(s)/sn (Equation 21.17). Similarly for a function 
g(t) that is zero for t < 0. But,
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(21.95)

Applying the convolution theorem,

 
L L Lf t g t f t g t f t g tn n n n( ) ( ){ } = ( ) ( ){ } = ( ) ( ){ }( ) -( ) -( ) ( )

* * *  
(21.96)

Taking the ILT proves Equation 20.23.

Example 21.6: Convolution of Two Functions

Derive the convolution integral of f(t) = te−tu(t) and g(t) = 
(cost – 3sint)u(t).

Solution:

F s
s

( ) =
+( )
1

1 2  
and

 
G s

s
s

( ) = -
+
3
12 . The product can be

 
expressed as
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(21.97)

where the numerator of the last term is expressed as 
a linear function of s, as in Equation 21.72. K2 is deter-
mined, as usual, by multiplying both sides by (s + 1)2 
and setting s = −1; K1, K3, and K4 can be determined by 
combining the terms on the RHS in a single term hav-
ing a common denominator and comparing coefficients 
of the numerator on both sides of the equation, as was 
done in connection with Equation 21.73. Instead, it is 
instructive to determine K1 in an alternative manner that 
can generally be applied in PFEs having multiple poles 
of any order. Multiplying both sides by (s + 1)2

 

s
s

K s K X s s
-
+( ) = +( ) + + ( ) +( )3

1
1 1

2 1 2
2

 
(21.98)
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where the function (K3s + K4)/(s2 + 1) has been denoted 
as X(s). Setting s = −1 gives K2 = −2. If both sides of 
Equation 21.98 are differentiated with respect to s, the 
resulting equation is

 

- + +

+( )
= + ( ) +( ) + ( ) +( )( )s s
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2

2 2 1
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(21.99)

Setting s = −1 gives K1 = −1.5. Equation 21.97 becomes
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(21.100)

Combining the terms on the RHS in a single term gives
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(21.101)

Setting the coefficient of s3 to zero gives K3 = 1.5, and 
setting the constant term to −3 gives K4 = 0.5. As a check, 
the coefficient of s2 is zero, and the coefficient of s is 1. It 
follows that
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(21.102)

The ILT of F(s)G(s) gives

 f t g t t e u t tu t tu tt( ) ( ) = - +( ) ( ) + ( ) + ( )-
* . . cos . sin1 5 2 1 5 0 5  

(21.103)

Primal Exercise 21.10

The impulse response of a circuit is h(t) = δ(1)(t) + 5δ(t). If 
the input to the circuit is x(t) = (1 − e−2t)u(t), determine the 
response of the circuit as t → ∞.
Ans. 5.

Example 21.7: Application of Convolution Theorem

A voltage vSRC(t) that is varying in an arbitrary and 
unknown manner is applied at t = 0 to the circuit 
of Figure 21.7, with zero initial conditions. If the 
voltage v1 across C1 is known experimentally and 
cannot be expressed analytically, it is required to 
determine iSRC(t).

Solution:

From KVL around the mesh on the RHS,
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2 1´ + = ( )òdi
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(21.104)

Moreover,

 
v t i i dtSRC1 2

1
1

( ) = -( )ò  
(21.105)

Taking the LT of Equations 21.104 and 21.105 gives
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(21.106)

Eliminating I2(s) between these two equations yields
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2
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1  
(21.107)

where X(s) = s(s2 + 2)/(s2 + 1). According to the convolu-
tion theorem,

 I s X s V s x t v tSRC ( ) = ( ) ( ) = ( ) ( ){ }1 1L *  (21.108)

Taking the ILT of Equation 21.108,

 i t x t v tSRC ( ) = ( ) ( )* 1  (21.109)

where x(t) is the ILT of X(s) and can be derived by first 
dividing the numerator of X(s) by its denominator, which 
gives

 
X s

s s

s
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s
s

( ) =
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= +
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2

2 2

2

1 1 
(21.110)

The ILT transform is

 x t t t( ) = ( ) +( )d 1 cos  (21.111)

It follows that

 i t t v t t v tSRC ( ) = ( ) + ( ) ( )( )cos * *1
1

1d  (21.112)

v1
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–
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FIGURE 21.7
Figure for Example 21.7.
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Since v1(t) is experimentally derived, it can be repre-
sented by a staircase function (Section 20.4). cost can also 
be represented as a staircase function, so that cost * v1(t) 
can be obtained as the product of two polynomials.

From the invariance of convolution with inverse inte-
gration and differentiation (Section 20.3),

 d d1
1 1

1
1
1( ) ( ) ( )( ) ( ) = ( ) ( ) = ( )t v t t v t v t* *  (21.113)

where v t1
1( ) ( ) is the first derivative of v1(t) and can also be 

obtained from the staircase approximation or by other 
numerical methods.

Learning Checklist: What Should 
Be Learned from This Chapter

• In the one-sided LT, F s f t e dtst( ) = ( ) -
¥

-ò0 , values 

of f(t) for t < 0− are ignored.
• For a function f(t) that does not have an 

impulse at the origin, the lower limit in 
the one-sided LT could be 0− or 0+ or 0: 

F s f t e dt f t e dtst st( ) = ( ) = ( )-
¥

-
¥

- +ò ò0 0
. In this case,

 
the LT of f(t) is the same as the LT of f(t)u(t), irre-
spective of the lower limit of integration being 
0− or 0+ or 0.

• The LT transform has many properties that can 
be used for the derivation of the LTs of other 
functions. These properties include multiplica-
tion by a constant, addition/subtraction, time 
scaling, integration, differentiation, translation 
in the s-domain, translation in time, multiplica-
tion by t, and division by t. These properties are 
listed in Table 21.1.

• A linear differential equation is transformed by 
the LT to an algebraic equation in powers of s 
that can be solved for the LT of the variable of 
the equation Y(s), as in any algebraic equation. 
When this is done, the initial conditions y(0−) 
and y(1)(0−) appear like applied inputs.

• The characteristic equation of a linear differen-
tial equation is a polynomial in s obtained by 
taking the LT of the equation with zero forcing 
function (the homogeneous equation), zero ini-
tial conditions, and assuming a nonzero value of 
the variable of the equation. The LHS of the char-
acteristic equation appears in all the responses 
derived from the differential equation.

• The LTs of responses of LTI circuits having 
lumped circuit parameters are rational functions 
of s. These can be expressed, at least in part, as 
proper rational functions. Such functions can be 

expanded as partial fractions, which are then 
inverted term by term.

• The zeros of F(s) are the roots of the numera-
tor of F(s) so that F(s) = 0, when s equals any 
of these roots. The poles of F(s) are the roots of 
the denominator of F(s) so that F(s) → ∞ when s 
equals any of these roots.

• When the poles are simple and real, the PFE is 
of the form

  
F s

K
s p

K
s p

K
s p

n

n
( ) =

+
+

+
+ +

+
1

1

2

2
� , where Kr is the

 
residue of pole pr, r = 1, 2, …, n. Kr can be readily 
determined by the residue method, that is, by 
multiplying both sides of the equation by (s + pr) 
and setting s = −pr.

• When the poles are complex, they occur in com-
plex conjugate pairs, and their residues are also 
complex conjugates so as to have real coefficients 
of the polynomials in the numerator and denom-
inator of F(s). Working with complex quantities 
is avoided by the following procedure:

 1. The two terms involving complex conjugate 
poles are combined, resulting in a term that 
is quadratic in s in the denominator, and, in 
general, linear in s in the numerator.

 2. The coefficients of the linear function in the 
numerator are determined by comparing coef-
ficients of terms having s raised to the same 
integral power, as well as the constant term, 
on both sides of the equation for the PFE.

 3. The square is completed in the quadratic 
of the denominator, and the numerator is 
expressed in terms of the squared term in s in 
the denominator, after completing the square.

 4. The resulting expression in s is inverted in terms 
of cosine and sine functions of time, multi-
plied by an exponential function of time.

• The PFE of a multiple pole or order n is of the form
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.
 
Only Kn can be determined by the resi-

due method; the other residues are determined 
either by successive differentiation or by multi-
plying out to have a common denominator and 
comparing coefficients of various powers of s, 
as well as the constant term, on both sides of the 
equation for the PFE.

• Final-value theorem: If all the poles of F(s) 
have negative real parts, except for a simple 
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pole at the origin, if such a pole exists, then 
lim lim
t s

f t sF s
®¥ ®

( ) = ( )
0

. The final-value theorem 
 cannot be applied if F(s) has a multiple pole at 
the origin or has poles on the imaginary axis.

• Initial-value theorem: If F(s) is a proper ratio-
nal function, then lim lim

t s
f t sF s

® + ®¥
( ) = ( )

0
. If F(s) is 

not  a proper rational function, the numerator 
is divided by the denominator, and the initial-
value theorem is applied to the rational fraction 
part to obtain f(0+). In case of impulsive read-
justment in a circuit at t = 0, the initial-value the-
orem gives the responses just after the impulse 
is over at t = 0+.

• The convolution theorem provides the link 
between the convolution integral and the LT. It 
states that F(s)G(s) = L{f(t) * g(t)}. The convolu-
tion theorem allows an alternative derivation 
of the convolution integral of two functions 
of time.

Problem-Solving Tips

 1. In applying the differentiation-in-time property, 
the function that is differentiated is f(t), and not 
f(t)u(t). It follows that f(0−) in Equation 21.22 is 
the value of f(t) at t = 0− and not the value of 
f(t)u(t) at t = 0−, which is zero.

 2. Working with complex quantities can be 
avoided by combining complex conjugate poles 
in the PFE into a single term. The numerator of 
this term is, in general, linear in s when the com-
plex poles are simple.

 3. The initial- and final-value theorems can 
provide a useful check on the LT of a given 
response, using the limiting values of this 
response.

 4. In inverting the LT, MATLAB’s ‘ilaplace’ com-
mand can be used irrespective of whether F(s) is 
a proper rational function or not, and irrespec-
tive of whether the poles are real or complex, 
single or multiple.

Appendix 21A: Simplification 
of Rational Functions of s

It is required to simplify rational functions involv-
ing s multiplied by integer powers of 10. Consider the 

function
 
F s

s
s s

( ) = +
+ + ´-
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3

3 2 3 . If we  substitute 

s  = 103s′ and divide the numerator and   denominator 
by 103, we obtain a more convenient function 
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22 . Clearly, if s is in

 
rad/s, then s′ is in krad/s. This is because if s′ is in 
krad/s, its numerical value is 10−3 times that of s 
in rad/s. Hence s′ should be multiplied by 103 to have 
the same numerical value as s.

However, replacing s by 103s′ does not change the 
units of F′(s′), which remain s, the same as F(s). But when 
inverting F′(s′) the unit of time should be in ms, since s′ 
is in krad/s. This means that when inverting F′(s′), the 
ILT should be multiplied by 103 to convert it from s to 
ms. Thus, the ILT of F′(s′) is f(t) = 103(2e−3t′ − e−2t′), with t′ 
in ms. This can be readily verified. Thus,

 
F s

s

s s s s
( ) =

+( )
+ ´ + ´

=
+ ´

-
+ ´

æ
è
ç

ö
ø
÷

10 10

5 10 6 10
10

2
3 10

1
2 10

3 3

2 3 6
3

3 3
 

The ILT is f(t) = 103(2e−3 × 103t − e−2 × 103t), which is the same 
result, with t in s.

A more formal argument for multiplying the ILT by 103 

is based on the ILT f t
j

F s e dsst

j

j

( ) = ( )
- ¥

+ ¥

ò1
2p s

s

 
(Equation 

21.11). If we substitute s = 103s′, ignoring the change 
in the limits at infinity, which remain at infinity, we 

obtain
 
f t

j
F s e ds

j
F s es t

j

j
s t

j
( )= ( ) = ( )¢ ¢ ¢ ¢ ¢¢ ¢ ¢

- ¥

+ ¥

- ¥ò10
2

10
2

3
10

3
3

p ps

s

s

ss + ¥

ò ¢
j

ds

= ( )¢ ¢103 f t , where f ′(t′) is the inverse transform of F′(s′) 
and t′ is in ms. Hence, f(t) = 2 × 103e−3t′ − 103e−2t′.

Note that in applying the initial- and final-value 
theorems, when F′(s′) is multiplied by s′ and the limit 
obtained as s′ tends to infinity or zero, the result must 
also be multiplied by 103 in order to obtain the correct 
limiting value of f(t).

Similar considerations apply if s is  replaced by 106s′, 
where s′ is in Mrad/s. The ILT should then be multi-
plied by 106.

Problems

Laplace Transform of Analytical Functions

P21.1 Determine the LT of f(t) = (2t + 3t2)2.

 
Ans.

 
8 72 2162

5

s s
s

+ +
.

P21.2 Determine the LT of −2e−3(t − 4)u(t − 4).

 
Ans. -

+

-2
3

4e
s

s
.

P21.3 Determine the LTs of the following functions: (a) 
e e

u t
at at+æ

è
ç

ö

ø
÷ ( )

-

2
; (b)

 

e e
u t

at at-æ

è
ç

ö

ø
÷ ( )

-

2
.

 
Ans. (a) 

s
s a2 2-

; (b) 
a

s a2 2-
.
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P21.4 Determine the LT of the following functions: 
(a) (t − 1)  u (t − 2); (b) (t − 2)u(t − 1). Verify the results 
by expressing each function as the sum of a delayed 
ramp function and a delayed step function and deriv-
ing their LTs.

 
Ans. (a)

 
e

s s
s- +æ
è
ç

ö
ø
÷

2
2

1 1
; (b)

 
e

s s
s- -æ
è
ç

ö
ø
÷

1 1
2 .

P21.5 Determine the LTs of the following functions: 
(a) 2e−tu (t − 1); (b) cos(4t − 1)u(t).

 
Ans. (a)

 
2

2

2e
s

s- +( )

+
; (b)

 

s
s

cos sin1 4 1
162

( ) + ( )
+

.

P21.6 Determine the LT of te − tcosh4t u(t).

 

Ans.

 

s s

s s

2

2 2
2 17

2 15

+ +

+ -( )
P21.7 Determine the LT of e tu tt- ( ) given that the LT of e tt-/  

is p
s + 1

.

 
Ans.

 

p
2 1

3 2
s +( ) / .

P21.8 Using the division by t property and referring 
to a table of integrals (Appendix B), show that 

L
sin

tan
5

2 5
1t

t
u t

s( )ì
í
î

ü
ý
þ
= - æ

è
ç

ö
ø
÷

-p .

Laplace Transform of Graphical Functions

P21.9 Determine the LT of f(t) in Figure P21.9.

 
Ans.

 
1

1 2

s
e s+( )- .

P21.10 Determine the LT of f(t) in Figure P21.10.

 
Ans.

 

5 32 4 6 8e e e e

s

s s s s- - - -+ + -( ) .

P21.11 Determine the LT of the single triangular pulse of 
Figure P21.11.

 
Ans.

 

A
T s

A
T
e
s

A
T
e
s

Ts Ts

a a a a

a1
1 12 2 2-
-( )

+
-( )

- -

.

P21.12 Determine the LT of f(t) in Figure P21.12.

 
Ans. - + - -( )- - -2 1

2
22

3

s
e

s
e es s s .

P21.13 Determine the LT of (a) f(t) in Figure P21.13; (b) f (1)(t). 
Note that dividing the LT of f (1)(t) by s does not give 
back the LT of f(t), but the LT of [f(t) + u(t)] having a 
value of zero for t < 0. This is because integration of a 
function adds an arbitrary constant to the function. In 
this case the arbitrary constant makes the function zero 
for t < 0.

 
Ans. (a)

 

2 1 3 1
2 2 2

2

s s s
e

s
es s- +æ

è
ç

ö
ø
÷ +- - ; (b)

 
1

2 3
+ - - +- -

s s
e es s

1 2

s
e s- .
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1
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P21.14 Determine the LT of the time integral of f(t) in Figure 
P21.14.

 
Ans.

 
1 1 1
2 3 3s s s

e s- + - .

P21.15 Determine the LT of the derivative of f(t) in Figure 
P21.15.

 
Ans.

 

1 2 1 3- + +( )- -e s e
s

s s

.

P21.16 Determine the LT of the derivative of f(t) in Figure 
P21.16.

 
Ans. - + -( ) + - - +( )- - - - -1

1
12 2 3e e

s
e e es s s s s .

P21.17 Determine the LT of the derivative of f(t) in Figure 
P21.17.

 
Ans. 2 1

1 2
2

2

-æ
è
ç

ö
ø
÷ + -( )

-
-

s
e
s

e
s

s .

P21.18 Determine the LT of the derivative of f(t) in Figure 
P21.18. Check by deriving F(s) and applying the differ-
entiation-in-time property.

 
Ans.

 
1

1 2
s

e ses s- -( )- - .

P21.19 Figure P21.19 shows two identical consecutive pulses 
each of duration a, the second pulse being inverted 
with respect to the first. If F(s) is the LT of the two 
pulses shown, determine, in terms of F(s), the LT of f(t) 
shifted to the left by a.

 
Ans.

 

- ( )
- -

F s
e as1

.

Laplace Transform of Periodic Functions

P21.20 From the LT of a single rectangular pulse (Equation 
21.41), deduce that the LT of the square wave of Figure 

P21.20 can be expressed as
 

A
s

e

e
m

sT

sT

1

1

2

2

-( )
+( )

-

-

/

/
.

P21.21 From the LT of a single sawtooth (Equation 21.51), 
deduce that the LT of the sawtooth waveform of Figure 

P21.21 is
 

A
T s

Te
s e

Ts

Ts

1
12 - -( )

é
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P21.22 Given the periodic train of reversed sawtooth pulses 
of Figure P21.22. Show that the LT of the first period 

between 0 and T is 
A
s

A
Ts

e Ts- -( )-
2 1 . Deduce that the 

LT of the inverted sawtooth waveform of Figure P21.22 

is

 

A
T s

Te
s e

Ts

Ts
- +

-( )
é

ë

ê
ê

ù

û

ú
ú

-

-

1
12 .

P21.23 Determine the LT of (a) the impulse train A[δ(t) + δ(t – T) +  
δ(t – 2T) + ⋯] and (b) a negative impulse  train 
−A[δ (t − T/2) +  δ(t − 3T/2) + δ(t − 5T/2) + ⋯].

From the sum of these two LTs, deduce the LT of the 
square wave of Figure P21.20.

 

Ans. (a)

 

A
e sT1-( )-

; (b)

 
-

-( )
-

-

Ae
e

sT

sT

/2

1
.

P21.24 If f(t) = (cosπt/2)u(t) and g(t) is an infinite train of unit 
impulses of period 1, as shown in Figure P21.24, deter-
mine the LT of the product f(t) × g(t).

 
Ans.

 
1

1 2+ -e s .

P21.25 Using the translation-in-time property, show that the 
LT of a single half sinusoid described by f(t) = Amsinωt ,  

0 ≤ t ≤ π/ω, and f(t) = 0, elsewhere, is w
w

p wA
s

em s
2 2 1
+

+( )- / . 
Verify the result by direct integration using integra-
tion by parts. Deduce that the LT of a full-wave rec-
tified waveform of amplitude Am can be expressed as 
w

w
p
w

A
s

sm
2 2 2+

æ
è
ç

ö
ø
÷coth .

P21.26 If the LT of the response of an LTI circuit to δ(t) is 
1/(s + 1), determine the response to the input x(t) 
shown in Figure P21.26.

 Ans. (1 − e−(t − 1))u(t − 1) − (1 − e−(t − 2))u(t − 2) + 2(1 + e−(t − 3)) 
u(t − 3) − 2(1 − e−(t − 4))u(t − 4).

Inverse Laplace Transform

P21.27 Determine the ILT of F s
s s
s s

( ) = + +
+( ) +( )

8 4 6
2 3 4

2

.

 Ans. 4δ(t) + (3.6e−1.5t − 23.6e−4t)u(t).

P21.28 Determine the ILT of
 
F s

s s

s s
( ) =

+ +( )
+( )

10 3 4 4

2

2

2 .

 Ans. (10 + 20e−2t − 40te−2t)u(t).

P21.29 Determine the ILT of F s
s

s
( ) = +( )

+( )
3

4
2 .

 Ans. e−4t(1 − t)u(t).

P21.30 Determine the ILT of F s
s

s s
( ) = +

+ +
1

6 92
.

 Ans. e−3t(1 − 2t)u(t).

P21.31 Determine the ILT of
 
F s

s
s s

( ) =
+ +2 4 20

.

 Ans. e−2t(cos4t − 0.5sin4t)u(t).

P21.32 Determine the ILT of F s
s s
s

( ) = + +
+

2

2

2
4

.

 Ans. δ(t) + (cos2t −  sin2t)u(t).
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P21.33 Determine the ILT of
 
F s

s s

s s
( ) =

+ + +( )
+ +( )

40 2 4 5

4 5

2 2

2 2 .

 Ans. 2δ(t) + 20e−2t(sint − tcost)u(t).

P21.34 Determine the ILT of F s
s

s
( ) = +

+
sin cosf w f

w2 2 .

 Ans. sin(ωt + ϕ)u(t).

P21.35 If 
F s

e
s

f t t
s

( ) = +
+

( ) =
-1
1

2
3

2 , determine sat .

 Ans. f(t) =  sintu(t) +  sin(t − 3)u(t − 3) =  sin2.

P21.36 If
 
F s

e

s
f t t

s

( ) = +

+( )
( ) =

-1

1
22 , determine sat .

 Ans. f(t) = te−tu(t) + (t − 1)e−(t − 1)u(t − 1) = 2e−2 + e−1 = 0.64.

P21.37 Determine the ILT of
 
F s

s
s s

( ) = +
- -

3
22 .

 Ans. (5/3)e2tu(t) − (2/3)e−tu(t).

P21.38 Determine the ILT of
 
F s

s s s
( ) =

-( )
+

+ -
1

1

1
2 83 2 .

 Ans. (1/2)t2etu(t) + (1/6)e2tu(t) − (1/6)e−4tu(t).

Theorems on the Laplace Transform

P21.39 If F s
s s s

s s s s
f t t( ) = + + +

+( ) + +( ) ( ) ® ¥
8 89 311 300

2 8 15

3 2

2
, .determine as

 Ans. 10.

P21.40 If F s
s

s s
f t t( ) = +

+ -
( ) ® ¥

2
2 32 , determine as .

 Ans. Infinite; final-value theorem does not apply.

P21.41 If F s
s

s s
f t t( ) = +

- +
( ) ® ¥

4 3
2 22 , determine as .

 Ans. Infinite; final-value theorem does not apply.

P21.42 If F s
s

s s
f t t( ) = +( )

+( ) +( ) ( ) ® ¥
2 2

1 12
, determine as .

 Ans. The final-value theorem does not apply because 
of the poles at ±j. These poles result in a cos(t + θ) term 
in f(t), which makes f(t) oscillate between two finite 
values as t → ∞.

P21.43 If F s
s

s s
f( ) = +

+ +
( )+2 1

4 1
0

2

2 , determine .

 Ans. −8.

P21.44 If F s
s s s
s s s

f( ) = - + +
+ +( ) ( )+

3 2

2

6 15 50
4 5

0, determine .

 Ans. 10.

P21.45 A function x(t) when convolved with the function 
(1 − e−2t)u(t) gives the function (1 − e−2t − 2te−t)u(t). 
Determine x(t).

 Ans. te−tu(t).

P21.46 Determine the value of the convolution integral y(t) 
at t = 0.5 s, where y(t) = f(t) * g(t), with f(t) = sint, and 
g(t) = 2δ(t) + δ(2)(t).

 Ans. δ(t) +  sint =  sin0.5.

P21.47 Invert 1
12s s +( )

 using the convolution theorem.

 Ans. (1 – cost)u(t).

P21.48 When the switch is opened in Figure P21.48 at 
t = 0, after being closed for a long time, it is found 

that
 
V s

s
( ) =

+( )
2

4
2 . Determine ISRC. (Hint: Use the 

 differentiation-in-time property and the initial-value 
theorem.)

 Ans. 1 A.

P21.49 Determine iS(t) in Figure P21.49, assuming vSRC(t) = e−t 
(t + cost)u(t) V and an initial voltage VC0 = 1 V.

 Ans. iS(t) = e−t(1 −  sint)u(t) A.

Miscellaneous

P21.50 Use the time scaling property to show that L d at
a

( ){ } = 1
. 

Verify by direct evaluation, with a change of the vari-
able of integration so as to have the impulse function 
at  the origin in the standard form, with unity coeffi-
cient of t.

P21.51 The instantaneous power in a circuit is expressed in 

the s-domain as
 
P s

s
s s

( ) = +
+( ) +( )

48
1 2

.
 

Determine the 

energy delivered to the circuit between t = 0 and any 
arbitrary t.

 Ans. 24 − 47e−t + 23e−2t.

P21.52 Given the differential equation, x(2)(t) + 2x(1)(t) + x(t) = ej2t, 
with zero initial conditions at t = 0, determine x(t) for 
t ≥ 0. Note that the response to the cosine function can 
be obtained from that to the sine function by straight 
differentiation, whereas the converse is not true. 
Explain why. (Hint: Recall that the applied signals are 
(sin2t)u(t) and (cos2t)u(t).)

 Ans. -
+

-
-

+
+é

ëê
ù
ûú
( )+ - -3 4
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Objective and Overview

After having considered the basic properties of the 
Laplace transform (LT) in Chapter 21, the application 
of the LT to circuit analysis is presented in this  chapter. 
The discussion naturally begins with the representa-
tion of circuit elements in the s-domain. Because the 
LT of a given function excludes values of the function 
for t < 0−, special consideration must be given to initial 
conditions in energy storage elements. This is followed 
by a discussion of the general  procedure for analyzing 
circuits in the s-domain, including  switching circuits, 
since the LT transform offers some unique advantages 
in these cases. The LT transform of circuit responses 
naturally leads to the concept of transfer function, 
which allows some important conclusions in terms 
of impulse response, stability, and sinusoidal steady-
state response. The chapter ends with interpretations 
of poles and zeros in the s-domain and the responses 
of first-order and  second-order circuits.

22.1  Representation of Circuit 
Elements in the s-Domain

In order to fully utilize the power of the LT approach, 
the circuit should be analyzed entirely in the s-domain. 
It is necessary for this purpose to be able to represent 
circuit elements in the s-domain, including any initial 
conditions of energy storage elements. Once this is 
done, the conventional circuit analysis techniques that 
were applied to circuits in the frequency domain can 
be carried over to the s-domain, with currents and volt-
ages represented by their LTs. We will discuss in this 
section how resistors, capacitors, inductors, and linear 
 transformers are represented in the s-domain.

22.1.1  Resistor

Taking the LT of both sides of Ohm’s law v = Ri,

 V s RI s( ) = ( ) (22.1)

It is seen that in the s-domain, where the resistor 
 voltage and current are V(s) and I(s), respectively, the 
resistor is simply represented by its resistance R.

22.1.2  Capacitor

Consider an uncharged capacitor to begin with. The v–i 
relation is

 
v t

C
idt t

t

( ) = + ³ +

+ò1
0 0

0
,

 
(22.2)

where i is in the direction of a voltage drop v across the 
capacitor (Figure 22.1a). It is assumed that i(t) does not 
include an impulse at t = 0. Hence, i remains finite dur-
ing the interval from t = 0− to t = 0+, so that the lower 
limit of integration could just as well be 0+ instead of 0–. 
Taking the LT of both sides,

 
V s

I s
sC

V( ) = ( )
=, 0 0

 
(22.3)

Recall that in the sinusoidal steady state, where any 
initial voltage would have died out as part of the nat-
ural response, V(jω)  =  I(jω)/jωC. In Equation 22.3, jω 

22
Laplace Transform in Circuit Analysis
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FIGURE 22.1
Initial voltage across a capacitor as a voltage step at the origin. 
(a)  Assigned capacitor voltage and current, (b) variation of capacitor 
 voltage with time, (c) variation of capacitor voltage in (b) for t ≥ 0 con-
sidered as the sum of a step voltage V0u(t) and a voltage vC across an 
uncharged capacitor, and (d) circuit implementation of V0u(t) and vC in (c).



658 Circuit Analysis with PSpice: A Simplified Approach

is replaced by s for an initially uncharged capacitor. 
1/sC can therefore be considered as the impedance of an 
uncharged capacitor in the s-domain.

Suppose that the voltage across the capacitor is chang-
ing arbitrarily with time (Figure 22.1b). Equation 22.2 
becomes

 
v t

C
idt V t

t

( ) = + ³ +

+ò1
00

0
,

 
(22.4)

where V0 is the initial voltage across the capacitor at 
t = 0. Taking the LT of both sides of Equation 22.4,

 
V s

I s
sC

V
s

V s
V
s

C( ) = ( )
+ = ( ) +0 0

 
(22.5)

Comparing Equation 22.5 with Equation 22.3, it is 
seen that VC(s) = I(s)/sC is the LT of the voltage across 
an uncharged capacitor. V0/s is the LT of V0u(t). The 
interpretation of Equation 22.5 is that because the 
single-sided LT excludes values of v for t  <  0−, and 
since VC(s) =  I(s)/sC is the LT of the voltage across an 
uncharged capacitor, then in order to account for the ini-
tial voltage across the capacitor, it is necessary to add a 
voltage step V0u(t), whose LT is V0/s. In other words, v 
is divided into two components (Figure 22.1c): (1) a volt-
age vC across an initially uncharged capacitor and (2) a 
step function V0u(t). In circuit terms, these two compo-
nents are represented as in Figure 22.1d. The step volt-
age establishes the initial voltage V0 at t = 0+ between 
terminals ‘ab’. Thereafter, for t ≥ 0+, the voltage vC across 
the initially uncharged capacitor changes in accordance 
with i, added to the initial voltage V0. Taking the LT of 
the sum v = (vC + V0u(t)) gives Equation 22.5. The circuit 
in the s-domain is shown in Figure 22.2a.

The ideal voltage source V0/s in series with the 
uncharged capacitor of impedance 1/sC (Figure 22.2a) 
can be transformed to a current source (V0/s)/(1/sC) = 
CV0 in parallel with the same uncharged capacitor, as 
in Figure 22.2b, where CV0 is the LT of an impulse of 
strength CV0. Alternatively, this representation of the 
initial capacitor voltage can be derived from the LT of 
the alternative form of the v–i relation of the capacitor 
i = Cdv/dt. This gives

 I s sCV s CV( ) = ( ) - 0 (22.6)

Figure 22.2b is the representation of the circuit of 
Figure 22.2c in the s-domain. In this figure, C is initially 
uncharged. The capacitor provides a short-circuit path 
for the impulse CV0δ(t), which deposits a charge CV0 
on the uncharged capacitor, resulting in the initial volt-
age V0 at t = 0+. Thereafter, for t ≥ 0+, the current source 
behaves as an open circuit, so that i flows through C and 
v changes accordingly.

It was assumed in the preceding that i does not include 
an impulse at t = 0. If i did include such an impulse, then 
by superposition, the impulse simply deposits addi-
tional charge on the capacitor between t = 0− and t = 0+.

Note that whereas in the time domain, the rela-
tion i  =  Cdv/dt is incomplete in the sense that it does 
not explicitly involve V0, as noted in connection with 
Equation 7.6, its transformation to the s-domain does 
involve V0 in accordance with the differentiation-in-time 
property of the LT.

How does one obtain Q(s), the LT of the charge 
on the capacitor in the s-domain in the circuits of 
Figure 22.2a and  b? In both cases, Q(s)  =  CV(s), as 
 follows from taking the LT of both sides of the equa-
tion q(t)  =  Cv(t). However, in Figure 22.2a, the charge 
on the ideal capacitor alone is the charge accumu-
lated only for t > 0+, to which must be added the initial 
charge at t = 0+. Thus, v(t) = vC(t) + V0 (Equation 22.4), 
so that q t C v t VC( ) = ( ) +( )0 , t ≥ 0+. Taking the LT of both 
sides gives Q(s) as Q(s) = C(VC(s) + V0/s) = CV(s). Hence, 
in determining Q(s) from Figure 22.2a, the voltage step 
V0u(t) must be included as part of the voltage across the 
capacitor.

On the other hand, the impulse in Figure 21.1b depos-
its the initial charge CV0 and is over at t = 0+. The charge 
on the ideal capacitor at any time t ≥ 0+ is therefore the 
true charge. This is reflected in having VC(s) the same 
V(s) in Figure 22.2b.
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s-domain representation of capacitor with initial voltage. (a) Represen-
tation of the circuit of Figure 22.1d in the s domain, (b) voltage source 
in (a) is transformed to its equivalent current source, and (c) represen-
tation in the time domain of the circuit in (b).
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22.1.3  Inductor

Consider an uncharged inductor to begin with. The 
v–i relation can be expressed in the form

 
i t

L
vdt t

t

( ) = + ³ +

+ò
1

0 0
0

,
 

(22.7)

where i is in the direction of a voltage drop v across the 
inductor (Figure 22.3a). Again, it is assumed that v(t) 
does not include an impulse at t = 0. Taking the LT of 
both sides,

 
I s

V s
sL

V s sLI s I( ) = ( ) ( ) = ( ) =or 0 0
 

(22.8)

Comparing with the frequency-domain representa-
tion of V(jω) = jωLI(jω), it follows that sL is the impedance 
of an uncharged inductor in the s-domain.

If the inductor has an initial current I0 at t  =  0−, 
Equation 22.7 becomes

 
i t

L
vdt I t

t

( ) = + ³ -

+ò1
00

0
,

 
(22.9)

Taking the LT of both sides of Equation 22.9,

 
I s

sL
V s

I
s

( ) = ( ) +1 0

 
(22.10)

Comparing Equation 22.10 with Equation 22.8, it is 
seen that V(s)/sL is the LT of the current through an 
uncharged inductor. I0/s is the LT of I0u(t). The interpre-
tation of Equation 22.10 is similar to that of the case of the 
capacitor. Since V(s)/sL is the LT of the current through 
an uncharged inductor, the initial current I0 is established 
between terminals ‘ab’ at t = 0+ by a current step I0u(t) in 
parallel with an ideal uncharged inductor. For t ≥ 0+, v 
between terminals ‘ab’ varies according to the current iL 
through the uncharged inductor, added to the initial cur-
rent I0 (Figure 22.3b). The LT of I0u(t) is I0/s, so that the 

circuit of Figure 22.3b is represented in the s-domain as 
in Figure 22.4a, in accordance with Equation 22.10.

The ideal current source I0/s in parallel with the imped-
ance sL in Figure 22.4a can be transformed to an equiv-
alent voltage source (I0/s)  ×  sL  =  LI0 in series with the 
impedance sL. The ideal voltage source in Figure 22.4b is 
an impulse LI0δ(t) in the time domain that is a voltage rise 
in the direction of current through the inductor (Figure 
22.4c). The impulse, acting through the circuit connected 
to the inductor, establishes an initial current I0 in the induc-
tor between t = 0− and t = 0+, with the inductor acting as 
on open circuit. Thereafter, for t ≥ 0+, the voltage source 
behaves as a short circuit, and i changes with the current 
through the inductor, added to the initial current I0.

The representation of R, L, and C in the s-domain can 
be summarized as follows:

Summary: In the s-domain, the impedance of a resistor is  R, 
that  of an uncharged capacitor is 1/sC, and that of an 
uncharged inductor is sL. To account for initial energy 
 storage, while considering the values of all responses to be zero 
at t = 0−, in accordance with the LT, step or impulse, ideal, 
independent sources are added in series or in parallel with 
the ideal energy storage element so as to provide the required 
 initial value at t = 0+.

The fact that sources are added to account for initial 
conditions at the terminals of the energy storage ele-
ment in the s-domain implies the following concept:

Concept: The sources that are added to account for initial 
conditions in the energy storage elements in the s-domain 
become an integral part of the representation of the energy 
storage element in the s-domain.

This is indicated in Figures 22.2 and 22.4, where 
the LT V(s) of the terminal voltage across the energy 
storage element includes the voltage of the series-
connected voltage source (Figures 22.2a and 22.4b). 
The LT I(s) of the terminal current through the energy 
storage element includes the current of the parallel-
connected current source (Figures 22.2b and 22.4a). 
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An important implication is that these independent 
sources can be treated just like any sources of excita-
tion, so that they can be included in superposition, 
for example. This is in accordance with the funda-
mental concept that in an LTI circuit the responses 
to initial conditions can be added, by superposition, 
to the responses due to applied inputs acting alone. 
This fundamental concept is further exemplified by 
Equation 21.55, which indicates that initial conditions 
can be treated as inputs at t = 0.

Example 22.1: RL Circuit with Initial 
Current in Inductor

A voltage VSRCu(t) is applied at t = 0 to a series RL cir-
cuit in which the inductor has an initial current I0 
(Figure  22.5a). It is desired to derive the expressions 
for the current in the circuit and the voltage across the 
inductor as functions of time.

Solution:

The s-domain representation of the circuit is shown in 
Figure 22.5b. The series-source representation is clearly 
more convenient to use in this case than the parallel-
source representation. From KVL,

 
RI s sLI s LI

V
s

SRC( ) + ( ) - =0
 

(22.11)

This gives
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s R sL
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(22.12)

Note that Equation 22.12 follows from superposition 
by applying one source at a time, with the other source 
set to zero. The equation can be rearranged as

 
I s

L
V sLI
s s
SRC( ) = +
+( )

1
1

0

/t  
(22.13)

where τ = L/R is the time constant. Equation 22.13 can 
be expressed as a PFE:
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Taking the ILT of Equation 22.14,
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(22.15)

Equation 22.15 is of the same form as that of Equation 
11.57, derived in terms of initial value, final value, and 
the time constant.

The voltage across the inductor in the s-domain is

 
V s sLI s LI

V RI
s

L
SCR( ) = ( ) - =

-
+

0
0

1/t  
(22.16)

Taking the ILT,

 v t V RI eL SRC
t( ) = -( ) -

0
/t

 (22.17)

Again, this result follows from Equation 11.57. The 
final value of the voltage across the inductor is zero. 
With an initial current I0 in the circuit, the initial value of 
voltage across the inductor is (VSRC − RI0).

Problem-Solving Tip

• Always include the sources that account for initial 
conditions in energy storage elements as an inte-
gral part of these elements when analyzing the 
circuit.

Primal Exercise 22.1

Given a series RLC circuit with initial current I0 in the 
inductor and V0 in the capacitor, as shown in Figure 22.6, 
represent the circuit in the s-domain and derive the 
expression for I(s).
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FIGURE 22.5
Figure for Example 22.1.
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Exercise 22.2

Interpret λ(s) in Figure 22.4a and b in the same man-
ner as was done for Q(s) in Figure 22.2a and b. Is this in 
accordance with duality?
Ans. Yes.

22.1.4  Magnetically Coupled Coils

The mesh-current equations of the basic circuit of 
Figure 22.7a are

 
L
di
dt

M
di
dt

v1
1 2

1- =
 

 
- + + =M

di
dt

L
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dt

v1
2

2
2 0

 
(22.18)

Taking the LT and including initial values I10 and I20,

 sL s L I sMI s MI V s1 1 10 2 20 1( ) ( ) + = ( )– –  

 - ( ) ( ) + + ( ) + ( ) =sM s I s MI sLI s L I V s1 10 2 2 20 2 0–  (22.19)

Any s-domain representation of the coupled coils must 
satisfy Equations 22.19. It can be readily verified that the 
T-circuit of Figure 22.7b satisfies these equations and is in 
accordance with the voltage source representation of the 
initial current through an inductor (Figure 22.4b). Thus, 
the s-domain impedances are the inductances of the 
T-equivalent circuit of Figure 9.26b multiplied by s. The 
initial current on the input side is I10 and is associated with 
an inductance (L1 − M), so that the source voltage account-
ing for the initial conditions in this inductor is a voltage 
rise (L1 − M)I10 in the direction of current. Similarly on 
the output side. The initial current in the shunt branch is 
(I10 − I20) downward and the source voltage is a voltage 
rise M(I10 − I20) in the direction of the current.

Primal Exercise 22.3

Represent the initial current in each of the three  inductors 
in the circuit of Figure 22.7b by a parallel current source, 
as in Figure 22.4a. Assume that the dot markings on one 
coil are reversed from those of Figure 22.7a.

22.2  Solution of Circuit Problems 
in the s-Domain

It was emphasized earlier that in circuit analysis, the 
fundamental relations that must be satisfied are KCL, 
KVL, and the v–i relations of the circuit elements. When 
KCL is satisfied by instantaneous currents at a given 
node, then by taking LTs, KCL will also be satisfied in 
the s-domain. Similarly for voltage rises and drops that 
satisfy KVL. In the preceding section, we have seen how 
the v–i relations of circuit elements are represented in 
the s-domain, including initial values. The  following 
concept applies:

Concept: All circuit laws and techniques discussed previ-
ously for the frequency domain using phasor notation, apply 
equally well to the s-domain. These include series and parallel 
combinations of s-domain impedances and  admittances; Y-Δ 
transformation; node- voltage, mesh-current, and loop-current 
methods of analysis; TEC and NEC; and superposition.

We have already applied in problems of the preceding 
sections, KVL, superposition, and source transforma-
tion in the s-domain.

The first step in the general procedure for analyzing 
circuits using the LT method is to transform the circuit 
to the s-domain, representing passive circuit elements 
by their s-domain impedances, initial values of volt-
ages across capacitors and currents though inductors by 
appropriate sources, and independent and dependent 
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voltage or current sources by their LTs. The circuit is 
then analyzed by any of the techniques described pre-
viously for phasor analysis, and the LT of the desired 
circuit response is derived. The essential feature of the 
LT method is that the circuit equations are now alge-
braic in s, just as they were algebraic in jω in the case 
of phasor analysis. However, the ILT gives the complete 
response in the time domain, both transient and steady 
state, to any arbitrary excitation that has an LT.

Example 22.2: Circuit Response to 
a Unit Voltage Impulse

It is required to determine I s1( ), I2(s), and Io(s) in 
 Figure 22.8 in response to a unit voltage impulse, assum-
ing zero initial conditions, and to interpret the behavior 
of the circuit.

Solution:

Considering I s1 ( ) and I s2 ( ) to be mesh currents, the 
mesh-current equations may be written as

 s I s I s V ssrc+( ) ( ) - ( ) = ( )1 1 2  (22.20)

 - ( ) + +( ) ( ) = - ( )I s s I s I so1 21 1/ r  (22.21)

where I s I s I so ( ) = ( ) - ( )1 2 . Solving these equations,
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s s
V so src( ) =
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( )1

1 12 r  
(22.24)

It follows from the initial-value theorem, with 
Vsrc(s) = 1, that

 i i iO1 20 1 0 1 0 0+ + +( ) = ( ) = ( ) =A A and, ,  (22.25)

These results can be interpreted on the basis that when 
the voltage impulse is applied, the uncharged induc-
tor initially behaves as an open circuit, as discussed in 
Section 18.5. The impulse appears across the inductor, 
and the inductor current jumps to 1/L  =  1  A, so that 
i1(0+)  =  1  A. Since the voltage across the uncharged 
capacitor is not being forced to change by any current 
impulse, it remains zero. This means that the voltage 
across the resistor is the same as that across the depen-
dent source, that is, i iO O0 1 0+ +( )´ = ( )r  or

 iO 0 1 0+( ) -[ ] =r  (22.26)

If r ¹ 1, Equation 22.26 can only be satisfied by  having 
iO(0+)  =  0, which makes i2(0+)  =  i1(0+), in accordance 
with Equation 22.25. The voltage across the  inductor 

is  V s sI s
s s

s s s s
L ( )= ( )= -( ) +

-( ) + +
= -

-( )+ +
1

2

2 2

1
1 1

1
1

1 1
r

r r
. The 

1 term accounts for the impulse and the term 
1

1 12s s-( )+ +r  
is V sL ( ) after the impulse is over. Applying the initial-
value theorem to this term gives vL( )0 0+ = . This also 
 follows from the circuit, for at t = 0+, the voltage source 
behaves as a short circuit, so that vL(0+) = −1 × iO(0+) = 0.

If r = 1, the voltage across the resistor is the same 
as that across the dependent source, so i2 = 0 for all t. 
Hence, I1(s) = IO(s) = 1/(s + 1), and i t i t eO

t
1 ( ) = ( ) = - , as for 

R in series with L.
It will be seen that the LT automatically gives all the 

 correct responses of the circuit.

Exercise 22.4

Derive Equation 22.24 for Io(s) using TEC.

22.2.1  Switching

As mentioned in connection with the initial-value 
theorem (Section 21.4), the LT method is particularly 
useful for solving switching problems in which impul-
sive readjustment takes place at the time of switching 
because capacitor voltages or inductor currents are 
forced to change at this instant. The general procedure 
is to represent the circuit in the s-domain, as usual, after 
switching occurs, that is, t ≥ 0+, but including the initial 
conditions for voltages across capacitors, and currents 
through inductors, just before switching takes place 
(t  =  0−). The initial-value theorem gives any desired 
circuit response at t = 0+. When no impulsive readjust-
ments are involved at t  =  0, the initial conditions for 
voltages across capacitors and currents through induc-
tors are of course the same at t = 0− as at t = 0+.
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Example 22.3: Switched Responses 
of Capacitors in Parallel with a Resistor

In the circuit of Figure 22.9a, C1 has an initial voltage 
V10 = 50 V, and C2 is uncharged. If the switch is closed at 
t = 0, determine the voltage across the parallel combina-
tion and the currents in the circuit as functions of time. 
This example is the same as Example 19.9, but with dif-
ferent numerical values.

Solution:

The circuit for t ≥ 0+, after the switch is closed, is shown 
in Figure 22.9b, indicating v and the currents in the 
three branches. This circuit is shown in the s-domain 
in Figure 22.10, but with the initial conditions for t = 0−, 
before the switch is closed. The initial condition in the 
0.3  F capacitor is represented by the parallel, current-
impulse source, since the circuit is a parallel circuit. The 
source is CV0 = 0.3 × 50 = 15 As or C. V(s) is I1(s) multi-
plied by 1/0.2s Ω in parallel with 2 Ω:
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.  
(22.27)

From KCL,

 I s sV s1 15 0 3( ) = - ( ).  (22.28)

Equations 22.27 and 22.28 are solved for V(s) and 
I s1 ( ); I2(s) is obtained as −0.2sV(s) and IR(s) as I1(s) + I2(s). 
These functions and their ILTs are
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Physically, the initial charge on C1 is 15 C. When the 
switch is closed, this charge is distributed between C1 and 
C2 so as to equalize the voltage across them. The parallel 
capacitance is 0.5 F and the common voltage at t = 0+ is 
v(0+) = 15/0.5 = 30 V, as in Equation 22.29. Charge is con-
served at t = 0+, bearing on mind that no charge is trans-
ferred by iR at this instant, as was explained in Example 19.9. 
The charge on C1 at t = 0+ is 0.3 × 30 = 9 C, and the charge 
on C2 at t = 0+ is 0.2 × 30 = 6 C. Hence, 6 C are transferred 
between t = 0− and t = 0+ by a current impulse 6δ(t) A, as 
indicated in the expressions for i1(t) and i2(t) in Equations 
22.30 and 22.31. v(t) decays exponentially from its initial 
value of 30 V at t = 0+ with a time constant 2 × 0.5 = 1 s, 
as indicated in Equation 22.29. It follows that iR =  i1 +  i2, 
for t ≥ 0+, in accordance with Equations 22.30 and 22.31. 
Clearly, iR = v/2, as expected.

Let us examine next what information can be derived 
from the initial- and final-value theorems of the LT. 
Multiplying the LTs of the voltage and currents by s and 
setting s = 0 makes all the final values zero, as expected. 
Multiplying V(s) and IR(s) by s and letting s  →  ∞ gives 
v(0+) = 30 V and iR(0+) = 15 A, also as expected. To apply 
the initial-value theorem to I1(s) and I2(s), the numerator is 
divided by the denominator to obtain the LT of an impulse 
and a proper rational function. Because the impulse is over 
at t = 0+, it does not contribute to i1(0+) and i2(0+), so that 
these values are determined by the proper rational func-
tion part of the LT. Multiplying these by s and letting s → ∞ 
gives the correct values of i1(0+) = 9 A and i2(0+) = 6 A. This 
is an interesting feature of the LT in that when using the 
initial values at t = 0− in a circuit that applies for t ≥ 0+ and 
that involves impulsive readjustment between t = 0− and 
t = 0+, the initial-value theorem gives correct values at t = 0+ 
for the circuit variables having an impulse.
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The following obs ervations are of interest:

 1.  i1(t) and i2(t) are given by Equations 22.30 and 22.31 
for all t. Considering i1(t), it is seen that i1(t) = 0 for 
t ≤ 0−. Between t = 0− and t = 0+, i1(t) = 6δ(t) A, since 
the term 9e−tu(t) is finite during this interval and does 
not affect the impulse. For t ≥ 0+, the impulse is over 
and i1(t) = 9e−tu(t) A. i2(t) is similarly interpreted.

 2.  I1(s), the LT of the current through C1, is from Figure 
22.10, given by I1(s) = 15 – 0.3sV(s) = (6s + 15)/(s + 1), 
as in Equation 22.30. The 15 As current source, being 
part of the representation of the initial conditions of 
C1, must be included as part of the capacitor in the 
s-domain when evaluating the capacitor current.

 3.  Can i1 and i2 be determined from the v–i relation 
i = Cdv/dt of the capacitors? To do so, one must have 
an expression for capacitor voltage that applies to 
either capacitor for all t. Since the capacitors have 
different initial conditions, they would have dif-
ferent voltage expressions. v in Figure 22.9b is the 
voltage across all the paralleled elements for t ≥ 0+. 
In Equation 22.29, the expression for v is multi-
plied by u(t), which means that v = 0 at t ≤ 0− and 
v = 30 V at t = 0+. This expression for v is therefore 
appropriate for v2, the voltage across C2, which has 
these initial conditions. Differentiating both sides 
of Equation 22.29, considering the RHS as the prod-
uct of two variables, gives −C2dv/dt = −0.2(30e−tδ(t) 
− 30e−tu(t)) = −6δ(t) + 6e−tu(t), as in Equation 22.31.

As for v1, the voltage across C1, this voltage is 
50  V for t  ≤  0−, and v1(t)  =  30e−tu(t) V for t  ≥  0+. 
These two conditions can be combined as

 v t e u t tt
1 50 50 30( ) = + - +( ) ( )- , for all  (22.33)

Differentiating Equation 22.33 with respect to 
t and multiplying by −C1 gives i1(t) in Equation 
22.30. Note that V1(s) from Equation 22.33 is the 
same as V(s) in Equation 22.29, because the single-
sided LT is the same if the lower limit of integra-
tion is t = 0− or t = 0+ when the function does not 
have an impulse at the origin. Although i1(t) has an 
impulse at the origin, v1(t) has a step at the origin.

 4.  Q2(s) = C2V(s) = 6/(s + 1) is the LT of the charge on 
C2; q2(t) = 6e−tu(t) C, with q2(0+) = 6 C, as follows 
also from the initial-value theorem. q1(t) = C1v1(t), 
where v1(t) is given by Equation 22.33. Q1(s)  = 
C1V1(s) = C1V(s) = 9/(s + 1), with q1(0+) = 9 C, as 
follows also from the initial-value theorem.

Problem-Solving Tip

• In switching problems that involve impulsive 
readjustments at the instant of switching, the ini-
tial values in energy storage elements just before 
switching should be used in the s-domain repre-
sentation of the circuit after switching.

Primal Exercise 22.5

Given C1  =  C2  =  1  F, R  =  0.5 Ω, and V0  =  10  V in 
Example 22.3, determine i1(t), v(t), i2(t), q1(t), and q2(t).
Ans. i1(t) = 5δ(t) + 5e−tu(t) A; v(t) = 5e−tu(t) V; i2(t) = −5δ(t) 
− 5e−tu(t) A, q1(t) = q2(t) = 5e−tu(t) C.

Example 22.4: Switched Response of an RC Circuit

In Figure 22.11, the switch is moved to position ‘b’ at t = 0 
after being in position ‘a’ for a long time. The switch is 
moved to position ‘a’ at t = 1 s and back to position ‘b’ at 
t = 2 s. Determine vO(t) during the time intervals 0 ≤ t ≤ 1 s, 
1 ≤ t ≤ 2 s, and t ≥ 2 s, given that vSRC(t) = 15sintu(t) V.

Solution:

At t  =  0−, vO(0−)  =  5  V, from voltage division, with the 
capacitor  fully charged. During the interval 0 ≤ t ≤ 1 s, 
the  circuit in the s-domain is as shown in Figure 22.12, 
with I0 = CV0 = 5 As, and V s ssrc ( ) = +( )15 12/ . From super-
position and PFE,
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(22.34)

Hence,

 v t e t t tO
t( ) = - + £ £-8 3 6 0 12 cos sin , s (22.35)

At t = 1 s, vO(1) = 4.51 V. During the interval 1 ≤ t ≤ 2 s, 
the circuit in the s-domain is as shown in Figure 22.12, with 
I0 = 4.51 As and Vsrc(s) = 10/s. From superposition and PFE,
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Figure for Example 22.4.
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It should be noted that when we consider the LT of the 
10 V source to be 10/s, it is implicitly assumed that zero 
time is the instant when this source is applied at t = 1 s. 
In other words, when we take the ILT of Equation 22.36, 
it is with respect to a time variable t′ = t − 1. Thus,

 v t e tO
t¢ ¢( ) = - £ £- ¢5 0 49 0 12. , s (22.37)

or

 v t e tO
t( ) = - £ £- -( )5 0 49 1 22 1. , s (22.38)

At t = 2 s, vO(t) = 4.93 V. For t ≥ 2 s, the circuit in the 
s-domain is as shown in Figure 22.12, with I0 = 4.93 As, 
and Vsrc(s) = 15/(s2 + 1). From superposition and PFE,
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(22.39)

As explained in connection with switching at t = 1 s, 
the ILT is with respect to t″ = t − 2. Hence,

 v t e t t tO
t¢¢ ¢¢ ¢¢ ¢¢( ) = - + ³- ¢¢7 93 3 6 12. cos sin , s (22.40)

or

 v t e t t t tO
t( ) = - -( ) + -( ) ³- -( )7 93 3 2 6 2 22 2. cos sin , s 

 (22.41)

Problem-Solving Tip

• In delayed switching, the LT implicitly assumes a 
time origin at t = 0.

22.3  Transfer Function

Definition: When a single excitation is applied to a given 
circuit having no initial energy storage, the transfer function 
H(s) is the ratio of the LT Y(s) of a designated response to the 
LT X(s) of the applied excitation:

 
H s

Y s
X s

( )
( )
( )

=
 

(22.42)

In Example 22.2, I1(s)/Vsrc(s), I2(s)/Vsrc(s), and 
I1(s)/Vsrc(s) are all examples of transfer functions in the 
same circuit. Being the ratio of a response to an excita-
tion, the transfer function is independent of the nature 
of the excitation. It depends on the circuit, on where in 
the circuit the excitation is applied, and on which volt-
age or current in the circuit is the designated response.

A special case of interest is when the applied excitation 
x(t) is δ(t), a unit impulse at the origin. X(s) = 1, so that 
Y(s) = H(s) in the s-domain. By definition y(t) = h(t), the 
response to the unit impulse. It follows that the transfer 
function H(s) and the impulse response h(t) are related 
through a Laplace transformation and its inverse. Thus,

 L Lh H( ) andt s H s h t{ } = ( ) ( ){ } = ( )-1

 (22.43)

Concept: The LT of the response to a unit impulse of 
 excitation is the transfer function, and the ILT of the transfer 
function is the response in the time domain to a unit impulse 
of excitation.

This concept can be used to relate circuit responses 
in the s- and time domains. Let the only excitation 
applied to a circuit without initial energy storage be v1(t) 
(Figure 22.13a). According to the definition of convolu-
tion (Section 20.1),

 v t v t h t2 1( ) = ( ) ( )*  (22.44)

Taking the LT of both sides,

 V s v t h t2 1( ) = ( ) ( ){ }L *  (22.45)

Using the convolution theorem (Equation 21.91),

 V s V s H s2 1( ) = ( ) ( ) (22.46)

which is in accordance with the definition of the transfer 
function (Equation 22.42).

If two circuits are cascaded (Figure 22.13c), then using 
Equation 22.46

 ¢ ( ) = ( ) ¢ ( ) ( ) = ¢ ( ) ( )V s V s H s V s V s H s2 1 1 3 2 2and , (22.47)

where ¢ ( )V s2  and hence ¢ ( )H s1  are generally different from 
the open-circuit transfer function H(s) (Figure  22.13b), 
because of the loading effect of the second circuit on the 
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FIGURE 22.13
Cascading of circuits in the time and s domains. (a) A circuit in the 
time domain having an impulse response h(t), (b) the same circuit as 
(a) in the s-domain, and (c) two cascaded circuits in the s-domain.
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first circuit, as explained in connection with Figure 15.10. 
It follows from Equation 22.47 that
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That is, as noted earlier, when circuits are cascaded, the 
overall transfer function is the product of the individual 
transfer functions of the two circuits. This does not apply 
in the time domain, where the outputs of the individual 
circuits are related to their inputs by convolution:
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(( ) ( )* h t2  (22.49)

This illustrates a great convenience of working with 
transfer functions.

Another important property of the transfer function is 
its relation to the characteristic equation:

Concept: The poles of the transfer function are the roots of the 
characteristic equation.

Recall from Section 12.1 that all the responses in a 
circuit obey the same homogeneous differential equa-
tion, so that the same characteristic equation applies to 
all the variables in a given circuit. It was pointed out 
in Section 21.3, that the characteristic equation is the 
LT of the homogeneous equation, assuming zero ini-
tial conditions, as in the definition of the transfer func-
tion. The LHS of the characteristic equation appears in 
the denominator of all the responses in a given circuit, 
as in Equation 21.55, and as was demonstrated in the 
LT of circuit responses derived in this chapter. In other 
words, the LHS of the characteristic equation appears 
as the denominator of the transfer function for a given 
response in a circuit. It follows that the roots of the char-
acteristic equation are the poles of the transfer function.

22.3.1  Stability

Definition: A circuit is stable if the response to a unit 
impulse tends to zero as t → ∞. The circuit is unstable if the 
response to a unit impulse increases without limit, that is, 
is unbounded as t → ∞. The circuit is marginally stable, or 
metastable, if as t → ∞, the response to a unit impulse does 
not approach zero but remains bounded.

Recall that the response in the time domain to a unit 
impulse is the ILT, h(t), of the transfer function H(s) 
(Equation 22.43), whose poles are the roots of the charac-
teristic equation. Circuit stability is therefore determined 
by the location of the poles of the transfer function in the 
s-plane. Specifically, a distinction is made between (1) poles 
located on the imaginary axis, (2) poles located in the open 

left half of the s-plane, that is, the left half of the s-plane, 
excluding the imaginary axis, and (3) poles located in the 
open right half of the s-plane, excluding the imaginary axis.

Concept: If all the poles of the transfer function lie in the open 
left half of the s-plane, the circuit is stable. If at least one pole 
lies in the open right half of the s-plane, the circuit is unstable. 
If all the poles of the transfer function are simple poles on the 
imaginary axis, the circuit is metastable. If at least one pole on 
the imaginary axis is a multiple pole, the circuit is unstable.

This statement can be justified by considering the ILTs 
of terms in the PFE of H(s). Consider terms of the form 
K/(s  +  pr) or K/(s  +  pr)n, which denote, respectively, a 
simple or a multiple pole −pr. If located in the open left 
half of the s-plane, the simple pole is generally of the 
form −pr = −αr − jωr, with −αr < 0. Complex poles must 
occur in complex conjugate pairs in order to have real 
coefficients of H(s). The ILT of a real pole is Ke u trt- ( )a , if 
the pole is simple, and Kt e u t nn tr- - ( ) -( )1 1a / !, if the pole 
is of order n (Table 21.2). If the pole is complex, these 
ILTs are multiplied by a cosine term of frequency ωr and 
a phase angle that depends on the residues of the poles. 
In all these cases, these terms vanish as t → ∞ because of 
the presence of the e rt-a  term, so that the circuit is stable. 
On the other hand, if the pole lies in the open right half of 
the s-plane, −αr > 0, and e rt- ®¥a  as t → ∞. The impulse 
response is unbounded and the circuit is unstable.

As for poles on the imaginary axis, a simple pole at the 
origin results in a term K/s in the transfer function, whose 
ILT is Ku(t). In the absence of a pole in the open right half 
of the s-plane, the impulse response Ku(t) is bounded, 
and the circuit is metastable. Similarly, a pair of simple 
complex poles on the imaginary axis at ±jωr result in a 
term K s K s r1 2

2 2+( ) +( )/ w  in the transfer  function, whose 
ILT is Kcos(ωrt + θ) where θ depends on K1 and K2. The 
impulse response remains bounded as t → ∞, and the 
circuit is metastable. On the other hand, if the poles on 
the imaginary axis are multiple poles, the ILTs will con-
tain t or powers of t (Table 21.2). The impulse response is 
unbounded as t → ∞, and the circuit is unstable.

A constant term, a term in s, or terms in powers of s 
in the transfer function have ILTs that are, respectively, 
an impulse, its first derivative, and its higher deriva-
tives. The ILTs of all these terms are zero at t = 0+. In the 
absence of a pole in the open right half of the s-plane or 
of a multiple pole on the imaginary axis, the impulse 
response is zero as t → ∞, and the circuit is stable.

The following should be noted concerning the loca-
tion of poles in the s-plane:

 1. Poles on the imaginary axis have αr = 0. When these 
are the only poles present in the transfer function, 
the circuit is lossless and consists of ideal induc-
tors and capacitors only. Poles in the left half of 
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the s-plane arise because of the presence of resis-
tances in the circuit, which make αr > 0. The cir-
cuit is dissipative. By analogy, poles in the right 
half of the s-plane can be considered to be due to a 
negative resistance, which supplies energy to the 
circuit and causes an unbounded response.

 2. A circuit with a simple pole at the origin is 
metastable, as explained previously. However, 
if the circuit is excited at the frequency of the 
pole, the response is unbounded. Consider, for 
example, a capacitor C. Its transfer function in 
terms of V(s)/I(s) is the impedance 1/sC, which 
denotes a simple pole at the origin. A dc source 
is of zero frequency, so that the frequency of the 
source is also at the origin in the s-plane. If C is 
excited by a dc current source Idc, whose LT is 
Idc/s, then V(s) =  Idc/s2C; v(t) =  (Idc/C)tu(t) and 
is unbounded. Example 22.5 discusses the case 
of a lossless LC circuit that is excited at the fre-
quency of its poles on the imaginary axis.

Example 22.5: Responses of LC Circuit

Given a parallel LC  circuit (Figure 22.14a), with zero ini-
tial conditions, excited by a current source, it is required 
to determine (a) the transfer function Vo(s)/Isrc(s), (b) 
vO in response to a unit current impulse, and (c) vO 
in response to a sinusoidal excitation of the same fre-
quency as the poles.

Solution:

 (a) It follows from the circuit in the s-domain 

(Figure 22.14b) that V s
sL sC
sL sC

I so src( ) = ( )
+

( )1
1
/
/

, so that
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where w0
2 1= /LC. H(s) has a pair of simple, conju-

gate poles on the imaginary axis at s j= ± w0.
 (b) If i t tSRC ( ) = ( )d :

 
h t v t H s

C
tO( ) = ( ) = ( ){ } =-L 1

0
1

cosw
 

(22.51)

This result is readily interpreted. The unit impulse 
instan taneously charges the capacitor to a  voltage 
1/ VC , the energy in the capacitor being initially 
1 2 0 1 22/ /( ) ( ) = ( )Cv CO . The  circuit  then continu-

ously oscillates at a frequency w0, the amplitude of 
vO being 1/C. The oscillations are sustained, as 
described in Section 12.1, for the same circuit 
in response to an initial current in the inductor. 

i t
L

v t dt tL O

t

( ) = ( ) =ò1
0 0

0
w wsin . The current in the 

inductor in Figure 22.14a has its largest magnitude 
when w p0 2t n= / , where n is an integer. At these 
instants of time vO = 0, so no energy is stored in the 
capacitor. The energy stored in the inductor is then 
1
2

1
2

1 1
2

2LI L
LC C

m = = , which is the same as that initially 

stored in the capacitor. It is seen that the energy con-
tinuously oscillates between electric energy stored 
in the capacitor, at w p0t n= , and magnetic energy 
stored in the inductor, at ω0t = nπ/2. At intermediate 
times, energy is stored in both the inductor and the 
capacitor, the total energy being 1 2/ C, as required by 
conservation of energy. Since the amplitude of oscil-
lation is bounded, the circuit is metastable.

 (c) If iSRC(t)  =  Acosωt, where w w¹ 0, I s A
s

s
src ( ) =

+2 2w
, 

and
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Because the numerator and each term in the 
denominator is in s2, s2 can be replaced by a vari-
able x, so that the PFE can be expressed as
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Multiplying both sides by x +( )w0
2  and 

 substituting x=-w0
2 gives K1 0

2
0
2 2= -( )w w w/ . 

Multiplying both sides by x +( )w2  and substituting 

x = -w2 gives K2
2

0
2 2= - -( )w w w/ . The PFE of VO(s) is
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(22.54)

as can be readily verified. The ILT is
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(22.55)

The voltage is thus a combination of the applied 
signal and the natural oscillation of the circuit. 
The response remains bounded.
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FIGURE 22.14
Figure for Example 22.5.
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  If iSRC(t) = Acosω0t, then
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Replacing s2 by a variable x, as was done in 
connection with Equation 22.53, the PFE can be 
expressed as
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(22.57)

Multiplying both sides by x +( )w0
2 2

 and sub-
stituting x = -w0

2 gives K2 0
2= -w . Multiplying 

both sides by x +( )w0
2 2

,  Equation 22.57 becomes 

x K x K= +( ) +1 0
2

2w . Comparing coefficients, with 

K2 0
2= -w , gives K1 = 1. Hence,

 

s

s s s

2

2
0
2 2 2

0
2

0
2

2
0
2 2

1

+( )
=

+
-

+( )w w
w

w  
(22.58)

To put this in a form which can be readily 

inverted, s s2 2
0
2 2

/ +( )w  is added to both sides and 
the two sides are divided by two. The PFE of V so ( ) 
becomes
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(22.59)

  as can be readily verified. The ILT is (Table 21.2)

 
v t

A
C

t t tO ( ) = +é

ëê
ù

ûú2
1

0
0 0w

w wsin cos
 

(22.60)

The response is now unbounded, because the 
frequency of excitation is the same as that of the 
poles of the circuit. Note that in this case, it is 
not possible to solve the problem using phasors, 
because the circuit never reaches a steady state, as 
required by phasor analysis.

If two identical LC circuits are cascaded with iso-
lation, so that the second circuit does not load the 
first, the  transfer function is of the form s s2 2

0
2 2

/ +( )w  
(Equation 22.56). The  impulse response is now 

unbounded because of the double pole on the 
imaginary axis. An impulse excites the first circuit 
into continuous oscillation, which provides excita-
tion to the second circuit at its resonant frequency. 
This is illustrated by the following simulation.

Simulation: The Schematic is entered as in Figure 22.15, 
where the first circuit, having L = 1 H and C = 0.1 mF is 
excited by a current impulse of strength 104 × 10−7 = 10−3 As. 
The second LC circuit is identical with the first circuit and 
is excited by the output of the first circuit though a VCCS. 
In this way, the first circuit is not loaded by the second cir-
cuit, and this circuit is excited at the frequency of the pole. 
The negative sign of the gain of the dependent source is 
to compensate for the reversed connection of the control-
ling voltage of this source. In the simulation profile, Time 
Domain (Transient) is chosen as the Analysis type, 1s is 
entered for ‘Run to time’, 0 for ‘Start saving data after’, 
and 0.1m for ‘Maximum step size’. After the simulation is 
run, the waveforms of Figure 22.16 are displayed, where 
the dashed sinusoid is the voltage across the first LC circuit. 
The voltage jumps to 10 V at the end of the impulse and 
continues as a cosine function of 10 V amplitude, as indi-
cated by the voltage scale on the RHS of the graph. This is in 
accordance with the impulse flowing through the capacitor 
and depositing a charge of 10−3 C, which results in a voltage 
of 10−3/10−4 = 10 V. The measured period is 62.617 ms, cor-
responding to a frequency of 15.97 Hz, compared to a calcu-
lated value of 15.92 Hz. As indicated by the voltage marker, 
the output of the second circuit is unbounded, starting from 
zero and reaching 43.3 kV at 1 s. It should be noted that in 
order to have the two voltages on the same display, the out-
put of the first circuit is selected as V(C1:1) * 2E03.

22.3.2  Sinusoidal Steady-State Response

The transfer function applies to a circuit having no initial 
energy storage. In the sinusoidal steady state, any initial 
stored energy would have died down by the time the 
steady state is established. Moreover, the frequencies of 
sinusoidal functions are represented on the imaginary 
axis of the s-plane, where s =  jω. It should be possible 
therefore to derive the sinusoidal steady-state response 
from the transfer function by substituting s  =  jω. It is 
shown in this section how this can be accomplished.
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FIGURE 22.15
Figure for Example 22.5.
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Consider a stable circuit to which a sinusoidal excitation 
x(t) = Xmcosωt is applied. Let the transfer function of the 
circuit be a proper rational function H(s). If the transfer 
function is not a proper rational function, then H(s) refers 
to the proper rational fraction part, after dividing the 
numerator by the denominator. This is justified by the fact 
that the quotient is terms in s or powers of s, representing 
an impulse and its higher derivatives, which are zero at 
t = 0+. However, the response Y(s) of the circuit contains, 
in general, transients for t > 0+. H(s) can be expressed as
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where N(s) and D(s) are, respectively, the numerator and 
denominator polynomials of H(s), with N(s)/D(s) being a 
proper rational function. Substituting X(s) = Xms/(s2 + ω2) 
in Equation 22.61,
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This can be expressed as a PFE in the form
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where U(s) represents terms whose denominators 
involve the roots of D(s). To determine K1, we proceed in 
the usual manner by multiplying both sides by (s − jω) 
and substituting s = jω. All terms on the RHS, except K1 
will go to zero, including the terms (s − jω)U(s). This is 
because the circuit is assumed to be stable, which means 
that there are no poles at s = ±jω. Such poles will make 
the circuit metastable, and if excited at this  frequency, 

the response will be unbounded, as discussed ear-
lier. It follows from Equation 22.63, with H(s) replac-
ing N(s)/D(s), and substituting s  =  jω after cancelling 
out (s − jω) from the numerator and denominator, that
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(22.64)

where H(jω) has been expressed in terms of its magni-
tude and phase angle as H j eiw f( ) . Hence,
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X
H j em j

1
2

* = ( ) -w f

 
(22.65)

The two terms in K1 and its conjugate can be combined as
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(22.66)

Equation 22.63 becomes
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(22.67)

Since the circuit is assumed to be stable, all the poles of 
U(s) have negative real parts, so that their ILTs approach 
zero in the steady state, as t  →  ∞. Ignoring U(s), the 
steady-state Y(s), denoted as Yss(s) is

 
Y s

X
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e
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(22.68)
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FIGURE 22.16
Figure for Example 22.5.
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Note that the final-value theorem (Section 21.4) can-
not be applied to Equation 22.67 to find the steady-state 
value of Y(s) because of the poles ±jω on the imaginary 
axis. Using Equation 21.9, the ILT of YSS(s) is

y t
X

H j e e X H j tSS
m j t j t

m( )= ( ) +( )= ( ) +( )+( ) - +( )
2

w w w fw f w f cos
 

 (22.69)

where
|H(jω)| is the magnitude of H(s) after substituting 

s = jω
ϕ is the phase of H(jω)

It is seen that the steady-state sinusoidal response can be 
obtained from the transfer function, in accordance with 
the following concept:

Concept: The sinusoidal steady-state response is obtained 
from a transfer function that is a proper rational function by 
substituting s = jω, multiplying the magnitude of the excita-
tion by |H(jω)| and adding the phase angle of H(jω) to that 
of the excitation.

Consider, for example, an excitation 5cos(4t + 30°) V, 
having ω  =  4  rad/s, applied to circuit whose transfer 
function is

 
H s

s

s s s
( ) = -( )

+( ) + +( )
100 2

3 2 52

 
(22.70)

Substituting s = j4, the transfer function becomes

 
H j

j

j j
4

100 4 2
4 3 16 8 5

( ) = -( )
+( ) - + +( )  

(22.71)

It follows that

 

H j4
100 16 4

16 9 121 64
6 58( ) =

+( )
+( ) +( )( )

= .  (22.72)

and

Ð ( ) = -( ) - ( ) - -( )
= ° - ° -

- - -H j4 4 2 4 3 8 11
116 6 53 1 14

1 1 1tan tan tan
. .

/ / /
44 0 80 5. .° = - °

 
 (22.73)

where account has been taken of the signs of the real and 
imaginary components, as explained in connection with 
Figure 8.10. The response to 5cos(4t + 30°) V is therefore 
5 × 6.58cos(4t + 30° − 80.5°) = 32.9cos(4t − 50.5°) V.

The magnitude and phase angle of H(j4) in Equations 
22.72 and 22.73 are of course the same as those evaluated in 

the conventional manner. The denominator of H(s) = s3 + 
5s2 + 11s + 15 ≡ (15 − 5ω2) + jω(11 − ω2), which gives for w = 4, 

H j
j
j

4 100
2 4

65 20
6 58 116 6 197 1 6 58 80 5( ) ( ) ( )=

- +
- -

= Ð °- = Ð - °. . . . . .

The factors of H(jω) of Equation 22.71 can be inter-
preted geometrically in the s-plane. It is more instruc-
tive for this purpose to factor the quadratic expression 
in the denominator of Equation 22.70 into its complex 
roots. Thus, s2 + 2s + 5 = (s + 1 + j2)(s + 1 − j2), so that 
H(s) becomes

 
H s

s
s s j s j

( ) = -( )
+( ) + +( ) + -( )

100 2
3 1 2 1 2  

(22.74)

H(s) has a zero at s = 2 a pair of complex conjugate 
poles p1 and p2 at s = −1 − j2 and s = −1 + j2, respectively, 
and a pole p3 at s  =  −3 (Figure 22.17). When s  =  jω is 
 substituted, H jw( ) becomes

  

H j
j

j j j j j

j

j

w
w

w w w

w
w

( ) = -( )
+( ) + +( ) + -( )

=
- +( )

+( ) +

100 2
3 1 2 1 2

100 2

3 1 jj jw w+( )éë ùû + -( )éë ùû2 1 2  
(22.75)

s  =  jω is represented by point ‘Q’ at a distance +ω 
on the imaginary axis. Each of the factors on the 
RHS of Equation 22.75 can be represented as a vec-
tor (Figure 22.17). Thus, (−2  +  jω) is the vector zQ. 
It is the sum of the vector zO, which is −2, and 
the vector jω. Similarly, p3Q  =  p3O  +  OQ  =  3  +  jω; 
p2Q = 1 + j(ω − 2); and p1Q = 1 + j(ω + 2). These vectors 
can be evaluated in terms of magnitude and phase in the 
Argand diagram in the same way as phasors. Thus, if 
ω = 4, zQ = Ð °2 5 116 6. , p1 37 80 5Q = Ð °. , p2 5 63 4Q = Ð °. , 
and p3 5 53 1Q= Ð °. . Combining these terms gives the same 
result as in Equations 22.72 and 22.73.
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p2

2

p3 z

Q
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FIGURE 22.17
Interpretation of transfer function in the s-plane.
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It should be kept in mind that the response to a dc 
voltage or current excitation is equivalent to a sinusoi-
dal excitation of zero frequency. The dc response can 
therefore be obtained by multiplying the dc excitation 
by H(0), that is, the transfer function H(s) with s set to 
zero (see Primal Exercise 22.8).

22.3.3  Interpretation of Zeros and Poles

It is seen from the preceding discussion that  physically 
realizable frequencies in the form of trigonometric 
 functions such as cosωt or sinωt are those that lie on the 
imaginary axis of the s-plane, with the origin represent-
ing ω = 0, or dc conditions. A frequency ω is represented 
on the imaginary axis by two points, +jω and −jω corre-
sponding to ejωt and e–jωt. These combine to form a trigo-
nometric function as explained in Section 16.2. Zeros of 
the form s z

2 2+( )w  lie on the imaginary axis at s j z= ± w  
and make the transfer function equal to zero at a fre-
quency ωz. Such a zero was encountered in the band-
stop response (Table 14.3). Similarly, poles of the form 
s p

2 2+( )w  theoretically make the value of the function 
infinite at a frequency ωp, as in the case of resonance in a 
circuit of zero resistance.

22.4  Interpretations of Circuit 
Responses in the s-Domain

22.4.1  Natural Responses of First-Order Circuits

Figure 22.18 shows an RL circuit in the s-domain, assum-
ing zero initial conditions. It follows from KVL that 
Vsrc(s) = RI(s) + sLI(s), which gives

 

I s
V s R sL L ssrc

( )
( )

=
+

=
+

1 1 1
1/t  

(22.76)

where τ  =  L/R is the time constant. If the applied 
excitation is a voltage impulse of strength K Vs, then 
Vsrc(s)  =  K, and the impulse establishes an initial cur-
rent K/L in the inductor at t = 0+, resulting in a natural 

response for t ≥ 0+. Substituting for Vsrc(s) in Equation 
22.76 gives

 
I s

K
L s

( ) =
+

1
1/t  

(22.77)

Once I(s) is known, VR(s) and VL(s) readily follow. 
Thus,

 
V s RI s

K
s

R ( ) = ( ) =
+t t

1
1/  

(22.78)

and

 
V s sLI s K

s
s

L ( ) = ( ) =
+1/t  

(22.79)

It will be noted that all the responses I(s), VR(s), and 
VL(s) have a pole at s = −1/τ, which is also the root of 
the characteristic equation, in accordance with the dis-
cussion at the beginning of the preceding section. Thus, 
the differential equation with zero forcing function is 

L
di
dt

Ri+ = 0. Taking the LT, with zero initial conditions, 

gives (sL + R)I(s) = 0. The characteristic equation is there-
fore sL + R = 0, whose root is s = −1/τ.

Concept: All the responses of a stable first-order circuit in the 
s-domain are characterized by a pole on the negative real axis 
whose magnitude is the reciprocal of the time constant.

This is illustrated in Figure 22.19. As R → 0, 1/τ → 0, 
and the pole approaches the origin in the s-plane. The 
transfer function I(s)/Vsrc(s) reduces to 1/sL, the admit-
tance of an uncharged inductor. As R increases, the pole 
moves along the negative real axis, away from the origin.

Primal Exercise 22.6

If L = 1 H in the circuit of Figure 22.18, determine how 
the pole moves along the negative real axis as R varies 
between 1 and 100 Ω.
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FIGURE 22.18
RL circuit in the s-domain.
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FIGURE 22.19
Pole location of a stable first-order circuit.
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Example 22.6: Transfer Function of an RC Circuit

Consider the RC circuit shown in Figure 22.20. It is 
desired to derive and interpret the transfer function 
I(s)/Vsrc(s), assuming no initial energy storage.

Solution:

It follows from Figure 22.20 that

 
H s

I s
V s R sC R

s
s

I
src

( ) = ( )
( )

=
+

=
+

1
1

1
1/ /t  

(22.80)

where τ = RC. HI(s), being an admittance, has a zero at 
s = 0 and a pole at s = −1/τ. The zero occurs at a  frequency 
ω = 0 which corresponds to dc conditions. Under dc con-
ditions, the capacitor behaves as an open circuit, so that 
the admittance is zero. At any frequency s = jω, the admit-
tance is HI(jω) = 1/(R + 1/jωC), as obtained using phasor 
analysis. Note that impedance and admittance in terms of 
jω are defined under sinusoidal steady-state conditions. 
The pole is on the negative real axis. Formally, HI(s) → ∞ 
at s  =  −1/τ, but this does not occur at any physically 
 realizable frequency, because such frequencies are only 
represented on the imaginary axis of the s-plane.

If the excitation is a voltage step Ku(t), Vsrc(s) = K/s. 
Substituting for Vsrc(s) in Equation 22.80

 
I s

K
R s

( ) =
+

1
1/t  

(22.81)

The ILT is

 
i t

K
R
e u tt( ) = ( )- /t

 
(22.82)

This is the same response discussed for case (a) in 
Figure  18.9. The final-value theorem gives i(t)  =  0, as 
t → ∞, and the initial-value theorem gives i(0+) = K/R.

If the excitation is a voltage impulse of strength K Vs, 
Vsrc(s) = K. Substituting for Vsrc(s) in Equation 22.80,
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s
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(22.83)

The ILT is

 
i t

K
R

t
K
CR

e u tt( ) = ( ) - ( )-d t
2

/

 
(22.84)

This is the same response discussed for case (b) in 
Figure  18.9. The final-value theorem gives i(t)  =  0, as 
t → ∞, and the initial-value theorem applied to the ratio-
nal function part gives i(0+) = −K/CR2.

Substituting s = jω,

H j
j C
j CR R C
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I w w
w w
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f w
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If v(t) = Vmcos(ωt + θ), then
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 (22.86)
as obtained from phasor analysis.

Simulation: This example illustrates the direct simulation 
of a transfer function using the part named LAPLACE 
from the PSpice Analog Behavioral Module (ABM) library. 
When this part is entered, a block is displayed having the 
default transfer function 1/(s + 1), but the numerator and 
denominator can be changed to the desired polynomial 
in s (Figure 22.21a). The transfer function s/(s + 1) corre-
sponds to K = 1 Vs, C = 1 F, and R = 1 Ω in  Equation 
22.83. To invert the transfer function, a unit impulse 
function is applied at the IN terminal and the output is 
derived at the OUT terminal. In the simulation profile, 
Time Domain (Transient) is chosen as the Analysis type, 5s 
is entered for ‘Run to time’, 0 for ‘Start saving data after’, 
and 0.5m for ‘Maximum step size’. After the simulation 
is run, the setting of the x-axis is changed by choosing 
Plot/Axis Settings/X-axis, then selecting User Defined 
and replacing the lower value of 0 by 10ms, in order to 
hide the initial transient. The plot of Figure 22.22 is dis-
played corresponding to the response after the impulse in 
Equation 22.84. Note that the output is interpreted as a 
voltage, but the transfer function is that of a current, so 
that the ordinates in Figure 22.22 are in fact in amperes.

To display the steady-state sinusoidal response, the 
schematic of Figure 22.21b is entered, representing 
an arbitrarily chosen input of 10cost V and the same 
transfer function. The simulation profile is changed to 
AC Sweep (Noise), with start and end frequencies of 
0.159155, and 1 point per decade. After the simulation is 
run, the voltage printer readings in the output file are a 
magnitude of 7.071 V and a phase angle of 45°, in accor-
dance with Equation 22.86.
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FIGURE 22.20
Figure for Example 22.6.
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Exercise 22.7

Derive and interpret the transfer function V s V sC src( ) ( )/  
in the circuit of Figure 22.20.

Ans. 
V s
V s s

C

src

( )
( )

=
+

1 1
1t t/

.

Primal Exercise 22.8

The transfer function of a circuit is F s s( ) = +( )500 100/ .  
If the steady-state output of the circuit is vO(t)  =  4  +  
10cos(100t + 45°) V, determine the input vI(t).
Ans. 0 8 2 2 100. sin- t V.

22.4.2  Natural Responses of Second-Order Circuits

Consider the series RLC in the s-domain, with zero 
initial conditions (Figure 22.23). The transfer function 
I s V ssrc( ) ( )/  is

H s
I s

V s R sL sC

L
s

s sR L LC L
s

s s

src
( ) = ( )

( )
=

+ +

=
+ +

=
+ +

1
1

1
1

1
22 2

0
2

/

/ / a w  
(22.87)

and w0 1= / LC . The denominator of Equation 22.87 
is the LHS of the characteristic equation of the linear 
differential equation derived earlier (Equation 12.6). 
The poles are the roots of the characteristic equation 
s1

2
0
2= - + -a a w  and s2

2
0
2= - - -a a w  (Equation 12.7), 

which, as explained in Section 12.1, determine the type of 
response. Thus, for the overdamped response, the poles 
s1 and s2 are on the negative real axis (Figure 22.24a). As R 
decreases, the poles move closer together on the real axis, 
until they coalesce into a double pole at s = −ω0, corre-
sponding to critical damping (α = ω0 as in Figure 22.24b). 
With further decrease in R, the poles become complex 
conjugates lying on the semicircle of radius w0. This is 
because the real part of the poles is α and their  imaginary 
part is ωd, where a w w2 2

0
2+ =d , and ω0 is the radius of 
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FIGURE 22.21
Figure for Example 22.6.
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Figure for Example 22.6.
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Series RLC circuit in the s-domain.
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a  semicircle. The response is now underdamped. As 
R becomes smaller still, the poles move closer to the 
imaginary axis. In the limiting case of R = 0, α = 0, and 
the poles become purely imaginary at ± jw0.

Concept: The poles of an overdamped second-order circuit lie 
on the negative real axis of the s-plane. A critically damped 
circuit has a double pole on the negative real axis, at a distance 
ω0 from the origin. The poles of an underdamped circuit occur 
in complex conjugate pairs in the left half of the s-plane, on a 
semicircle of radius ω0 centered on the origin.

Example 22.7: Transfer Function of an RLC Circuit

Consider the RLC circuit shown in Figure 22.25. It is 
desired to derive and interpret the transfer function 
I s V ssrc( ) ( )/ . This is the same bandstop circuit analyzed 
in Example 14.6.

Solution:

The combined impedance of L and C is sL s LC/ 2 1+( ). It 
follows that 

I s
V s R sL s LCsrc

( )
( )

=
+ +( )

1
12/

, which simplifies to
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V s R

s
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1
2

2
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2

2
0
2

w
a w  

(22.88)

where
αp = 1/2CR
w0 1= / LC

H(s) has zeros at s j= ± w0 and has the poles of a parallel 
GCL circuit, since the circuit reduces to a parallel circuit 
when the source is set to zero. The zeros occur when the 
LC branch is in parallel resonance, so that its impedance 
is infinite, or its admittance is zero. This makes I(s) zero 
and Vo(s) = Vsrc(s).

If the source is sinusoidal, v t V tSRC m( ) = +( )cos w q :
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s
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ûú
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(22.89)

When w w= 0, s2
0
2+w  cancels out from the numerator 

and denominator, so that
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s
s s

m

p
( ) = -

+ +
cos sinq w q

a w
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2
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(22.90)

Since the poles of the denominator have negative 
real parts, it follows from the final-value theorem that 
I s i t sI sSS

t s
( ) = ( ) = ( ) =

®¥ ®
lim lim

0
0, because of parallel reso-

nance, as argued earlier. Applying the initial-value the-
orem to I(s) in Equation 22.89 or Equation 22.90 gives 
i(0+) = Vmcosθ/R. This is to be expected since vSRC(0) = 
Vmcosθ and C behaves as a short circuit in response to 
this step input at t = 0, irrespective of whether or not ω 
equals ω0.

It should be noted that whereas in the steady state 
Iss(s) = 0 when ω = ω0, this is not true of IL(s) and IC(s). 
Thus, using Equation 22.90,
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 (22.91)
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(a) Location of poles for an overdamped response and (b) location of poles for critically damped and underdamped responses.
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From the initial-value theorem, i sI sL
s

L0 0+

®¥
( ) = ( ) =lim ,

 
since the inductor behaves as an open circuit at t = 0. 
The steady-state value ILss(s) cannot be obtained by 
applying the final-value theorem to Equation 22.91 
because of the poles ± jw0 on the imaginary axis. 
However, the only terms of interest in the PFE of IL(s) 
are K/(s − jω0) and K*/(s +  jω0), since the other terms 
vanish as t → ∞. To determine K, we multiply the RHS 
of Equation 22.91 by (s − jω0) and set s = jω0. This gives 

K
V
L

jm= -( )
2 0w

q qsin cos  and K
V
L

jm* sin cos= +( )
2 0w

q q . 

Substituting and simplifying,
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s
s

Lss
m( ) = +

+w
w q q
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2

cos sin

 
(22.92)

and
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V
L

tLSS
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w
w q

0
0sin

 
(22.93)

Similarly,
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C
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cos sinq w q
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 (22.94)

From the initial-value theorem, i sI sC
s

C0+

®¥
( ) = ( ) =lim   

V Rmcosq/ , since C behaves as a short circuit at t = 0+. To 
determine iCSS(t), we proceed in the same  manner as ILSS 
by considering the terms K′/(s − jω0) and K′*/(s + jω0). 
Multiplying the RHS of Equation 22.94 by (s −  jω0) 
and setting s  =  jω0 gives ¢ = - -( )K

CV
jm

2
sin cosq q  and 

¢ = - +( )K
CV

jm* sin cos
2

q q . Substituting and simplifying,

 
I s CV

s
s

Css m( ) = - +
+

w w q q
w0

0
2

0
2

cos sin

 
(22.95)

and

 i t CV tCSS m( ) = - +( )w w q0 0sin  (22.96)

To check the values of iLSS(t) and iCSS(t), we note that at 
ω = ω0, iSS = 0, and v t V tO m( ) = +( )cos w q0 . It follows that 

i t
L

v t dt
V
L

tLSS O
m( ) = ( ) = +( )ò1

0
0w

w qsin , ignoring the con-

stant of integration in the steady state, which agrees with 
Equation 22.93. It also follows that iCSS(t) = CdvO(t)/dt = 
−ω0CVmsin(ω0t + θ), in agreement with Equation 22.96. 
Moreover, i t i tLSS CSS( ) + ( ) = 0. In other words, the current 
ω0CVmsin(ω0t + θ) circulates in the mesh composed of 
the inductor and capacitor.

Exercise 22.9

Show that when w w¹ 0, the steady-state sinusoidal 
response ISS(s) in Example 22.7 is the same as that 
obtained from phasor analysis.

Ans. H j
R j CR

w w w
w w w

( ) = -
- +

1 0
2 2

0
2 2 /

.

Exercise 22.10

Derive I(s), IL(s), and IC(s) in Example 22.7 when vSRC is a 
unit impulse. Interpret the result in terms of the initial-
and final-value theorems.

Ans.
 
I s

R
s

s s
p

p
( )= -

+ +

é

ë
ê

ù

û
ú

1
1

2
22

0
2

a
a w

; 
 
I s

R s s
L

p
( )=

+ +
w

a w
0
2

2
0
2

1
2

;
 

I s
R

s
s s

C
p

p
( ) = -

+
+ +

é

ë
ê

ù

û
ú

1
1

2
2

0
2

2
0
2

a w
a w

.

Learning Checklist: What Should 
Be Learned from This Chapter

• In the s-domain, the impedance of a resistor is R, 
that of an uncharged capacitor is 1/sC, and that 
of an uncharged inductor is sL. To account for ini-
tial energy storage, while considering the values 
of all responses to be zero at t = 0−, in accordance 
with the single-sided LT, step or impulse, ideal, 
independent sources are added in series or in 
parallel with the ideal energy storage element so 
as to provide the required initial value at t = 0+.

• The sources that are added to account for initial 
conditions in the energy storage elements in the 
s-domain become an integral part of the representa-
tion of the energy storage element in the s-domain.

• The s-domain representation of the linear trans-
former is based on the T-equivalent circuit. The 
ideal voltage source representation of the initial 
current in an inductor is applied to the induc-
tors in the series and shunt branches of the 
T-equivalent circuit.

• All circuit laws and techniques, discussed pre-
viously for the frequency domain using phasor 
notation, apply equally well to the s-domain. 
These include series and parallel combina-
tions of s-domain impedances and admittances; 
node-voltage, mesh-current, and loop-current 
methods of analysis; TEC and NEC; and super-
position and Y-Δ transformation.

 1. In the s-domain, passive circuit elements are 
represented by their s-domain impedances, 
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with initial values of voltages across capaci-
tors and currents though inductors accounted 
for by appropriate sources. Independent and 
dependent voltage or current sources are 
expressed in terms of their LTs.

 2. The circuit is then analyzed by any of the 
techniques described previously for pha-
sor analysis, and the LT of the desired 
circuit response is derived by solving alge-
braic equations for the LT of the desired 
responses.

 3. The ILT of the desired response gives the 
complete response in the time domain, both 
transient and steady state, to any arbitrary 
excitation that has an LT.

• In switching problems that involve impulsive 
readjustments at the instant of switching, initial 
values in energy storage elements just before 
switching are used in the s-domain representa-
tion of the circuit after switching. The initial-
value theorem gives circuit responses just after 
switching.

• When a single excitation is applied to a given 
circuit having no initial energy storage, the 
transfer function H(s) is the ratio of the LT Y(s) 
of a designated response to the LT X(s) of the 
applied excitation.

• The LT of the response to a unit impulse of exci-
tation is the transfer function, and the ILT of 
the transfer function is the response in the time 
domain to a unit impulse of excitation.

• The poles of the transfer function are the roots 
of the characteristic.

• A circuit is stable if the response to a unit impulse 
tends to zero as t → ∞. The circuit is unstable if 
the response to a unit impulse increases with-
out limit, that is, is unbounded as t → ∞. The 
circuit is marginally stable, or metastable, if as 
t → ∞, the response to a unit impulse does not 
approach zero but remains bounded.

• If all the poles of the transfer function lie in the 
open left half of the s-plane, the circuit is stable. 
If at least one pole lies in the open right half of 
the s-plane, the circuit is unstable. If all the poles 
of the transfer function are simple poles on the 
imaginary axis, the circuit is metastable. If at 
least one pole on the imaginary axis is a mul-
tiple pole, the circuit is unstable.

• If a metastable circuit is excited at the frequency 
of its poles on the imaginary axis, the response 
in unbounded.

• The sinusoidal steady-state response is obtained 
from a transfer function that is a proper rational 

function by substituting s  =  jω, multiplying the 
magnitude of the excitation by |H(jω)| and add-
ing the phase angle of H(jω) to that of the excita-
tion. As ω is varied, s moves along the imaginary 
axis.

• All the responses of a stable first-order circuit 
in the s-domain are characterized by a pole on 
the negative real axis whose magnitude is the 
reciprocal of the time constant.

• The poles of an overdamped second-order cir-
cuit lie on the negative real axis of the s-plane. 
A critically damped circuit has a double pole 
on the real axis. The poles of an underdamped 
circuit occur in complex conjugate pairs at a 
 distance ω0 from the origin.

Problem-Solving Tips

 1. Always include the sources that account for ini-
tial conditions in energy storage elements as an 
integral part of these elements when analyzing 
the circuit.

 2. In delayed switching, the LT implicitly assumes 
a time origin at t = 0.

Problems

Verify solutions by PSpice simulation.

Transfer Function

P22.1 If the impulse response of a given circuit is e u tt- ( )2 , 
determine the input that will produce an output δ(t).

 Ans. d d1 2( ) ( ) + ( )t t .

P22.2 When an input δ(t − 1) − δ(t − 2) is applied to an LTI 
circuit, the output is δ(t − 3). Determine the impulse 
response, h(t), of the circuit.

 
Ans.

 
å -( )=

¥
n t n2d .

P22.3 Determine L and C in Figure P22.3 given that the trans-
fer function V2(s)/V1(s) has a pole at −100 + j700 rad/s.

 Ans. 2.5 H, 0.8 μF.

P22.4 Determine the impulse response h(t) if the transfer 

 function is H s
s s
s s

( ) = - -
+ +

2

4 2

4 4
8 16

.

 Ans. tcos2tu(t) – tsin2tu(t).

P22.5 Determine the steady-state sinusoidal response cor-
responding to the transfer function of the preceding 
problem when the excitation frequency is 4 rad/s.

 Ans. Response in unbounded.
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P22.6 The current in a circuit is governed by the differential 

equation 
d i
dt

di
dt

i
2

2 2 0+ + = , with i(0+) = 1 and di/dt = 0 at 

t = 0+. Determine i(t).

 Ans. e tt- +( )1 A.

P22.7 Two identical circuits are cascaded, without the second 
circuit loading the first. If the overall transfer function 
of the cascade is 4/(s  +  1)2, determine the impulse 
response of each circuit.

 Ans. ± -2e t.

P22.8 If an input u(t) is applied to the first circuit of the 
 preceding problem, determine the output of the sec-
ond circuit as function of time.

 Ans. - - +- -4 4 4te et t .

P22.9 Two circuits are cascaded, without the second circuit 
loading the first. If the impulse response of the first cir-
cuit is 2δ(1)(t), and the impulse response of the second 
circuit is e tt- sin 2 , determine the impulse response of 
the cascade.

 Ans. 2 2 2 2e t tt- -( )cos sin .

P22.10 Determine the impulse response of the cascaded 
 circuits in Figure P22.10, assuming RC = 1.

 Ans. te u tt- ( ).

P22.11 Given 
V s
V s

s
s s

o

i

( )
( )

=
+ +
10

0 4 4 10
/

/.
 and v t u ti ( ) = ( ) -(10

 
u t -( ))0 1. , determine vO(t) for t ≥ 0.1.

 Ans. - +( ) + +( )- - -( )10 5 1 10 5 0 55 5 1e t e tt t . .

P22.12  The response of a circuit to an input v t tI ( ) = - ( ) +d   
e tt- ( ) ( )d 2  is v t t tO ( ) = ( ) - -( )( )2 1d d . Determine the 
impulse response of the circuit.

 Ans. u t e u t u t e u tt t( ) - ( ) - -( ) + -( )- - -( )2 2 11 1 .

P22.13 The impulse response of a circuit is u(t). Determine the 
steady-state response to the sinusoidal input 5cos2t.

 Ans. (5/2)sin2t.

P22.14 The transfer function of a given circuit is 
s s s+( ) + +( )3 2 52/ . Determine (a) the response of the 

circuit in the time domain to a step of 5u(t) and (b) the 
sinusoidal steady-state response of the circuit to an 
 excitation 2cost.

 Ans. (a) 3 3 2 2- +( ) ( )- -e t e t u tt tcos sin ; (b) 2 8 13cos( . ).t- º

P22.15 A source of unknown voltage is applied to the cir-
cuit shown in Figure P22.15. Determine i(t) given that 
iC(t) = (1 + t)u(t) A.

 Ans. 1 22+ +( ) ( )t t u t/ A.

P22.16 An unknown voltage vSRC(t) is applied to the circuit 
of Figure P22.16. If v t eC

t( ) = -5 4 , determine iSRC(t) and 
vSRC(t).

 Ans. iSRC(t) = 2.5δ(t) − 5e−4t; vSRC(t) = 2.5δ(t).

P22.17 An unknown voltage vSRC(t) is applied to the circuit of 

Figure P22.17. If v t eO
t( ) = - -2 3 , determine iC(t).

 Ans. i t t tC ( ) = -2 2 2 2sin cos/ / A.

500 L

v2

+

–

v1

+

–

C

FIGURE P22.3 

R

vI

+

–

C

R
×1

vO

+

–

C

FIGURE P22.10 

1
–

+
vSRC

i iC
1 H

1 F

FIGURE P22.15 

–

+
vSRC

1

+

–

vC10.5 F

iSRC

FIGURE P22.16 

2 F

1
–
+vSRC

1 H

1 H

iC

+

–

vO

FIGURE P22.17 
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P22.18 Derive the transfer function Vo(s)/Vsrc(s) in Figure 
P22.18.

 
Ans.

 

1

0 2 1

2

2

- ( )
( ) + +

¢

¢ ¢

s

s s.
, s′ is in Mrad/s.

P22.19 Determine the transfer function Vo(s)/Ii(s) in Figure 

P22.19 assuming Z1 1= + s, Z2 1 1= + /s, Y
s
s

1
2

=
+

, and 

Y s2 3= .

 
Ans.

 
1

6 7s +
.

P22.20 Determine the transfer function Vo(s)/Ii(s) in Figure 
P22.20.

 
Ans.

 

2 1
2 2 12

s s
s s

+( )
+ +

.

P22.21 Determine the transfer function Io(s)/Vsrc(s) in Figure 
P22.21.

 
Ans. 

1
5 5s +( ).

P22.22 Determine the transfer function Io(s)/Isrc(s) in Figure 
P22.22.

 
Ans.

 

s s
s s

+( )
+ +

7
6 17 202 .

P22.23 Determine the poles and zeros of the transfer function 
Vo(s)/Vsrc(s) in Figure P22.23.

 Ans. Double zero at the origin, poles at ±j0.37 rad/s.

P22.24 Determine VL(s) in Figure P22.24, assuming that the 
voltage sources are applied at t = 0, with zero initial 
energy storage in the capacitors.

 
Ans.

 
2

2 2 12

s
s s+ +

.

P22.25 The transfer function of an LTI circuit is 
10

1 103+ s/
.
 

Determine the steady-state response when the input is 
(1 + cos1000t) V.

 
Ans.

 
10

10
2

1000
4

+ -æ
è
ç

ö
ø
÷cos t

p
V .

1 µH1 µF

10– +

vSRC

vO

+

–

1 µH 1 µF

FIGURE P22.18 

Z1 Z2 Y2

Y1

+

–

Vo(s)

Ii(s)

FIGURE P22.19 

1 1

1 H vOvI

++

––

1 F

FIGURE P22.20 

10 10

5 H

4 mF

–

+
20vSRC

iO

FIGURE P22.21 

3 H
–

+
0.5 F

2 F

vSRC vO

+

–

FIGURE P22.23 

25 H 25

5

25

20 mF iSRC

iO

FIGURE P22.22 

11 F

vL

+

–

1 H

2 V

1 F6 V
+

–

+ –

FIGURE P22.24 
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P22.26 The step response of an LTI circuit is 1-( ) ( )-e u tt . 
Determine (a) the response to the input x(t) shown in 
Figure P22.26 and (b) 10sint.

 
Ans. (a) t e u t t e u tt t- +( ) ( ) - - +( ) -( )- - -( )1 2 11

(b) 
10

2 4
sin t -æ

è
ç

ö
ø
÷

p
.

P22.27 The response of a given circuit to a unit voltage 

impulse is e et t-( )¢- V. Determine the response to a 

sawtooth pulse defined by v(t) = t V, 0 ≤ t ≤ 1 s, and 
v(t) = 0, for t < 0, and t > 1 s.

 Ans. e e t u t e e t u tt t t t- -( ) ( ) - - - +( ) -( )- - - +2 2 2 11 1 V; 
e e t u t e t u tt t t- -( ) ( ) - -( ) -( )- -( )2 2 2 11 V .

P22.28 When an input 240u(t) is applied to a circuit, the 
response is 100 800e u tt- ( ). Determine the steady-state 
response to a sinusoidal input 5cos800t.

 Ans. 0.295cos(800t + 45°).

First-Order Circuits

P22.29 The switch in Figure P22.29 is opened at t  =  0, after 
being closed for a long time. Determine vO(t) and the 
pole location of Vo(s).

 Ans. vO(t) = 5e−t V where t is in ms. The pole is located 
at s = −1 krad/s.

P22.30 The switch in Figure P22.30 is closed at t  =  0, after 
being open for a long time. Determine I(s).

 
Ans.

 

5
6

43 52
11 14

s
s s

+
+( )

.

P22.31 The switch in Figure P22.31 is moved to position ‘b’ 
at t  =  0, after being in position ‘a’ for a long time. 
Determine Is(s).

 
Ans. 10

10
5 2

+
+s

.

P22.32 The switch in Figure P22.32 is moved to position ‘b’ 
at t  =  0, after being in position ‘a’ for a long time. 
Determine IL(s), given iL(0+) = 0.5 A.

 

Ans. 0 5 1 5 10
10 10

2 6

2 6 3

. .s
s s

+ ´
+( ) +( )

.

P22.33 Both switches in Figure P22.33 are opened at t = 0 after 
being closed for a long time. Determine iO(t).

 Ans. 10 5e t- mA, t is in ms.

P22.34 The switch in Figure P22.34 is moved to position ‘b’ 
at t = 0, after being in position ‘a’ for a long time. 
Determine iO(t) and the pole location of Io(s).

 Ans. i t eO
t( ) = ( ) -10 3 90/ mA/ , t is in μs. The pole of Io(s) 

is at −1/90 Mrad/s.

1

x(t)

t
0 1 2 3

FIGURE P22.26 

10 V 5 k 0.1 µF

+

–

vO

5 k5 k t = 0 

+

–

FIGURE P22.29 

10

vL

+

–

10 H100 V

30

3

t = 0i+

–
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10 V 1 F

5t = 0

1 F

a

b

iS

+

–

FIGURE P22.31 

–

+

100t = 0

a

b

iL

0.1 H100sin103t V ~
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2 k

0.15 µF
iO

0.3 µF 10 k25 mA

t = 0 t = 0

8 k

FIGURE P22.33 
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P22.35 The switch in Figure P22.35 is opened at t  =  0, after 
being closed for a long time. Determine vO(t) and the 
pole location of Vo(s).

 Ans. vO(t) = 10 V. The pole of Vo is at the origin.

P22.36 The switch in Figure P22.36, is moved to position 
‘b’ at t = 0, after being in position ‘a’ for a long time. 
Determine vO(t) and the pole location of Vo(s).

 Ans. v t eO
t( ) = -0 5 3. / V , where t is in ms. The pole of Vo 

(s) is at −1000/3 rad/s.

P22.37 The switch in Figure P22.37 is moved to position 
‘b’ at t = 0, after being in position ‘a’ for a long time 
Determine v tO( ) and the pole location of Vo(s).

 Ans. v t eO
t( ) = - ( ) -900 19 710 19 38 3/ / V/ , where t is in ms. 

The poles of Vo(s) are at zero and 38/3 krad/s.

P22.38 Switch 1 in Figure P22.38 has been closed for a long 
time, with the capacitors initially uncharged when the 
switch was first closed. At t = 0, switch 1 is opened and 
switch 2 is closed. Determine v tO( ) and the pole loca-
tion of Vo(s).

 Ans. vO(t) = 10/3 V. The pole of Vo(s) is at the origin.

P22.39 The switch in Figure P22.39 is closed at t  =  0−, just 
before the impulse is applied, with i2 = 0. Determine 
I1(s) and I2(s).

 
Ans. I s

s
s s

1
2 1

1
( ) = +

+( )
,
 
I s

s
2

1
2

( ) = .

P22.40 The switch in Figure P22.40 is opened at t  =  0 after 
being closed for a long time. Determine I(s), VL1(s), 
VL2(s), and the corresponding ILTs.

 
Ans.

 
I s

s
s s

( )= +
+( )3
2
1

A,
 
V s

s
s

L1
6

1
( )=-

+
V,

 
V s

s
s

L2 6
2
1

( )= +
+

V,
 

i t e u tt( ) = -( ) ( )-6 3 A, v t t e u tL
t

1 6 6( ) = - ( ) + ( )-d V , 
v t t e u tL

t
2 6 6( ) = ( ) + ( )-d V.

t = 0
a

b

1 k
2 k

30 nF10 mA iO

103iO V

–+

FIGURE P22.34 

1 k t = 0

+

–

vO10 V 50 nF

2 k

vO–
+

+

–
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1 k

100

5 V

50 mH

+

–

vO20 V

5vO(t)

–+a
t = 0
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+

– +

–
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1 k

30 k

a b

+

–

vO
50 V

ix

10 V 50 nF 5ix

10 kt = 0

+

–

+

–

FIGURE P22.37 

4 nF

+

–

vO

10 k
t = 0 

4 nF

2

t = 0

1

8 nF

10 V

+

–
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2 H

2

iS

–

+

+

–

1 H

11 V
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i2i1

t = 0–
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4 2 H

24 V

2 H
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+

–
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P22.41 Both switches in Figure P22.41 are opened at t = 0 after 
being closed for a long time. Determine I2(s), V2(s), and 
the corresponding ILTs.

 Ans. I s s2 6 7 10( ) = - +( )/ , V s s s2 0 8 12 7 10( ) = - - +( ). / ;  

i t e t
2

10 76 7( ) = - ( ) -/ A/ ; v t t2 88 35( ) = -( ) ( ) -/ d  
120 49 10 7/ V( ) -e t/ .

P22.42 The switch in Figure P22.42 is opened at t  =  0 after 
being closed for a long time, with i2(0−) = 1 A. Determine 
I2(s), V1(s), and the corresponding ILTs.

 Ans. I s s2 0 6 0 5( )=- +( ). ./ A, V s s1 11 2 2 4 0 5( )=- - +( ). . ./ V; 
i t e t
2

0 50 6( ) = - -. . A, v t t e t
1

0 511 2 2 4( ) = - ( ) - -. . .d V.

P22.43 The switch in Figure P22.43 is opened at t  =  0 after 
being closed for a long time. Determine i(t).

 Ans. 2u(t) A.

P22.44  i t eSRC
t( ) = - /t A in Figure P22.44, where τ = RC, with 

zero initial stored energy. Determine v(t).

 
Ans.

 
v t

C
te t( ) = -1 / .t V

Second-Order Circuits

P22.45 Determine (a) the response vO of the circuit in Figure 
P22.45 to vI = δ(t) and (b) the steady-state response to 
a sinusoid having a unit amplitude and a frequency 
ω = 106 rad/s.

 
Ans. (a)

 

10
5

6 3 5
2

3 5
2e e

t t-
-æ

è
çç

ö

ø
÷÷ -

+æ

è
çç

ö

ø
÷÷

-
é
ëê

ù
ûú V, t is in μs; 

(b) |H(jω)| = 1/3, and ∠H(jω) = −90°.

P22.46 Determine the frequency of the excitation vSRC(t)  = 
Vmcosωt at which the circuit of Figure P22.46 will have 
an unbounded response. Consider any convenient 
voltage as a typical response.

 Ans. 1.265 × 105 rad/s.

P22.47 Show that the response vO(t) to the input δ(t) in Figure 
P22.47 is unbounded.
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P22.48 Determine Vo(s) and vO(t) for the circuit in Figure P22.48, 
assuming zero initial conditions.

 Ans. V s s s so ( )= + +( )/ /2 1 2 , v t e tO
t( )= + °( )-2 2 452/ cos / V.

P22.49 Determine vO(t) for the circuit in Figure P22.49 if 
vSRC(t) = (6 + 3t)u(t), assuming zero initial conditions.

 Ans. vO(t) = (1.5 + 4.5e−2t)u(t) V.

P22.50 (a) Determine the transfer function Vo(s)/Vsrc(s) for the 
circuit in Figure P22.50, assuming zero initial condi-
tions; (b) verify the initial-value and final-value theo-
rems for unit impulse and step inputs; (c) derive the 
magnitude and phase shift of the transfer function 
under sinusoidal steady-state conditions.

 
Ans. (a) H s

s
s s

( )=
+ +
2

3 11 5

2

2 ;
 

(c) H j( ) , tanw w

w w
f w

w
=

-( ) +
= -

-
æ
è
ç

ö
ø
÷

-2

5 3 121
180

11
5 3

2

2 2 2

1
2º .

P22.51 Determine Vo(s) in Figure P22.50 if vSRC(t)  =  te−tu(t), 
assuming zero initial conditions. Use MATLAB to 
derive vO(t).

 
Ans. V s

s

s s s
o ( ) =

+( ) + +( )
2

1 3 11 5

2

2 2
;
 
v t

e
tO

t

( ) = -æ
è
ç

ö
ø
÷ -

-2
3

1
3

 
0 552 0 3393 14 0 532. .. .e et t- -+ V

P22.52 Determine Vo(s) in Figure P22.50 if vSRC(t) is a single 
rectangular pulse of 1 V amplitude and 1 s duration, 
assuming zero initial conditions. Use MATLAB to 
derive vO(t).

 
Ans.

 
V s

s
s s

eo
s( )=

+ +
-( )-2

3 11 5
12 ;

 
v t v t u t v tO O O( )= ( ) ( )- -( )1 1 1

 
 

u t-( )1 V, where v t e eO
t t

1
3 14 0 5320 803 0 031( )= - -( )- -. .. . V.

P22.53 Determine Vo(s) in Figure P22.50 if vSRC(t) is a single 
half-sinusoid of 1 V amplitude and ω = 1 rad/s, assum-
ing zero initial conditions.

 
Ans. V s

s
s s s

eo
s( ) =

+( ) + +( )
+( )-2

1 3 11 5
1

2

2 2
p .

P22.54 Determine Vo(s) in the circuit of Figure P22.54 if 
vSRC(t)  =  te–tu(t), assuming zero initial conditions. 
Verify the initial-value theorem, the final-value theo-
rem, and derive the steady-state sinusoidal response 
when vSRC(t) = cost V.

 
Ans. V s

s s
s s s

o ( ) = + +
+( ) + +( )

2 2
1 2 2 3

2

2
;
 

1
5

cos ,t+( )f V

ϕ = 90°– tan–1(2).

P22.55 (a) Determine vO  in Figure P22.55 if iSRC(t) is a single 
rectangular pulse of 1 A amplitude and 1 s duration, 
(b) verify the initial-value theorem and the final-value 
theorem, and (c) derive the steady-state sinusoidal 
response when iSRC(t) = 3sin2t A.

 
Ans. (a) v t e t t u tO

t( )= - +( )( ) ( ) --1
2

1 cos sin
 
 

1
2

1 1 1 11- -( ) + -( )( )( ) -( )- -( )e t t u tt cos sin V; 

(c) 
3

2 5
2 116 6sin .t- °( )V.

–
+

6u(t) V

1 F

1 F

–+

2u(t) V
1

1 H

+

–

vO

FIGURE P22.48 

1 F

2
– +

2iX

iX
–

+
vSRC(t) 1 H

+

–

vO(t)

FIGURE P22.49 

–

+vSRC

0.1 F1

+

–

vO22 H

FIGURE P22.50 

–
+vSRC 1 F

1

2

1 H

+

–

vx

–+

0.5vx

+

–

vO

FIGURE P22.54 

iSRC 1

1 H

1 1 F

+

–

vO

FIGURE P22.55 
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P22.56 (a) Determine Vx(s) in Figure P22.56 if vSRC(t) = tsintu(t), 
(b) verify the initial-value theorem and the final-value 
theorem, and (c) derive the steady-state sinusoidal 
response when vSRC(t) = 5cost V.

 

Ans. (a) V
s

s s s
x =

+ -( ) +( )
2

1 1

3

2 2 2 V; (c) 5 26 6cos .t + °( )V .

P22.57 Determine vO(t) in Figure P22.57 if the initial current in 
the inductor is 0.1 A and the initial voltage across the 
capacitor is zero.

 
Ans. v t e eO

t t( ) = - -- -20
262
59

40
177

40 2 3/ V.

P22.58 Determine vO(t) in Figure P22.57 if the initial current in 
the inductor is zero and the initial voltage across the 
capacitor is 12 V, having the polarity of a voltage rise 
in the direction of ix.

 
Ans. v t e eO

t t( ) = - +- -2
518
59

20
177

40 2 3/ V.

P22.59 Determine vO(t) in Figure P22.59 if the initial current in 
the inductor is 0.2 A and the initial voltage across the 
capacitor is zero.

 
Ans. v t t tO ( ) = - +20 20 5 2

39 2
10

5 2cos sin V.

P22.60 Determine vO(t) in Figure P22.59 if the initial current in 
the inductor is zero and the initial voltage across the 
capacitor is 3 V and of the same polarity as vO.

 Ans. v t t tO ( ) = - +20 17 5 2 4 2 5 2cos sin V.

P22.61 The switch in Figure P22.61 is opened at t  =  0 after 
being closed for a long time. Determine I(s).

 
Ans.

 
I s

s
s s

( ) = +( )
+ +

120 2 1
60 30 12 .

P22.62 Determine VTh(s) looking into terminals ‘ab’ in Figure 
P22.62.

 
Ans. V s V s

s
s s

Th ab( ) = ( ) = +( )
+( )

12 4
6

.

P22.63 The circuit in Figure P22.63 is the s-domain representa-
tion of a parallel LC circuit with initial energy storage 
in L and C. Determine the initial values IL0 and VC0.

 Ans. IL0 = −1 A, VC0 = 2 V.

P22.64 Determine in Figure P22.64: (a) vO(t) if vSRC(t) = u(t) −  

u(t − 1) V; (b) vSRC(t) if v t t e
e

u tO
t

t

( )= - + + +
æ

è
ç

ö

ø
÷ ( )-

-3
2 2

2

V.

 Ans. (a) v t e e u t e e u tO
t t t t( )= - -( ) ( )- - -( ) -( )- - - -( ) - -( )1 1 12 1 2 1 V; 

(b) tu(t) V.

1 F

1 –
+

2vx–

+
vSRC

1 H

+

–

vx

FIGURE P22.56 

–
+

20u(t) V

0.5iX

20

0.5 H

0.1 F

+

–

vO

iX

10

iL

FIGURE P22.57 

2iX A

5

0.1 H

0.2 F

iX–

+
20u(t) V

+

–

vO

iL

FIGURE P22.59 

30 60 H

i+

–
120 V 1 F t = 0

FIGURE P22.61 

–
+–

+

+ –vX

2vX

2

1 F

1 H

12u(t)

a

b

FIGURE P22.62 

2/s vC

+

–

2s1/s1

iL

FIGURE P22.63 
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P22.65 Determine iL(t) in Figure P22.65, given that IL0  =  1  A 
and VC0 = 2 V.

 Ans. i t t e u t te u tL
t t( ) = ( ) + ( ) - ( )- -d 2 A.

P22.66 The switch in Figure P22.66 is closed at t  =  0, after 
being open for a long time. Determine IC(s).

 
Ans. I s

s
s s

C ( ) =
+ + ´2 4 610 25 10

.

P22.67 The switch in Figure P22.67 is opened at t  =  0, after 
being closed for a long time. Determine i(t).

 Ans. i t e t tt( ) = - +( )-2 22 cos sin A.

P22.68 The switch in Figure P22.68 is opened at t  =  0, after 
being closed for a long time. Determine I(s).

 
Ans. I s

s

s s
( ) =

+ ´( )
+ ´ +

5 15 10

25 10 10

3

2 3 8 .

P22.69 The switch in Figure P22.69 is opened at t  =  0, after 
being closed for a long time. Determine vO(t).

 Ans. v t e u t e u tO
t t( ) = ( ) - ( )- -35 3 7 V .

P22.70 Determine vO(t) in Figure P22.70, assuming VC0 = 10 V 
and IL0 = 1 A

 Ans. 10u(t) V.

P22.71 The switch in Figure P22.71 is moved at t  =  0− from 
position ‘a’ to position ‘b’, just before u(t) and δ(t) are 
applied, after being in position ‘a’ for a long time. 
Determine vO(t).

 
Ans.

 
v t u t e t t u tO

t( ) = ( ) + -
æ

è
çç

ö

ø
÷÷ ( )-0 5 3

2
1
3

3
2

. cos sin V.

–

+ vO(t)+ –
vSRC(t)

1 H 0.5 F

1 1

FIGURE P22.64 

1 F0.5
–
+(1)(t) V

1 H

+

–

vC

iL

FIGURE P22.65 

5 µF

20

2 mH
+

–
80 V

60t = 0 

iC

FIGURE P22.66 

7 A 4

4 H

80.25 F 2

t = 0i

FIGURE P22.67 

30 5 µF 

2 mH +

–
500 V

50

100 100

10
t = 0 i

FIGURE P22.68 

40 V

iX

16

1 H

1/14 F

+

–

vO

4

+

–

t = 0

iX

FIGURE P22.69 

10u(t) V

iX

10

1 H

0.1 F

+

–

vC

iX

(t) A
–

+
iL +

–

vO

FIGURE P22.70 
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P22.72 The double switch in Figure P22.72 is opened at t = 0 
after being closed for a long time. Determine vO(t).

 
Ans. v t e t e tO

t t( ) = -- -4
6
2

2
6
2

6 6/ /cos sin V.

P22.73 The switch in Figure P22.73 is opened at t  =  0 after 
being closed for a long time. (a) Determine VC(s) from 
the circuit in the s-domain and (b) derive vC(t) for 
t ≥ 0+.

 
Ans. (a) V s

s
s s

C ( ) =
+ +2 2 2

; (b) v t e t tC
t( ) = -( )- cos sin .

P22.74 The switch in Figure P22.74 is opened at t  =  0 after 
being closed for a long time. Determine (a) derive 
VC(s); (b) vC(t), t ≥ 0+.

 
Ans. (a) 32

9 75 10
16 10 10

3

2 3 8

s
s s

+ ´
+ ´ +

æ

è
ç

ö

ø
÷

.
; (b)

 
e tt- ( ) +(8 32 6cos  

28 3 6/ V( ) ( ) ( ))sin t u t .

u(t)

1 H

1

t = 0–

–
+

+

–
1 V (t) 1 F

+

–

vO

a b

FIGURE P22.71 

3

2

4 H

6 H5 H
+

–
6 V

+

–

vO

t = 01

4 F

FIGURE P22.72 

1

11 H 1 F

t = 0

vC

+

–
1 V

+ 

– 

FIGURE P22.73 

5 µF2 mH +

–
32 V

32

t = 0 +

–

vC

FIGURE P22.74 
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Objective and Overview

Although the Laplace transform (LT) has several advan-
tages over the Fourier transform (FT) in circuit analysis, 
the FT is fundamental to signal analysis. Being concep-
tually an extension of Fourier analysis to nonperiodic 
signals, it utilizes the same frequency-domain represen-
tation as phasor analysis. It shares many of the opera-
tional properties of the LT but has some unique and very 
useful properties that are explored in this chapter.

The FT provides a powerful tool for working in the fre-
quency domain. This has many important applications in 
signal processing, communications, and control systems. 
The usefulness of FT techniques has been greatly enhanced 
by digital computation, based on a rapid and efficient algo-
rithm known as the fast Fourier transform that computes 
the discrete FT (DFT). This transform is an approximation 
to the FT that produces a finite set of discrete-frequency 
spectrum values from a finite set of discrete-time values.

The FT is first derived from the Fourier series expan-
sion (FSE) and its salient characteristics are highlighted. 
Some general properties of the FT and their implications 
are then presented followed by the operational proper-
ties of the FT and their applications. Circuit applications 

of the FT are discussed and compared with those of the 
LT. This chapter ends with Parseval’s theorem, which is 
concerned with energy in the frequency domain.

23.1  Derivation of the Fourier Transform

The FT can be derived from the exponential form of 
the FSE of a periodic waveform as the period becomes 
 infinitely large. Consider as an example the FSE of the 
rectangular pulse train analyzed in Example 16.3. As the 
period of the function becomes infinitely large, the wave-
form reduces to a single pulse of amplitude A and dura-
tion t , extending from t = -t/2 to t = +t/2, often denoted 
by Arect (t/t ), as mentioned earlier. Cn of the waveform 
is given by C A T nn = ( ) ( )t w t/ sinc /0 2  (Equation 16.36). 
Since T will be made very large and ω0 correspondingly 
very small, let us consider C Tn  instead of Cn. Thus, from 
Equation 16.36

 
C T f t e dt A n nn

jn t

T

T

= ( ) = ( ) = ± ± ¼-

-ò
w t w t0

0
2

2

2 0 1 2sin , , , ,
/

/

c /
 

(23.1)

Figure 23.1a shows the plot of C Tn  vs. nω0 for the 
case of T = 5t  illustrated in Example 16.3. The plot is 

23
Fourier Transform

A  sinc(n   0  /2)

2  /

A

CnT

n   0

(a) (b)

CnT

A

n   0

(c)

A  sinc(    /2)

CnT

2  /

A

5   0
  0

  0

4  / 2  / 4  /

A  sinc(n   0  /2)

20   0

4  /

FIGURE 23.1
CnT of a pulse train as the period is increased. (a) Combined amplitude and phase spectra of the rectangular pulse train of period T, whose pulse 
around the  origin is Arect(t/τ), with T = 5τ, (b) the function in (a) when T is multiplied by 4, and (c) as T → ∞, the function shown is the FT of 
Arect(t/τ).
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a combination of the magnitude and phase spectra of 
Figure 16.12. Cn is shown positive when Ð =Cn 0 and 
negative when Ð = °Cn 180 . The zero crossings occur at 
n mw t p0 2/ = ±  or n m mw p t0 2 1 2 3= ± = ¼/ , , , , . The zero 
crossings depend on τ, independently of T. When τ = T/5, 
the first zero crossing for nw0 0>  occurs at nω0τ/2 = π, 
or  n T Tw p t p p p p w w0 0 02 2 5 10 10 2 5= =( )´( )= = ( )=/ / / / / , 
that is, after 5 intervals of  ω0.

If τ is kept constant while T is multiplied by 4, say, to 
give ¢ =T T4 , then w p0 2¢ = ¢/T  is divided by 4. The spec-
tral lines are now closer together, being separated by w0¢ 
(Figure 23.1b), and the first zero crossings still occur at 
± = ± ´ =± ´ ´ ¢ = ± ¢2 2 5 2 5 4 20 0p t p p w/ / /( ) ( ) ( ) ( ) ,T T  that is, 
after twenty intervals of w0¢. The general shape of the 
curve remains the same, because the zero crossings are 
independent of T.

As T ®¥, the function becomes the aperiodic func-
tion Arect(t/τ), and the separation ω0 = 2π/T between 
neighboring spectral lines becomes an infinitesimal dω. 
The abscissa nω0 becomes ω, so that its infinitesimal 
variation is dω. Equation 23.1 becomes

 
C T f t e dt A

A
n

j t= ( ) = æ
è
ç

ö
ø
÷ =

æ
è
ç

ö
ø
÷

-

-¥

¥

ò w t wt
w

wt
sin sinc

2
2

2  
(23.2)

as illustrated in Figure 23.1c.
The integral C Tn  in Equation 23.2 is the FT of the ape-

riodic time function f(t) and represents a transformation 
from the time domain to the frequency domain. Thus,

 
F f t F f t e dtj t( ){ } = ( ) = ( ) -

-¥

¥

òw w

 
(23.3)

where F(ω) is the FT of f(t).
The inverse transformation, from the frequency domain 

to the time domain, is obtained from the exponential form 
of the FSE: f t C e C T e Tn n

jn T
n n

jn T( ) = å = å ( ) ( )=-¥
¥

=-¥
¥w w0 0 1/ . 

In the limit, as T ®¥, CnT is replaced by F(ω) and nω0 
by ω. Now 1 20/ /T( ) = ( )w p , where ω0 is the separation 
between adjacent spectral lines (Figure 23.1a). As T ®¥, 
this separation becomes dω, as noted earlier. Hence, 1/T 
is replaced by dω/2π, and the summation becomes an 
integration, which gives

 
F -

-¥

¥

( ){ } = ( ) = ( )ò1 1
2

F f t F e dj tw
p

w ww

 
(23.4)

where F - ( ){ }1 F w  is the inverse FT (IFT) of F(ω).
The following should be noted concerning the Fourier 

transformation:

 1. The FT can be interpreted along the same 
line as the FSE. The frequency spectrum of 
a periodic function is discrete, defined at 

frequencies nω0, the amplitude of the nth 
 harmonic being 2|Cn|. On the other hand, 

as  T C
F

T

F
dn®¥ =

( )
=

( )
, 2 2

w w
p

w becomes 

infinitesimally small, and the frequency sepa-
ration ω0 also becomes infinitesimal; that is, 
the amplitudes of the sinusoids are now a con-
tinuous function of frequency instead of being 
defined as harmonic only at the discrete fre-
quencies nω0. The periodic function is the sum 
of a denumerably infinite number of sinusoids 
of finite amplitude, successively separated in 
frequency by ω0. The aperiodic function can be 
viewed as the sum of a nondenumerably infi-
nite number of sinusoids of infinitesimal ampli-
tude and infinitesimal frequency separation. 
The amplitude of each of these components is 
F dw p w( )( )/  and its phase is that of F(ω). The 

distinction between a denumerably infinite and 
a nondenumerably infinite number of sinusoids 
is that a denumerably infinite number is, in 
principle, countable, as 1, 2, 3, … all the way to 
infinity. On the other hand, when the frequency 
is continuous, counting of sinusoids, even over 
a finite frequency range, is nondenumerably 
infinite. The counting becomes impossible, even 
in principle, because of infinitesimal frequency 
separation.

 2. Sufficient conditions for the existence of the 
FT are as follows: (a) f t dt( )

-¥

+¥

ò  is finite, that 

is, |f(t)| is absolutely integrable, and (b) the 
function is piecewise continuous on a finite 
interval of time, as in the case of the LT, which 
means that the function is integrable over any 
finite interval. These conditions are sufficient 
but not necessary, so that functions for which 

f t dt( )
-¥

+¥

ò  is infinite can have an FT. Examples 
are dc quantities, step functions, and sinusoi-
dal functions. The FTs of these functions can-
not be obtained directly using Equation 23.3 
but are obtained in other ways, as illustrated 
later.

 3. Compared to the one-sided LT of Equation 21.3, 
the FT is defined from t = -¥ to t = +¥, with s 
in the LT replaced by jω. The extension over all 
time means that values of functions for t < 0 are 
included in the FT, but initial conditions at t = 0 
are not easily included. Moreover, because of the 
e t-s  in the LT integral, where σ is the real part of 
s, the LT integral converges for more functions 
than does the FT integral. As a consequence, 
functions such as tu(t) have an LT but not an FT.



Fourier Transform 689

 4. The importance of the FT in signal analysis 
stems from the fact that it transforms a time 
function extending over all time, from t = -¥ to 
t = +¥, to the frequency domain, thereby yield-
ing a true representation of the frequency con-
tent of the function. Strictly speaking, a dc or a 
sinusoidal signal extends from t = -¥ to t = +¥. In 
order to portray the frequency content of such 
signals through a transformation from the time 
domain, the transformation should include all 
time, as in the FT.

 5. Some signal processing applications involve 
the FT in terms of spatial coordinates in 
two or three dimensions rather than time. 
Equation 23.3 applies in this case for each 
spatial  coordinate, with the spatial coordinate 
 replacing t.

 6. The FT can have a physical representation. For 
example, if an image on a transparent film is 
placed at the focal point of a convex lens and 
illuminated by coherent light, as from a laser, 
the image seen at the other focal point is the 
two-dimensional spatial FT of the image on 
the transparency. In fact, when monochromatic 
x-rays, that is, x-rays of a single frequency, are 
diffracted by a crystal, the diffraction pattern 
is the FT of the three-dimensional crystal struc-
ture for that particular angle of incidence of 
the x-rays.

We illustrate in what follows the derivation of the FT 
of some basic functions, starting with a unit impulse δ(t) 
at the origin. It follows from Equation 23.3 that

 
F d d dwt t e dt t dtj t( ){ } = ( ) = ( )´ =-

-¥

¥

-

+

òò 1 1
0

0

 
(23.5)

as for the LT.
We next derive the FT of f(t) = 1, a constant. In this 

case f t dt( )
-¥

+¥

ò  is infinite, so the FT cannot be obtained 

directly from Equation 23.3 but can be derived from 
Equation 23.5. According to this equation, the IFT of 1 is 
δ(t). Applying the inverse transform relation (Equation 
23.4) to 1 and setting this equal to δ(t),

 
F -

-¥

¥

{ } = ´ = ( )ò1 1
1

2
1

p
w dwe d tj t

 
(23.6)

Interchanging the variables ω and t gives

 
1

2
1

p
d ww´ = ( )

-¥

¥

ò e dtj t

 
(23.7)

Replacing ω by −ω, with d w d w-( ) = ( ),

 
1 2´ = ( )-

-¥

¥

ò e dtj tw pd w
 

(23.8)

The LHS of Equation 23.8 is the FT of a constant equal 
to 1 that extends over all time. Hence,

 F 1 2{ } = ( )pd w  (23.9)

and is an impulse of strength 2π at ω  =  0 in the fre-
quency domain. This is to be expected because the con-
stant 1 can be considered as a dc signal that extends 
from t = -¥ to t = +¥. A dc signal is of zero frequency, so 
that its representation in the frequency domain should 
be at the point ω  =  0 only, which is an impulse. On 
the other hand, it was pointed out in connection with 
Equation 16.40, that if the pulse is narrow enough, 
fundamental and harmonics all have essentially the 
same amplitude. In the limit, an impulse at t = 0, being 
of infinitesimal duration, has a frequency spectrum 
extending over all frequencies, and with all these fre-
quency components having the same relative ampli-
tude. Its FT is therefore a constant extending from −∞ 
to +∞, as in Equation 23.5.

Let us derive next the FT of f t e j t( ) = w0 . From Equation 

23.3, F e e dt e dtj t j t j tw w w w w( ) = ( ) =-

-¥

¥
- -( )

-¥

¥

ò ò0 0 . Comparing 

with Equation 23.8, it is seen that ω in the integral on 
the LHS of this equation has been replaced by w w-( )0 . 
Replacing ω on the RHS of Equation 23.8 by w w-( )0  
gives

 F e j tw pd w w0 2 0{ } = -( ) (23.10)

Once we have the FT of e j tw0 , the FTs of cosω0t and 
sinω0t readily follow. Thus,

 
F Fcosw p d w w d w w

w w

0 0 0

0 0

2
t

e ej t j t

{ } = +ì
í
î

ü
ý
þ
= +( ) + -( )éë ùû

-

 
(23.11)

The FT of cosw0t is therefore two impulse functions, 
one at w w= 0 and the other at w w= - 0, each of strength p . 
Since a function cosw0t that extends from t = -¥ to t = +¥ 
has a single frequency component ω0, it is represented 
by impulses in the frequency domain at w w= ± 0. As 
discussed in connection with the exponential form of 
Fourier series (Section 16.2), the positive and negative 
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frequencies combine to give a real function cosw0t. 
Similarly,

 
F Fsinw p d w w d w w

w w

0 0 0

0 0

2
t

e e
j

j
j t j t

{ } = -ì
í
î

ü
ý
þ
= +( ) - -( )éë ùû

-

 
(23.12)

In this case, the impulse function at ω = −ω0 has a phase 
angle of π/2, whereas the impulse function at ω  =  ω0 
has a phase angle of −π/2. The sine function is thus 90° 
out of phase with the cosine function, as it should be. 
As ω0 decreases, the two impulses of the FT of a cosine 
function come closer to the origin. When ω0 = 0, the two 
impulses add at the origin to give a single impulse of 
strength 2π, which is the FT of unity. In the time domain, 
as ω0 decreases, cosω0t becomes “flatter,” as illustrated 
in Figure 23.2a for cosω0t and for cos0.25ω0t. As ω0 → 0, 
cosω0t → 1, whose FT is 2π. In the case of sinω0t, the two 
impulses are 180° out of phase, so they cancel out at the 
origin, when ω0 = 0, giving a zero FT. In the time domain, 
sinω0t becomes “flatter” as ω0 decreases (Figure 23.2b). 
As ω0 → 0, sinω0t → 0, so the FT is zero.

As in the case of the LT, MATLAB can be used to find 
the FT and IFT. For example, if we enter

>> syms t w
>> fourier(sin(2*t))

MATLAB returns

>> −pi*(dirac(w - 2) - dirac(w + 2))*i

where Dirac() denotes δ() and i denotes j. If we then 
enter

>> ifourier(−pi*(dirac(w - 2) - dirac(w + 2)))

MATLAB returns

>> (1/exp(2*x*i))/2 - exp(2*x*i)/2,

which is cosx.

Example 23.1: Fourier Transform of Biphasic Pulse

It is required to derive the FT of the function shown in 
Figure 23.3.

Solution:
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(23.13)

Example 23.2: Inverse Fourier Transform 
of a Symmetrical Function

The FT of a function is shown in Figure 23.4. It is required 
to find f(t).

Solution:
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t

(b)

1

t
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FIGURE 23.2
Cosine (a) and sine (b) functions as the frequency approaches zero.
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Figure for Example 23.1.
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Figure for Example 23.2.



Fourier Transform 691

Primal Exercise 23.1

Determine the FT of e a t- , a > 0. Note that this is the sum 
of e u tat- ( ), having t > 0, and e u tat -( ), having t < 0. The 
two functions are symmetrical with respect to the verti-
cal axis.

Ans. F e
a

a
a t-{ } = +

2
2 2w

 (23.14)

23.2  Some General Properties 
of the Fourier Transform

23.2.1  Real and Imaginary Parts

It should be emphasized that, according to Equation 
23.3, F(ω) is, in general, a complex quantity. In practice, 
f(t) is always a real function of time, so that

 
F f t e dt f t tdt j f t tdt

A

j tw w w

w

w( ) = ( ) = ( ) - ( )
= ( )

-

-¥

¥

-¥

¥

-¥

¥

ò ò òcos sin

++ ( )jB w  (23.15)

where A(ω) and B(ω) are the real and imaginary parts, 
respectively, of F(ω), expressed as

 
A f t tdt B f t tdtw w w w( ) = ( ) ( ) = - ( )

-¥

¥

-¥

¥

ò òcos , sin
 

(23.16)

The following may be deduced from the preceding 
relations:

Deductions:

 1. The real part of F(ω) is even, since A(ω) = A(−ω).
 2. The imaginary part of F(ω) is odd, since 

B(ω) = −B(−ω).

 3. The magnitude of F(ω), which is A B2 2w w( ) + ( ), 
is even.

 4. The phase angle of F(ω), which is tan- ( ) ( )( )1 B Aw w/ , 
is odd.

 5. Replacing ω by −ω gives the complex conjugate of 
F(ω), that is, F(−ω) = F*(ω).

 6. If f(t) is even, f(t)cosωt is an even function of t, 
and f(t)sinωt is an odd function of t, which 
makes B(ω)  =  0. Hence, F(ω) is real and even, 

with A f t tdtw w( ) = ( )
¥

ò2 0
cos .

 7. If f(t) is odd, f(t)cosωt is an odd function of t, 
and f(t)sinωt is an even function of t, which 
makes A(ω) = 0. Hence, F(ω) is imaginary and 

odd, with B f t tdtw w( ) = - ( )
¥

ò2 0
sin .

For example, F{cosω0t} is real and even (Equation 23.11), 
whereas F{sinω0t} is imaginary and odd (Equation 23.12). 
Similarly, the FT of rect(t/τ) is real and even (Equation 
23.2), and the FT of two antisymmetrical pulses is imagi-
nary and odd (Equation 23.13).

23.2.2  Fourier Transform at Zero Frequency

If ω = 0 in Equation 23.3,

 
F f t dt0( ) = ( )

-¥

¥

ò  
(23.17)

That is, the value of FT at ω = 0 is the net positive area 
subtended by f(t). This area is the average, or dc compo-
nent, of f(t) multiplied by the interval over which f(t) ≠ 0.

It should be emphasized at this stage that consider-
able confusion concerning relations involving the FT 
can be avoided if a distinction is made between (1) 

“well-behaved” functions for which f t dt( )
-¥

+¥

ò  is finite, 

which is one of the sufficient conditions for the existence 

of the FT, and (2) functions for which f t dt( )
-¥

+¥

ò  is infi-

nite, in which case F(ω), if it exists, cannot be obtained 
directly from Equation 23.3. In this case, the FT gener-
ally has impulses. Since Equation 23.17 is derived from 
Equation 23.3, the following should be noted:

 1. If f t dt( )
-¥

+¥

ò  is finite, if f(t) is of finite duration, 

and if the dc component of f(t) is zero, then 
F(0) = 0. This can serve as a useful check on the 
FTs of such functions. For example, f(t) of Figure 

23.3 has a finite f t dt( )
-¥

+¥

ò , is of finite duration, 

and has zero dc. According to Equation 23.17, 
its F(0) must be zero. Substituting ω  =  0 in 
Equation 23.13 gives F(0) = 0/0, which is inde-
terminate. However, according to L’Hopital’s 
rule, F(0) can be obtained by first differentiating 
the numerator and denominator of the function, 
separately with respect to ω, before substituting 
ω = 0. Differentiating the numerator of Equation 
23.13 with respect to ω gives Asinωτ/2, and dif-
ferentiating the denominator with respect to ω 
gives j. Substituting ω = 0 results in F(0) = 0, as 
expected.
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 2. On the other hand, if f t dt( )
-¥

+¥

ò  is infinite, and 

even if the dc component of f(t) is zero, it does 
not follow that F(0)  =  0. For example, a sig-
num function (Example 23.3) has an infinite 

f t dt( )
-¥

+¥

ò , and zero dc component, yet F(0) ≠ 0 

(Equation 23.19). In the case of cosω0t and sinω0t, 

f t dt( )
-¥

+¥

ò  is also infinite. The dc component is 
zero because it equals a finite area, which is at 
most that of half a period, divided by an infi-
nite duration, as t → ∞; F(0) = 0 for sinω0t and 
cosω0t, since the impulses occur at ω = ±ω0 and 
the FT is zero at ω = 0.

F(0) plays an important role in the FT, as illustrated 
by the following examples and by the differentiation-
in-time and integration-in-time properties discussed 
later.

Primal Exercise 23.2

Determine F(0) for (a) the function shown in Figure 23.5 
and (b) δ(t).

Ans. (a) 5; (b) 1.

Example 23.3: Fourier Transform 
of Signum and Step Functions

It is required to derive the FTs of (a) e u tat- ( ), a > 0; (b) a 
signum function, sgn(t), defined as 1 for t > 0 and −1 for 
t < 0; and (c) a unit step function u(t).

Solution:

 (a) From Equation 23.3,

 
F e u t e e dt

a j
at at j t- - -

¥

( ){ } = =
+ò w

w
1

0  
(23.18)

 (b) sgn t u t u t( ) = ( ) -( )–  (Figure 23.6). Since the Fourier 
integral of these step functions does not converge, 

we consider sgn(t) as lim
e

e e

®

- ( ) - -( )éë ùû0
e u t e u tt t , ε  >  0 

(Figure 23.6). Hence,
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ëê

ù
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 (23.19)

Note that the signum function is an odd func-
tion of time. Hence, its FT should be imaginary 
and an odd function of ω, in accordance with 
Equation 23.19.

 (c) u t t( ) = ( ) +1
2

1
2

sgn  (Figure 23.7). Taking the FT of 

both sides and using Equations 23.9 and 23.19,

 
F u t

j
( ){ } = ( ) +pd w

w
1

 
(23.20)

It is seen that the FT of u(t) has an impulse at 
ω  =  0 because of the dc component of 1/2. As 
explained previously, a dc signal has only a single 
frequency at ω = 0; hence the impulse δ(ω). The FTs 
of both u(t) and sgn(t) have frequency components 
for ω > 0, represented by the 1/jω term. These fre-
quency components are due to the sudden jump 
of both functions at t = 0. sgn(t) does not have an 
impulse at ω = 0 because it can be considered as 
the sum of u(t) and −u(−t). In effect, the impulses 
of these two functions cancel out at ω = 0.

t, s
0 1 3

2
5

–5

f (t)

FIGURE 23.5
Figure for Primal Exercise 23.5.

t

1
u(t)

sgn(t)

–u(–t)

e–  t

e  t

FIGURE 23.6
Figure for Example 23.3.

t

1
u(t)

1/2

–1/2

FIGURE 23.7
Figure for Example 23.3.
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Exercise 23.3

The functions e tu tat- cos ( )w0  and e tu tat- ( )sinw0 , a > 0, have 

a finite f t dt( )
-¥

¥

ò , so their FTs do not have impulses. 
Show that their FTs are given by

 
F e tu t

a j

a j
aat- ( ){ } = +

+ +( )
>cos ,w w

w w
0

0
2 2 0

 
(23.21)

 
F e tu t

a j
aat- ( ){ } =

+ +( )
>sin ,w w

w w
0

0

0
2 2 0

 
(23.22)

Use two methods: (a) from the FT of e e u tat j t- ( )w0  and 
(b) direct application of Equation 23.3.

Primal Exercise 23.4

Derive the FT of f(t) in Figure 23.8

Ans. 2 1 2pd w
w

w( ) + -( )-j
e j .

Primal Exercise 23.5

Determine the FT of the gate function f t u t u t( ) = ( ) ( )– – 1 .

Ans. 1 1-( ) ( ) +( )-e jjw pd w w/ .

Primal Exercise 23.6

Determine the FT of (sign(t))3u(−t).

Ans. - ( ) +pd w
w
1
j

.

23.2.3  Duality

Concept: The symmetry between the expressions for the 
Fourier transform and its inverse underlies an important 
duality relationship:

 If thenF Ff t F F t f( ){ } = ( ) ( ){ } = -( )w p w, 2  
(23.23)

Proof: f t F F e dj t( ) = ( ){ } = ( )-

-¥

¥

òF 1 1
2

w
p

w ww .  Multiplying 

both sides by 2π and interchanging the variables 

t and ω, 2p w wf F t e dtj t( ) = ( )
-¥

¥

ò . Replacing ω by −ω gives 

 Equation 23.23.
F(ω) is the FT of f(t), as usual. F(t) is a time function 

that has the same waveform as F(ω), with ω replaced 
by t. f(−ω) is the FT of F(t) and has the same waveform 
as f(t) with t replaced by −ω. If f(t) is an even function, 
then f f-( ) = ( )w w , but if f(t) is an odd function, then 
f f-( ) = - ( )w w .

To illustrate duality, consider f(t) = δ(t), the unit impulse at 
the origin (Figure 23.9a). Its FT is F(ω) = 1 (Figure 23.9b). The 
time function that is of the same waveform as F(ω) is F(t) = 1 
(Figure 23.9c). Its FT is 2πδ(ω), which is the same as 2πδ(−ω) 
(Figure 23.9d), since the unit impulse at the origin is an even 
function. The function 2πδ(−ω) is 2πf(−ω), in accordance 
with Equation 23.23. A similar result is obtained if f(t) = 1, in 
which case F(ω) = 2πδ(ω). The function F(t) = 2πδ(t). Its FT is 
2π, which is an even function and is 2πf(−ω).

As an illustration of duality involving an odd func-
tion of time, consider f(t) = sint (Figure 23.10a). Its FT is 
F(ω) = jπδ(ω + 1) − jπδ(ω − 1), illustrated in Figure 23.10b. 
The time function that is of the same waveform as 

t, s

f(t)

1

1 2–1–2 3 4

FIGURE 23.8
Figure for Primal Exercise 23.4.
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FIGURE 23.9
Duality between impulse and dc functions. An impulse function 
(a) and its FT (b), (c) the time function that is of the same waveform as 
the FT in (b), and (d) the FT of the function in (c).
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FIGURE 23.10
Duality between sinusoidal and impulse functions. A sine function 
(a) and its FT (b), (c) the time function that is of the same waveform as 
the FT in (b), and (d) the FT of the function in (c).
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F(ω) is F(t) = jπδ(t + 1) − jπδ(t − 1), illustrated in Figure 
23.10c, considering j to be just a constant. The FT of an 
impulse Aδ(t − a) of strength A that is delayed by a is 
Ae j a- w  (Equation 23.28). It follows that the FT of F(t) is 
j e j ej jp pw w- - . Multiplying and dividing by 2j, the FT 

becomes 2
2

2 2p e e
j

j j- -æ

è
ç

ö

ø
÷ = - = -( )

w w

p w p wsin sin . This is 

2πf(−ω) (Figure 23.10d).
As another example of duality, consider rect(t/τ) 

 discussed in Section 23.1 and shown in Figure 23.11a. 
Its FT is τsinc(ωτ/2), as in Equation 23.2 and shown in 
Figure 23.11b. It follows from duality that

F t t p w t w t
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t
u u
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ø
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è
ç

ö
ø
÷
ù

û
ú = pp w trect /( )

(23.24)

as shown in Figure 23.11c and d. Substituting β = τ/2 
and dividing both sides by 2β,

 
F sinc rectb p

b
w b w b p

b
w
b

t u u( ){ } = +( ) - -( )éë ùû =
æ

è
ç

ö

ø
÷2  

(23.25)

The sinc function of time is in fact used in magnetic 
resonance imaging to obtain a rectangular function of 
frequency.

23.3  Operational Properties 
of the Fourier Transform

Multiplication by a Constant. If F f t F( ){ } = ( )w , then

 F Kf t KF( ){ } = ( )w  (23.26)

Proof : F Kf t Kf t e dt K f t e ft KFj t j t( ){ }= ( ) = ( ) = ( )-

-¥

¥
-

-¥

¥

ò òw w w .
 

It follows that the FT of K td ( ) is K and the FT of a constant 
K is 2p dK t( ).

Addition/Subtraction. If F f t F1 1( ){ } = ( )w  and F f t2 ( ){ } =
F2 w( ), then

 F f t f t F F1 2 1 2( ) ± ( ){ } = ( ) ± ( )w w  (23.27)

Proof:  F f t f t f t f t e dtj t
1 2 1 2( ) ± ( ){ } = ( ) ± ( )éë ùû =-

-¥

¥

ò w

 
f t e dt f t e dt F Fj t j t
1 2 1 2( ) ± ( ) = ( ) ± ( )- -

-¥

¥

-¥

¥

òò w w w w .    We    have 

already used this property and the preceding one to 
derive the FTs of coswt and sinwt.

Time Scaling. If F f t F( ){ } = ( )w , then

 
F f at

a
F

a
( ){ } = æ

è
ç

ö
ø
÷

1 w

 
(23.28)

where a is a constant.

Proof: F f at f at e dtj t( ){ } = ( ) -

-¥

¥

ò w . Let ¢ =t at, where a > 0. 

Then, f at e dt
a

f t e dt
a
F

a
j t j t a( ) = ( ) = æ

è
ç

ö
ø
÷¢ ¢-

-¥

¥
-

-¥

¥
¢ò òw w w1 1/ . If 

a < 0, the integration limits become interchanged, so that 

F f at
a

f t e dt
a
F

a
j t a( ){ } = - ( ) = - æ

è
ç

ö
ø
÷¢ ¢-

-¥

¥
¢ò1 1w w/ . Combining 

these results gives Equation 23.28.

Concept: If a function is compressed in the time domain, it 
expands in the frequency domain, and conversely.

This follows from Equation 23.28. For example, the FT 
of a rectangular pulse of width τ, extending from −τ/2 to 
+τ/2, is (Aτ)sinc(ωτ/2) (Equation 23.2), as illustrated in 
Figure 23.12a. If the pulse width is doubled to 2τ (Figure 
23.12b), the width of the FT is halved, as indicated by 
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FT1

(b)

F(   )

/2–  /2

F(t)

t

(c)(d)
/2

f (–   )
2 FT

–  /2

FIGURE 23.11
Duality between rectangular and sinc functions. A rectangular 
 function (a) and its FT waveform (b), (c) the time function that is of the 
same waveform as the FT in (b), and (d) the FT of the function in (c).
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–4  / –2  / 2  /

FIGURE 23.12
Relation between representation of a function in the time and 
 frequency domains. (a) A rectangular function and its FT, and (b) if the 
duration of the time function is doubled, the FT is compressed, so that 
the zero crossings occur at half the frequencies in (a).
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the successive zero crossings occurring at half the fre-
quencies as in Figure 23.12a. Conversely, if the width of 
the rectangular pulse is halved, the width of the FT is 
doubled. As a practical application, if a voice recording 
is played back at double speed, for example, its duration 
is halved and its bandwidth is therefore doubled. This 
means that corresponding frequencies are doubled, so 
that the pitch of the voice is doubled.

Time Reversal. If F f t F( ){ } = ( )w , then, replacing t by −t 
in Equation 23.3,

 
F f t f t e dt f t e dt Fj t j t-( ){ } = -( ) -( ) = -( ) ( ) = -( )

-¥

¥

¥

-¥

òò w w w
 

(23.29)

where the FT is obtained by replacing ω by −ω. Applying 
Equation 23.15,

  F f t F A jB F-( ){ } = -( ) = ( ) - ( ) = ( )w w w w*  (23.30)

In other words, a negation in time causes a negation 
in frequency. Equation 23.29 also follows from the time-
scaling property when a = −1.

It follows from the time-reversal property that

 
F u t

j
-( ){ } = ( ) -pd w

w
1

 
(23.31)

so that F F Fsgn t u t u t j( ){ } = ( ){ }- -( ){ } = 2/w , as in 
Equation 23.19.

Translation in Time. If F f t F( ){ } = ( )w , then

 F f t a e Fj a-( ){ } = ( )- w w  (23.32)

In words, a delay of a in time reduces the phase angle 
of F(ω) by ωa without changing its magnitude, as is the 
case with the FSE (Equation 16.43).

Proof: F f t a f t a e dtj t-( ){ } = -( ) -

-¥

¥

ò w . Substituting 

¢ = -t t a,
 

f t a e dt f t e dt ej t j t a j a-( ) = ( ) =¢ ¢-

-¥

¥
- +( ) -

-¥

¥
¢ò òw w w

 

f t e dt e Fj t j a¢ ¢( ) = ( )- -

-¥

¥
¢ò w w w .

An interesting application of the translation-in-time 
property is the distortionless delay. Consider a circuit 
having a magnitude frequency response K indepen-
dent of frequency and a phase frequency response that 
is directly proportional to frequency that is −aω. If the 
FT of the input is denoted by F(ω) = |F(ω)|∠F(ω), then 
the FT of the output is K|F(ω)|∠F(ω) − aω = e−jωaF(ω). It 
follows from Equation 23.32 that the output in the time 
domain is Kf(t − a), that is, the output is scaled by K but 
delayed in time by a.

Example 23.4: Derivation of Fourier Transform 
of Biphasic Pulse from That of a Rectangular Pulse

It is required to obtain the FT of the function of Figure 23.3 
from that of a symmetrical rectangular pulse.

Solution:

From Equation 23.2, the FT of a rectangular pulse 
of duration τ centered at t  =  0 is (2A/ω)sin(ωτ/2) 
(Equation 23.2). Replacing τ by τ/2, the FT becomes 
(2A/ω)sin(ωτ/4). If the pulse is delayed by τ/4, its FT 
is 2 44A e j/ /w wtwt( ) ( )- / sin . If negated and advanced by 
τ/4, its FT becomes -( ) ( )2 44A ej/ /w wtwt/ sin . The FT 
of the negative pulse can also be obtained from that of 
the positive pulse by negating the pulse and applying 
the time-reversal property. Adding the two FTs gives 
2 4 4 44 4 2A e e j Aj j/ / / /w wt w wtwt wt( ) ( ) -( ) = - ( ) ( ) =-sin sin/ /

 
- ( ) - ( )( )j A2 1 2/ /w wtcos , as in Equation 23.17.

As an application of translation-in-time and duality, 
 consider F d wt a e ja-( ){ }= -  (Equation 23.32). It follows from 
Equation 23.23 that F e a ajat-{ } = -( ) = +( )2 2pd w pd w–  
because of the evenness of the impulse function. Setting 
a = -w0 gives F e j tw pd w w0 2 0{ } = -( ), as in Equation 23.10 
with K = 1.

The translation-in-time property is applied in Example 
23.5 to derive the FT of a periodic signal.

Example 23.5: Fourier Transform of Periodic Function

It is required to obtain the FT of a periodic signal from 
the exponential form of its FSE.

Solution:

Consider the exponential form of the FSE of a periodic 
signal (Equation 16.30) f t C en n

jn t( ) = å =-¥
¥ w0 . Taking the 

FT of both sides and using Equation 23.10,

 
F C n

n

nw p d w w( ) = -( )
=-¥

¥

å2 0

 
(23.33)

As to be expected, the FT of the discrete frequen-
cies of a periodic signal is an infinite series of impulses 
weighted by the Fourier coefficient Cn. As an example, 
consider the delayed square wave of Figure 16.14a. From 
Exercise 16.8, Cn = 0, for n even or zero, and −j2Am/πn, 
for odd n. Its FT is therefore

 
F j A n n nmn

n

n
w d w w( ) = -( ) -=-¥

¹

=¥å 4
0

0/ odd.( ),
 

Figure 23.13 shows a plot of |F(ω)|. The phase angle 
is −π/2 for n > 0 and π/2 for n < 0.
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Note that for a cosine function, cos ,w w wt e ej t j t= +( )- /2   
which makes Cn = 1/2, n = ±1, and Equation 23.33 reduces 
to Equation 23.11. For a sine  function, sinw w wt e e jj t j t= +( )- /2 , 
which makes Cn = −j/2 for n = 1 and −j/2 for n = −1. 
Equation  23.33 reduces to Equation 23.12. Note that 
F(0) = 0 in Figure 23.13.

Primal Exercise 23.7

Determine the FT of the periodic square waveform of 
Figure 23.14.

Ans.
 
5

10pd d w p( ) , .t
j

n n
n

+ -( )
=-¥

¥å is odd

Differentiation in Time. If F f t F( ){ } = ( )w , then

 
F

df t
dt

j F
( )ì

í
î

ü
ý
þ
= ( )w w

 
(23.34)

Proof : f t F F e dj t( ) = ( ){ } = ( )-

-¥

¥

òF 1 1
2

w
p

w ww . Differenti-

ating both sides with respect to t: 
df
dt

j
F e dj t= ( )

-¥

¥

òwp w ww

2
. 

In other words, 
df
dt

j F= ( ){ }-w wF 1 . Taking the FT of both 

sides gives Equation 23.34. Equation 23.34 is in accor-
dance with differentiation in phasor analysis being 
equivalent to multiplication by jω.

From repeated application of Equation 23.34,

 
F

df t
dt

j F
n

n( )ì
í
ï

îï

ü
ý
ï

þï
= ( ) ( )w w

 
(23.35)

If f(t) is a constant K, df(t)/dt = 0 for all values of K. 
F{K}  =  2πKδ(ω) and F{dK/dt}  =  (jω)2πKδ(ω)  =  0. This is 
because δ(ω) = 0 for ω ≠ 0, and when ω = 0, 0 × δ(ω) = 0. 
It follows that the differentiation-in-time property gives 
the same value of F{df(t)/dt} when a constant K is added 
to f(t). Thus, in the case of (1/2)sgn(t), the derivative is 
δ(t) so that the differentiation-in-time property gives 

F d w
w

t j
j

( ){ } = ´ ´ =1
2

2
1. Adding 1/2 to (1/2)sgn(t) gives 

u(t), whose derivative is still δ(t). F{δ(t)}  =  jωF{u(t)}  = 
jωπδ(ω) + 1 = 0 + 1 = 1.

Example 23.6: Application 
of Differentiation-In-Time Property

Given f(t) of Figure 23.15, it is required to obtain the FT 
of its derivative f (1)(t) using the differentiation-in-time 
property.

Solution:

f t
A
t t( ) = - < <2

2 2t
,

t t
. Hence, F

A
te dtj tw

t
w

t

t

( ) = =-

-ò
2

2

2

/

/

  

2 1 2

2

2

2
2

2A te
j

e dt
Aj t

j t

t w w

w

t

t
w

t

t-

-

-

--
é

ë
ê

ù

û
ú +

ì
í
ï

îï

ü
ý
ï

þï
= -ò

/

/

/

/

jjw
wtcos /2( ) -  

j A A
j

4
2

2
2

2
22 2tw

wt
w

w wt
t

wtsin cos sin ./ / /( )= - ( )+éë ( )ùû  Since 

f(t) is real and odd, F(ω) is imaginary and odd. Moreover, 
substituting ω = 0 gives an indeterminate value for F(0). To 
obtain F(0), we apply L’Hopital’s rule and differentiate the 
numerator and denominator with respect to ω, which gives 
2
2 2

2 2 2
2

2
A

j
A
jw

wt wt wt wt t wtsin cos cos sin ./ / / /( )- ( )+ ( )é
ëê

ù
ûú
= ( )

 
Substituting ω = 0 gives F(0) = 0, as expected.

It follows that F f t j F A1 2 2( ) ( ){ } = ( ) = - ( ) +w w wtcos /  
4

2
A
wt

wtsin /( ). It can be readily verified that this is the 

FT of F f t1( ) ( ){ } shown in Figure 23.16. Using the time-
shift property, the FT of the impulses at t  =  −τ/2 and 

4Am/54Am/3

4Am4Am

4Am/34Am/5

|F(   )|

–5   0 –3   0 3   0 5   0–   0    0

FIGURE 23.13
Figure for Example 23.5.

f (t)

t

5

0 1 2–1–2 3

FIGURE 23.14
Figure for Primal Exercise 23.7

–
t

–A

A

f (t)

/2

/2

FIGURE 23.15
Figure for Example 23.6.
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t  =  +τ/2 are -Aejwt/2 and - -Ae jwt/2, respectively. From 

Equation  23.2, the FT of the pulse is 
4

2
A
wt

wtsin /( ). It 

follows that  f t Ae Ae
Aj j1 2 2 4

2( ) -( ) = - - + ( ) =wt wt

wt
wt/ / sin /

 

- ( ) + ( )2 2
4

2A
A

cos sinwt
wt

wt/ / , as derived earlier.

Exercise 23.8

Verify F(ω) of Figure 23.16 using Equation 23.3.

Primal Exercise 23.9

Consider e u tat- ( ), a  >  0, whose FT is 1/ a j+( )w  

(Equation  23.18). Since 
d e u t

dt
ae u t t

at
at

-
-( )( )

= - ( ) + ( )d , 

take the FT of both sides and apply the differentiation-

in-time property to verify that F d e u t

dt

j
a j

at- ( )( )ì
í
ï

îï

ü
ý
ï

þï
=

+
w
w

.

Integration in Time. If F f t F( ){ } = ( )w , then

 
F f t dt

F
j

F
t

( )ì
í
î

ü
ý
þ
=

( )
+ ( ) ( )

-¥ò
w
w

p d w0
 

(23.36)

where F f t dt0( ) = ( )
-¥

¥

ò  (Equation 23.17).

Proof: We will not give here a formal proof of Equation 
23.36 but will justify it instead. Taking the deriva-
tive of both sides of Equation 23.36, the LHS is 

F F
d
dt

f t dt f t F
t

( )é

ë
ê

ù

û
ú

ì
í
ï

îï

ü
ý
ï

þï
= ( ){ } = ( )

-¥ò w . According to 

the differentiation-in-time property, multiplying the 
RHS of Equation 23.36 by jω should give F(ω). This is 
clearly the case, for multiplying the RHS by jω gives 

F(ω) +  jωπF(0)δ(ω) = F(ω) + 0. Intuitively, if f(t) includes 
a constant, the FT of its integral would include a term in 
δ(ω). The form of πF(0)δ(ω) in Equation 23.36 can be justi-
fied by considering f(t) = δ(t), so that F(ω) = 1 and F(0) = 1. 
Applying Equation 23.36 gives F{u(t)}  =  1/jω  +  πδ(ω), 
which is the correct expression.

Primal Exercise 23.10

Verify the differentiation-in-time and integration-in-
time properties for cosωt and sinωt. Note that multipli-
cation or division by jω changes an odd F(ω) to an even 
F(ω), and conversely.

Example 23.7: Application 
of Integration-in-Time Property

Given the function g(t) of Figure 23.16, it is required to 
obtain the FT of its integral, the function of Figure 23.15, 
by applying the integration-in-time property.

Solution:
g t A t A t A( ) = - +( ) - -( ) +d t d t t/ / /2 2 2 , −τ/2− < t < τ/2+,  
and g(t) = 0 elsewhere. Hence, G Ae jw wt( ) = - -+ /2

 
Ae

Aj- + ( )wt

wt
wt/ sin2 4

2/ , using Equations 23.2 and 23.32, 

or G A
Aw wt
wt

wt( ) = - ( ) + ( )2 2
4

2cos sin ./ /  Moreover, 

g t dt A A A( ) = - - + =
-¥

¥

ò 2 0, which means that G(0) = 0. 

We can check this by expressing G(ω) as 
2

2
A
w

w wt- ( )éë cos /  
+ ( )ù

ûú
2

2
t

wtsin ./  Applying L’Hopital’s rule by differentiating 

the numerator and denominator with respect to ω gives 

2
2

2 2 2 2A A
wt wt wt wt wt wtsin cos cos sin ./ / / /( )- ( )+ ( )é
ëê

ù
ûú
= ( )

 
Substituting ω = 0 gives G(0) = 0. Using Equation 23.35, 

F G t
G
j

j
A-( ) ( ){ } = ( )

= ( ) - ( )éë ùû
1

2

2
2 2 2

w
w tw

wt wt wtcos sin ,/ /

as in Example 23.6.

Primal Exercise 23.11

Derive the FT of the function of Figure 23.17 from 
that of Example 23.1 using the integration-in-time 
property.

Ans. F
A Aw

w t
wt t wt( ) = æ

è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷ =

æ
è
ç

ö
ø
÷

4
1

2 2 42

2

cos sinc  (23.37)
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FIGURE 23.16
Figure for Example 23.6
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Primal Exercise 23.12

Consider e u tat- ( ), a  >  0, whose FT is 
1

a j+ w
. Since 

e u t
a

e u tat at
t

- -

-¥
( ) = -( ) ( )ò 1

1 , take the FT of both sides 

and apply the integration-in-time property to verify that 

F e u t
j a j a

at
t

-

-¥
( )ì

í
î

ü
ý
þ
=

+( )
+

( )ò 1
w w

pd w
.

Multiplication by t. If F f t F( ){ } = ( )w , then

 
F tf t j

d
d

F( ){ } = ( )
w

w
 

(23.38)

Thus, multiplication by t corresponds to multiplying 
the derivative in frequency of F(ω) by j.

Proof: 
d
d

F
d
d

f t e dtj t

w
w

w
w( ) = ( )é

ë
ê

ù

û
ú =

-

-¥

¥

ò  

- ( ) = - ( ){ }
-¥

¥
- -ò jtf t e e dt j tf tj t j tw w0 F .

 
Equation 23.38 then 

follows. Repeated application of Equation 23.38 gives

 
F t f t j

d
d

Fn n
n

n( ){ } = ( )
w

w
 

(23.39)

As an application of Equation 23.38, consider 

F e u t
a j

at- ( ){ } =
+
1
w

 (Equation 23.18). It follows that

 
F te u t

j j

a j a j
at- ( ){ } = - ´

+( )
=

+( )w w
2 2

1

 
(23.40)

 
F t e u t

j j

a j a j
at2

3 3
2 2- ( ){ } = - ´

+( )
=

+( )w w  
(23.41)

and

 
F t e u t

n

a j
n at

n
-

+( ){ } =
+( )

!

w
1

 
(23.42)

Translation in Frequency. If F f t F( ){ } = ( )w , then

 F f t e Fj t( ){ } = -( )w w w0
0  (23.43)

Hence, a translation in the frequency domain is equiv-
alent to a phase shift in the time domain.

Proof:
 
F f t e f t e e dt f t e dtj t j t j t j t( ){ }= ( ) = ( ) =-

-¥

¥
- -( )

-¥

¥

ò òw w w w w0 0 0  

F( ).w w- 0

Example 23.8: Fourier Transforms for sine and cosine 
Functions That Are Multiplied by Unit Step Functions

It is required to derive the FTs of (a) cosw0t u t( ) ( ){ } and 
(b)  sin .w0t u t( ) ( ){ }
Solution:

 (a) We express cosw0t as 
1
2

0 0e ej t j tw w+( )- . Hence, 

F Fcos .w w w
0 1 2 1 20 0t u t e u t e u tj t j t( ){ ( )}= ( ) ( )+( ) ( ){ }-/ /  

Applying the translation-in-frequency property 
(Equation 23.43) to Equation 23.20 gives

F cosw p d w w d w w w
w w0 0 0

0
2 22

t u t
j( ) ( ){ } = -( ) + +( )éë ùû + -  
(23.44)

 (b) We express sinw0t as 
1
2

0 0

j
e ej t j tw w-( )- . Hence, 

F Fsin .w w w
0

1
2

1
2

0 0t u t
j
e u t

j
e u tj t j t( ) ( ){ } = ( ) - ( )ì

í
î

ü
ý
þ

-

 
Apply ing the translation-in-frequency property 
(Equation 23.43) to Equation 23.20 gives

 
F sinw p d w w d w w w

w w0 0 0
0

0
2 22

t u t
j

( ) ( ){ } = -( ) + +( )éë ùû + -  
(23.45)

Convolution in Time.

 F f t g t F G( ) ( ){ } = ( ) ( )* w w  (23.46)

In words, the FT of the convolution of two time func-
tions equals the product of their FTs.

Proof: From Equation 20.1,

 
y t f t g t f g t d( ) = ( ) ( ) = ( ) -( )

-¥

¥

ò* l l l
 

(23.47)

The FT of y(t) is

 
Y f g t d e dtj tw l l l w( ) = ( ) -( )é

ë
ê

ù

û
ú

-¥

¥
-

-¥

¥

òò  
(23.48)
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FIGURE 23.17
Figure for Primal Exercise 23.11.
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Changing the order of integration and taking f(λ) 
 outside the integral with respect to t,

 
Y f g t dt e dj tw l l lw( ) = ( ) -( )é

ë
ê

ù

û
ú

-¥

¥
-

-¥

¥

òò  
(23.49)

The inner integral is the FT of the function g(t) trans-
lated in time by λ. From Equation 23.32, this FT is 
e G jj- ( )wl w . Taking G(ω) outside the integral with respect 
to λ,

 
Y G f e d G Fjw w l l w wwl( ) = ( ) ( ) = ( ) ( )-

-¥

¥

ò  
(23.50)

Equation 23.46 follows, bearing in mind that the order-
ing of the two functions on either side of the  equation 
is immaterial because convolution, like multiplication, 
is commutative.

The convolution-in-time property can be applied 
to derive the integration-in-time property. From 
Equation 20.33,

 
f t u t f d

t

( ) ( ) = ( )ò* l l
0  

(23.51)

Taking the FT of both sides and applying Equation 
23.46,

 

F Ff d F u t

F
j

F
j

F
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l l w

w pd w
w

w
w
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( )ì
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ü
ý
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= ( ) ( ){ }

= ( ) ( ) +æ

è
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1

00( ) ( )d w
 

(23.52)

As an example of the convolution-in-time property, 
consider f(t)  =  Arect(t/τ), convolved with itself, as in 
Example 20.6. The convolution integral (Figure 20.35) 
is reproduced in Figure 23.18. This is the same triangu-
lar waveform considered in Exercise 23.11. Its FT can 
be obtained from Equation 23.37 by replacing τ/2 by τ 
and A by A2τ. This gives A2τ2sinc2(ωτ/2). The FT of f(t) = 

Arect(t/τ) is, from Equation 23.2, Aτsinc(ωτ/2). When 
the FTs of each f(t) are multiplied together, in accordance 
with the convolution-in-time property, the product is 
A2τ2sinc2(ωτ/2), as it should be.

Primal Exercise 23.13

Determine
 
y t t t( ) = æ

è
ç

ö
ø
÷sinc

w w1
2

2 * cos  if (a) ω2 > ω1/2 and 

(b) ω2 < ω1/2.

Ans. (a) 0; (b) (1/ω1)cosω2t.

Convolution in Frequency.

 
F f t g t F G( ) ( ){ } = ( ) ( )1

2p
w w*

 
(23.53)

In words, the FT of the product of two time functions 
equals the convolution of their FTs divided by 2π.

Proof: The proof exploits the symmetry between the FT 
and the IFT. We first express the convolution of the FTs 
of two signals in the frequency domain as

 
Y F G F G dw w w l w l l( ) = ( ) ( ) = ( ) -( )

-¥

¥

ò*
 

(23.54)

The IFT of Y(ω) is
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(23.55)

Changing the order of integration, moving ejωt inside 
the square brackets, and taking F(λ) outside the integral 
with respect to ω,

 
y t F G e d dj t( ) = ( ) -( )é
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ù

û
ú

-¥

¥

-¥
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ò ò1
2p

l w l w lw

 
(23.56)

The inner integral is 2π times the IFT of the function 
G(ω) translated in frequency by λ. From Equation 23.43, 
this integral is 2p le g tj t ( ). Taking g(t) outside the integral 
with respect to λ,

 
y t g t F e d g t f tjt( ) = ( ) ( ) = ( ) ( )

-¥

¥

ò l l pl 2
 

(23.57)

Taking the FT of both sides and dividing by 2π gives 
Equation 23.51.

y(t)

t
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A2

FIGURE 23.18
Convolution integral of the function Arect(t/τ) when convolved with 
itself.
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As a simple application of the convolution-in- 
frequency property, consider a function f(t) and g(t) = K, 
a constant. The FT of the product is KF(ω) (Equation 
23.26). According to Equation 23.53,

 

KF F K

F K KF

w
p

w

p
w p d w w d w

( ) = ( ) { }( )

= ( ) ( )( ) = ( ) ( )

1
2

1
2

2

*

* *

F

 
(23.58)

The convolution of a function with an impulse at the 
origin is the function itself (Equation 20.32), so the RHS 
of Equation 23.58 reduces to KF(ω).

Table 23.1 summarizes the basic properties of the FT, 
and Table 23.2 lists some useful FT pairs.

23.4  Circuit Applications of the Fourier 
Transform

Generally speaking, the LT transform is more useful 
than the FT transform in circuit applications because 
(1) it can easily account for initial conditions; (2) it 

provides a powerful tool for analyzing switched cir-
cuits, particularly those involving impulsive read-
justment at the instant of switching; and (3) some 
functions have an LT but not an FT. On the other hand, 
the FT is useful in some circuit analysis problems in 
that it can readily handle functions defined over all 
time, -¥ < < ¥t .

The general procedure of applying the FT in cir-
cuit analysis is a generalization of the phasor method. 
The circuit is represented in the frequency domain, as 
in  phasor analysis, where R, L, and C are represented 
in terms of their impedances as R, jωL, and 1/jωC, 

TABLE 23.1

Operational Properties of the Fourier Transform 
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TABLE 23.2

Fourier Transform Pairs

f t( ) F jww( )
Reference 
Equationa

d t( ) 1 (23.5)

1 2pd w( ) (23.9)

u t( ) pd w
w

( ) + 1
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respectively. Phasor voltages and currents, including 
excitations, are replaced by their corresponding FTs. 
The usual circuit techniques are applied to derive the FT 
of any desired response. The IFT then gives the desired 
response in the time domain.

The transfer function H(ω) is defined in terms of the 
FT as:

 
H

Y
X

w
w
w

( ) = ( )
( )  

(23.59)

where X(ω) and Y(ω) are the FTs of the excitation and 
response, respectively. Equation 23.59 is the same 
as Equation 22.42 for the LT, with s replaced by ω. If 
x(t) = δ(t), X(ω) = 1 and the FT of the response y(t) is 
H(ω). Thus, the FT of the response h(t) to a unit impulse 
at t  =  0 is the transfer function H(ω), and the IFT of 
H(ω) is h(t).

Example 23.9: Responses of RC Circuit

It is required to obtain the responses vR and vC in 
Figure 23.19 when vSRC is (a) d t( ) and (b) u(t).

Solution:

The two transfer functions are independent of the type 

of excitation. Thus, 
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(a) Vsrc w( ) = 1. Hence, V

j
C w

t t w
( ) = ( ) +

1 1
1/

; from 

Table 23.2,
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t
t/ .

 

V
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;

 
dividing the numerator by the denominator, 

V
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( )+

1
1

1
/

/
, so that v t t e u tR

t( )= ( )- ( )-d
t

t1 /
. 

These are evidently the correct responses, as fol-
lows from the natural response of the circuit. Note 
that an initial voltage equal to the strength of the 
impulse divided by τ can be easily accounted for 

in this simple case by applying an impulse at t = 0 
and taking the responses at t ³ +0 , after the impulse 
is over.

 (b) V
j

src w w
pd w( ) = + ( )1

. Hence, V
j

R w
t w

( ) = ( ) +
+1

1/   
j

j
wpd w
t w

( )
( ) +1/

. The IFT of the first term is 

v t e u tR
t( ) = ( )- /t . The inverse of the second term is 

1
2 1

1
2

0 0 1 0
0

0

p
wpd w
t w

w
p

d w wwj
j
e d dj t( )

( ) +
= ´ ( ) = ´ =

-¥

¥

ò ò -

+

/
.  

As for VC(ω), we have V
j

C w
t t w

( ) = ( ) +
´1 1

1/   
1 1 1

1
1

1j j j jw
pd w

wt t w
pd w
t t w

+ ( )é

ë
ê

ù

û
ú = ( ) +

+
( )

( ) +/ /
.
 

To find the IFT of the first term, we express it 
in the form of partial fractions (Section 21.3). 
Although unnecessary in this case, it is usually 
more convenient when finding the partial frac-
tion expansion (PFE) to substitute s =  jω, deter-
mine the PFE, and substitute back for s. The 
first term in terms of partial fractions involv-

ing s becomes
 

1 1
1 1

1 2

s s
K
s

K
st t t/ /( ) +

= +
( ) + , where 

K1 and K2 are constants to be determined. To 
determine K1 we multiply both sides by s and 
substitute s  =  0. This gives K1  =  1. To deter-
mine K2 we multiply both sides by (1/τ)  +  s 
and substitute s  =  −1/τ, which gives K2  =  −1. 

Replacing s by jω, 
1 1

1
1 1

1j j j jwt t w w t w/ /( ) +
= -

( ) +
. 

As for the second term, it evaluates to zero for 
all ω except ω  =  0, for which it becomes pd w( ). 
Hence,

 
V

j j
C w

w
pd w

t w
( ) = + ( ) - ( ) +

1 1
1/

. The IFT is 

v t e u tC
t( ) = -( ) ( )-1 /t . Both vR(t) and vC(t) are in 

agreement with the step response of the circuit.

Evidently, there is no real advantage in obtaining the 
steady-state response to cosω0t using the FT, because 
the magnitude and phase of the output with respect to 
the input are given by H(ω).

Problem-Solving Tip

• When deriving the IFT by PFE, it is convenient and 
less error prone to replace jω by s.

Primal Exercise 23.14

Determine vR in Figure 23.19 in response to (a) vSRC  = 
sgn(t), both directly and by expressing sgn(t) as 

+

–

vRvSRC

vC

R–
+ C

+ –

FIGURE 23.19
Figure for Example 23.9.
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−1 + 2u(t), and (b) cosω0t using the FT, and verify using 
phasor analysis.

Ans. (a) 2e t- /t V; (b)
 

-

+ ( )
-( )tw

tw
w b0

0
2

0

1
sin t V , where 

tanb tw= 0.

Example 23.10: Responses of RL Circuit

Consider a simple series RL circuit having R = 1 Ω and 
L = 1 H. It is required to determine i for all t given that 
v t eSRC

t( ) = -10 3  V (Figure 23.20). Note that because vSRC(t) 
extends to −∞, this problem cannot be analyzed by the 
single-sided LT.

Solution:

The transfer function of current in terms of applied 

voltage is
 
H

I
V jsrc

w
w
w w

( ) = ( )
( )

=
+
1

1
. From Exercise 23.1, 

Vsrc w w
( ) =

+
60

9 2 . Hence, I j
w

w w
( ) =

+( ) +( )
60

1 9 2
. To facili-

tate inverting I(ω), we substitute s = jω, as in Example 
23.9, and express the rational function in s in terms of 
partial fractions of factors of the denominator. This 

gives 60
1 9 1 3 32

1 2 3

+( ) -( ) = +
+

+
+

-s s
K
s

K
s

K
s

. To find K1, we 

multiply both sides by (1  +  s) and substitute s  =  −1, 
which gives K1  =  7.5. In a similar manner, we find 
K2 = −5 and K3 = 2.5. Replacing s by jω, it follows that 

I
j j j

w
w w w

( ) =
+

-
+

+
-

7 5
1

5
3

2 5
3

. .
. We now have to invert 

each of these terms. From Table 23.2, the inverse of 
the first two terms is 7 5 5 3. e e u tt t- --( ) ( ). To invert the 
third term, we note that according to the time-reversal 
property (Equation 23.29), F−1{F(−ω)}  =  f(−t). Hence, 
the IFT of the last term is 2 5 3. e u tt( ) ( )- . It follows that 

i t e u t e e u tt t t( ) = ( ) -( ) + -( ) ( )- -2 5 7 5 53 3. . , which means 

that i t e t( ) = 2 5 3. , for t £ 0, and i t e et t( ) = -- -7 5 5 3. , for t ³ 0. 
i(t) is plotted in Figure 23.21.

Exercise 23.15

Verify the expression for i(t) in Example 23.10 using the 
convolution integral.

23.5  Parseval’s Theorem

The power dissipated in a resistor R by a voltage v(t) 
or a current i(t) is, respectively, v2(t)/R and Ri2(t). When 
R = 1 Ω, this power can be conveniently expressed as 
f 2(t), where f(t) could be voltage or current. The energy 
dissipated in the 1 Ω resistor over all time is then 

w t f t dt( ) = ( )
-¥

+¥

ò 2 . Parseval’s theorem states that

 
f t dt F d2 21

2
( ) = ( )

-¥

¥

-¥

¥

òò p
w w

 
(23.60)

That is, the energy dissipated in the 1 Ω resistor can be 
calculated either in the time domain or in the frequency 
domain using |F(ω)|.
Proof:

 

f t dt f t f t dt

f t F e d dtj t

2

1
2

( ) = ( ) ( )

= ( ) ( )é

ë
ê

ù

û
ú

-¥

¥

-¥

¥

-¥

¥

-¥

òò

òp w ww
¥¥

ò  
(23.61)

Moving f(t) inside the integral with respect to ω,

 
f t dt F f t e d dtj t2 1

2
( ) = ( ) ( )é

ë
ê

ù

û
ú

-¥

¥

-¥

¥

-¥

¥

òòò p
w ww

 
(23.62)

vSRC, V

e–3t

e3t

10

t, s

FIGURE 23.20
Figure for Example 23.10.

t, s

i, A

2

4

1

3

2–2 4

7.5e–t – 5e–3t

2.5e3t

FIGURE 23.21
Figure for Example 23.10.
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Interchanging the order of integration and moving 
F(ω) out of the integral with respect to t,

 
f t dt F f t e dt dj t2 1

2
( ) = ( ) ( )é

ë
ê

ù

û
ú

-¥

¥

-¥

¥

-¥

¥

òòò p
w ww

 
(23.63)

The inner integral is F(−ω)  =  F*(jω). Substituting in 
Equation 23.63 gives Equation 23.60.

The following should be noted concerning Parseval’s 
theorem:

 1. Since |F(ω)| is even (Section 23.2), Equation 
23.60 could be equally expressed as

 
f t dt F d2 2

0

1( ) = ( )
¥

-¥

¥

òò p
w w

 
(23.64)

 2. The plot of |F(ω)|2 vs. ω is the energy spectrum 
of the signal. The energy in any frequency band 
from ω1 to ω2 is, from Equation 23.64,

 
W F d12

21
1

2

= ( )òp w w
w

w

 
(23.65)

Note that Equation 23.65 is used for W12, and 
not Equation 23.60, because it accounts for posi-
tive and negative frequencies. To use Equation 
23.60, we would have to integrate from −ω2 
to  −ω1 and  from ω1 to ω2. These integrals are 
equal because |F(ω)| is even, which leads to 
Equation 23.65.

 3. According to Equation 23.65, 
F j

d
w
p w
( ) 2

 is the 

energy in an infinitesimal band of frequen-
cies dω, so that |F(ω)|2 is π times the energy 
per radian of bandwidth or twice the energy per 
hertz.

 4. Some types of time functions, such as random 
noise, are more conveniently represented in 
the frequency domain than in the time domain. 
Parseval’s theorem allows calculation of the 
power associated with any band of noise fre-
quencies and hence assesses the relative contri-
bution of such a band to the total noise energy.

 5. Because it establishes a direct relation between 
energy in the time domain and energy in the 
frequency domain, Parseval’s theorem implies 
conservation of power and energy in the fre-
quency domain.

 6. Signals having a finite f t dt2( )
-¥

¥

ò  are referred to 
as energy signals. In the case of periodic sig-
nals, this integral tends to infinity.

Example 23.11: Parseval’s Theorem

A voltage 4e–2tu(t) V is applied to a 20 Ω resistor. It is 
required to determine (a) the total energy dissipated in 
both the time and frequency domains, (b) the energy 
associated with the frequency band 0 <  f < 10 Hz, and 
(c) the time interval over which an equal energy is 
dissipated.

Solution:
 (a) In the time domain, W e dtt

1
4

0
16 4W = =-

¥

ò J. The 

energy dissipated in the 20 Ω resistor by the 
applied voltage is 4 20 0 2/ .= J. In the frequency 

domain, F
j

w
w

( ) =
+
4

2
,
 
F w

w
( ) =

+
2

2

16
4

, and W1W =  
 

1 16
4

16 1
2 2

16 1
2 2

42
0

1

0p +
= é

ëê
ù
ûú

´ ´ ==
¥

-
¥

ò w
w

p
w

p
p

d tan J,

as determined earlier.
 (b) The energy content of the given frequency range is 

1 16
4

16 1
2 2

8
102

0

20
1 1

p w
w

p
w

p
p

p

+
= é

ëê
ù
ûú
= ( ) =ò - -d tan tan

 
3 92. J. The relative energy content over the given 

frequency range is
 
= ´ @3 92

4
100 98

.
%.

 (c) The energy dissipated in a 1 Ω resistor from 0 to t is 

16 4 14 4

0
e dt et t

t
- -= -( )ò . Equating this to 3.92 J gives 

t = 0.98 s.

Primal Exercise 23.16

Given that the FT of current in a 5 Ω resistor is 10e jw As. 
Determine the total energy dissipated in the resistor.

Ans. 250/ Jp .

Primal Exercise 23.17

v(t) = 10sinc(10πt) V is applied to a 6 Ω resistor. Determine 
the energy dissipated in the resistor in the frequency 
band from 2 Hz to infinity.

Ans. 1 J.

Example 23.12: Energies in a Lowpass Filter

The voltage 4 2e u tt- ( ) V of Example 23.11 is applied to a 
simple lowpass RC filter having R = 10 Ω and C = 0.1 F. 
It is required to determine the energy dissipated in the 
resistor and that supplied by the source as t ®¥.
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Solution:

The problem can be conveniently solved in 

the frequency domain. V
j

i w w
( ) =

+
4

2
, and the 

transfer function of the voltage across R is 

H
R

R j C
j
j

V
j

j j
R Rw

w
w
w

w w
w w

( ) =
+

=
+

( ) =
+( ) +( )1 1

4
2 1/

;
 

and  

VR w w
w w w w

( ) =
+( ) +( ) = -

+
+

+
é
ëê

ù
ûú

2 2

2 2 2 2

16
4 1

16
3

1
1

4
4

.
 

It  

follows that
 

W d dR= -
+

+
+

=
¥ ¥

ò ò16
3

1
1

16
3

4
42

0
2

0p w
w

p w
w

  
16
3

2
2

16
3 2

8
3

1 1

p
w w

p
p p- + æ

è
ç

ö
ø
÷

é

ë
ê

ù

û
ú = - +é

ëê
ù
ûú
=- -tan tan J. This 

is the energy dissipated in a 1 Ω resistor. The energy 
dissipated in the 10 Ω resistor by the applied voltage is 
8/30 = 0.267 J.

Simulation: The schematic is entered as in Figure 23.22. 
A VEXP source is used, the source parameters being set 
as indicated for the 4 2e u tt- ( )V input (Appendix C). The 
voltage across R is the difference between the voltages at 
its two terminals, obtained using a subtracting DIFF part 
from the ABM library. The voltage is squared by apply-
ing it to both inputs of a multiplier MULT part from the 
ABM library. The multiplier output is integrated by the 
INTEG part from the ABM library, shown on the RHS of 
the figure. Setting the gain of the integrator to 0.1, with 

zero initial value, gives W
R

V dtR R

t

= ò1 2

0
, which is the 

energy dissipated in the resistor up to time t. Another 
multiplier multiplies the voltage across R, which is R 
times the current in the circuit, by the source voltage to 
give the instantaneous power delivered by the source. 
Integrating this by the integrator of gain 0.1 on the LHS 

of the figure gives W V
V
R

dtSRC SRC
R

t

= ( )æ
è
ç

ö
ø
÷ò0 , which is the 

power delivered by the source up to time t. Figure 23.23 
shows the plot of WSRC, WR, and their difference WC, the 
energy in the capacitor at any time t. At large values of 
time, the source voltage approaches zero, the capacitor 

is discharged, and the energy supplied by the source is 
equal to that dissipated in the resistor. This energy is 
0.27 J, in agreement with that calculated earlier.

Primal Exercise 23.18

The voltage 4 2e u tt- ( )V is applied to the same filter of 
Example 23.12 used as a highpass filter. Using the results 
of Example 23.12, determine the energy dissipated in 
the resistor and that supplied by the source.

Ans. The same as in Example 23.11.

Learning Checklist: What Should 
Be Learned from This Chapter

• The FT is defined as F{ ( )} ( )f t F f t e dtj t= ( ) = -

-¥

¥

òw w , 
and the IFT as

 
F -

-¥

¥

( ){ } = ( ) = ( )ò1 1
2

F f t F e dj tw
p

w ww .
 

• In practice, f(t) is a real function of time, but F(ω) 
is in general a complex function of ω, whose 

real part is given by A f t tdtw w( ) = ( )
-¥

¥

ò cos  
and whose imaginary part is given by 

B f t tdtw w( ) = - ( )
-¥

¥

ò sin .

• F(ω), A(ω), and B(ω) have the following 
properties:

 1. A(ω) is even, B(ω) is odd.

 2. F A Bw w w( ) = ( )+ ( )2 2  is even, ∠F(ω) is odd.

 3. F(−ω) = F*(ω).

0.1u

10

0

0V
0.1

TD1 = 0

V1 = 0

TD2 = 0
TC1 = 1n

V2 = 4

TC2 = 0.5

0 V
0.1

+

+–

–

FIGURE 23.22
Figure for Example 23.12.

Time

0
1.0s0s 2.0s 3.0s 4.0s 5.0s

0.1

0.2

0.3

J WR

WSRC

WC

FIGURE 23.23
Figure for Example 23.12.
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 4. If f(t) is even, F(ω) is real and even, with 

A f t tdtw w( ) = ( )
¥

ò2 0
cos .

 5. If f(t) is odd, F(ω) is imaginary and odd, with 

B f t tdtw w( ) = - ( )
¥

ò2 0
sin .

• F f t dt0( ) = ( )
-¥

¥

ò .

• A duality relation exists between the FT and the 
IFT: if F f t F( ){ } = ( )w , then F F t f( ){ } = -( )2p w .

• The operational properties of the FT are sum-
marized in Table 23.1.

• If a function is compressed in the time domain, 
it expands in the frequency domain, and 
conversely.

• The FT of the convolution of two time functions 
equals the product of their FTs, and the FT of the 
product of two time functions equals the convo-
lution of their FTs divided by 2π.

• The general procedure of applying the FT in 
circuit analysis is a generalization of the pha-
sor method. The circuit is represented in the 
frequency domain, as in the phasor analysis, 
where R, L, and C are represented in terms of 
their impedances as R, jωL, and 1/jωC, respec-
tively. Phasor voltages and currents, including 
excitations, are replaced by the corresponding 
FTs. The usual circuit techniques are applied 
to derive the FT of any desired response. The 
IFT then gives the desired response in the time 
domain.

• The transfer function H(ω) is defined as in the 
general case of the LT as H Y Xw w w( ) = ( ) ( )/ .

• The FT of the response h(t) to a unit impulse at 
t = 0 is the transfer function H(ω), and the IFT of 
H(ω) is h(t).

• The energy spectrum of a signal is a plot of 
|F(ω)|2 vs. ω. According to Parseval’s theorem, 
the energy dissipated in a 1 Ω resistor over all 

time is f t dt F d2 2

0

1( ) = ( )
-¥

¥ ¥

ò òp w w.

• Parseval’s theorem allows calculation of the 
power associated with any band of frequencies 
of a signal.

Problem-Solving Tips

 1. The following checks on the FT are useful:
• If f(t) is even, F(ω) is real and even.
• If f(t) is odd, F(ω) is imaginary and odd.

• If f t dt( )
-¥

+¥

ò  is finite, if f(t) is of finite dura-

tion, and if the dc component of f(t) is zero, 

then F(0) = 0. On the other hand, if f t dt( )
-¥

+¥

ò  

is infinite, and even if the dc component of 
f(t) is zero, it does not follow that F(0) = 0.

 2. When deriving the IFT by PFE, it is convenient 
and less error prone to replace jω by s.

Problems

Verify solutions using PSpice.

Fourier Transform and Its Properties

P23.1 Determine the FT of the following functions:

 
(a) d d dt t t( ) + -( ) + -( )3

2
1

1
2

2

 (b) 2u(t) + sin(2000t) + 4
 (c) u(t) − u(t − 4)

 (d) t e u tt2 3- ( )

 
Ans. (a) 1

3
2

1
2

2+ +- -e ej jw w; (b) 10 2pd w
w

( ) + - +æ
è
çj   

pd w pd w+( ) - -( ))2000 2000 ; (c) 
1

1 4

j
e j

w
w-( )- ; 

(d) 
2

3
3

+( )jw
.

P23.2 Determine the FT of the following functions:
 (a) tsgn(t)

 (b) |t| (Hint: |t| = 
 

sgnò (t)dt)

 
Ans. (a) -

2
2w

; (b) -
2

2w
.

P23.3 Determine the FT of the following functions:

 
(a) sgn t e t( )( )-

2

 
(b)

  
d
dt
e a t- , by direct evaluation and by using 

Equation 23.14.

 
(c) 2

12

cos at
t

( )
+

 (Hint: use Equation 23.14 and duality).

 
Ans. (a)

 
4

4 2+w
; (b)

 

j a
a

2
2 2

w
w+

; (c)
 
p w we ea a- - - ++( ).

P23.4 Determine the FT of the following functions, defined 
for −π ≤ t ≤ π and are zero outside this range:

 (a) sint
 (b) cost
 (c) 1 + cost

 
Ans. (a) 

j2
12w

pw
-

sin ; (b) -
-

2
12

w pw
w

sin ; (c) -
-( )

2
12w w

pw.sin
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P23.5 Determine the IFT of the following functions:

 (a) 
4

12w +

 
(b) 

1

1 2 2
+( )w

 Ans. (a) 2e t- ; (b) 
1
4

1
1
4

1t e u t t e u tt t+( ) ( ) + -( ) ( )- .

P23.6 Determine the IFT of the following functions:
 (a) 2 2 2 2u uw w+( ) ( )– –

 
(b)

 

5
5j jw w +( )

 
(c)

 

j
j

w
w w

-
- -

2
5 62

 
Ans. (a)

 
4

2
p

sinc t( ); (b) 
1
2

5sgn t e u tt( ) - ( )- ; 

(c) 4 52 3e e u tt t- --( ) ( ).

P23.7 Determine F(ω) of f (t) in Figure P23.7.

 
Ans.

 
-

j8
w

.

P23.8 Determine F(ω) of f(t) in Figure P23.8, and verify the 
interpretation of F(0).

 
Ans.

 

2
2

8
42

2A A
w

tw
tw

tw
sin sinæ

è
ç

ö
ø
÷ -

æ
è
ç

ö
ø
÷.

P23.9 Determine F(ω) of f (1)(t), where f(t) is that in 
Figure P23.8, and verify the result by applying the 
 differentiation-in-time property to the result of Problem 
P23.8. Compare to Equation 23.13.

P23.10 Assume that the function shown in Figure 23.4 is in the 
time domain. Determine F(ω) and verify by applying 
duality to the result of Example 23.2.

P23.11 Determine F(ω) of f(t) in Figure P23.11 from that of its 
second derivative.

 
Ans.

 

j j30
2

20
32 2w

w
w

wsin sin- .

P23.12 Assume that the function shown in Figure 23.3 is in the 
frequency domain. Determine f(t) and verify by apply-
ing duality to Equation 23.13.

P23.13 Assume that the function shown in Figure 23.15 is in 
the frequency domain. Determine f(t) and verify by 
applying duality to the result of Example 23.6.

P23.14 Assume that the function shown in Figure 23.17 is in 
the frequency domain. Determine f(t) and verify by 
applying duality to the result of Exercise 23.11.

P23.15 Assume that the function shown in Figure P23.8 is in 
the frequency domain. Determine f(t) and verify by 
applying duality to the result of Problem P23.8.

P23.16 Determine F(ω) of f(t)  =  (cos2t)u(−t)  +  2(cos2t)u(t) 
(Figure P23.16).

 
Ans.

 
3
2

2 2
4 2

p d w d w
w
w

+( ) + -( )éë ùû + -
j

.

P23.17 Determine the FT of a single period of sint centered at 
the origin (Figure P23.17).

 
Ans.

 

j A2
12w

pw
-

sin .

P23.18 Determine F(ω) of Figure P23.17 by considering it as 
the product of a sinusoidal function and a rectangular 
pulse of unit amplitude extending from −π to +π.

P23.19 Determine F(ω) of f(t) in Figure P23.19 in terms of step 
functions, impulse functions, and rectangular func-
tions, and express it in the simplest possible form.

 Ans. 8sinc(4ω) – 12sinc(3ω) + 4sinc(ω).

t

8

f (t)

–1

FIGURE P23.7

t

A

f (t)

/2– /2

FIGURE P23.8

f (t)

t, s

10

3

–10

FIGURE P23.11

t

2

0

f (t)

–

– /2 /2

FIGURE P23.16

f (t)

A

t

A

–

FIGURE P23.17
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P23.20 Given that f(t) is the periodic train of unit impulses: …, 
δ(−2T), −δ(−T), δ(0), −δ(T), δ(2T), …, with T = 1 ms, and 
that g(t) = sinc(πt), where t is in ms. Determine the FT 
of the product f(t) × g(t).

 Ans. 1.

P23.21 If
 
F

1 2
t

ì
í
î

ü
ý
þ
=

p
w

, determine the IFT of 
p

w - 1
.

 Ans. e tjt/ 2 .

P23.22 Determine the IFT of 
 

2
2

2
2

pd w
w w w
( )

+
+

+( )j j j
.

 Ans. 1 2-( ) ( )e u tt .

P23.23 Determine d w d w-( ) -( )a b*  in both the time and fre-

quency domains.

 Ans. d w
p

- +( )( ) +a b e j a b t, ( )1
4 2 .

P23.24 Determine the IFT of the convolution of 
1

4 1 2

+
+ +( )

j
j
w
w  

and 2
4 1 2+ +( )jw

.

 Ans. p e t u tt-( ) ( )2 4sin .

P23.25 Determine the convolution of F(ω) = δ(ω) + 1/jπω and 

G
j

w p
w

( ) =
+2

.

 
Ans.

 

2
2
p
w+ j

.

P23.26 Determine the FT of
 
f t r t n rn

n( ) = å -( ) <=
¥

0 1d , .

 
Ans.

 
1

1- -re jw .

P23.27 Determine F(ω) of the periodic sawtooth of Figure 16.5.

 
Ans.

 
F

jA
n

n
n

w d w w( ) = -
=-¥

¥å ( )0 , n ≠ 0, and F w p( ) = ´2
  

A
A

2
d w p d w( ) = ( ) for n = 0.

P23.28 Determine F(ω) of the periodic sawtooth of Figure 16.9b.

 
Ans.

 
F

jA
n

n n
n

w d w w( ) = - -( ) ¹
=-¥

¥å 0 0, , and F w( ) =
  

2
2

p d w p d w´ ( ) = ( )A
A  for n = 0.

P23.29 Determine F(ω) of the periodic triangular waveform 
of Figure 16.24 and verify it by applying the integra-
tion-in-time property to the square wave of Primal 
Exercise 23.7.

 Ans. F
A
n

nm

n
w

p
d w w( ) = - -( )

=-¥

¥å 8
2 0 , n odd.

P23.30 Determine F(ω) of the half-wave rectified waveform 
of Figure 16.27a, considering it as the product of a 
cosine function and a rectangular waveform, as in 
Example 16.6.

 
Ans. F

A
n nhw w p p d w w w( ) = ( ) - -( ) +éë-¥

¥å2
2 0 0sinc /

  
d w w w+ -( )ùû0 0n .

P23.31 Determine F(ω) of the full-wave rectified waveform of 
Figure 16.27b considering it as the product of a cosine 
function and a square wave of zero average centered at 
the origin.

 
Ans. F A A

n
nfw w d w d w w w( ) = ( ) + - -( ) +éë-¥

¥å4 2
1

0 0
 

d w w w+ -( )ùû0 0n .

P23.32 Determine F(ω) of f(t) of Figure P23.32, where f(t) = t2, 
0 ≤ t ≤ 1, f(t) = (2 − t)2, 1 ≤ t ≤ 2, and f(t) = 0, elsewhere, 
using the second derivative.

 
Ans. F

e j

w
w

w
w

( ) = -( )
-4

12 sinc

P23.33 Given f(t) as in Figure P23.33, derive the convolution 

function y t f t
T
t( ) = ( ) æ

è
ç

ö
ø
÷* cos

2p
.

 
Ans.

 
3 2T

T
t

p
p

cos .

Circuit Applications

P23.34 The impulse response of a certain circuit is 
d dt t( ) + -( )0 4 1. . Determine the FT of the response of 
this circuit to an input cosπt.

 Ans. F w p w p d w p( ) = +( ) + -( )( )0 6. d .

t

1

1

2 4

3

f (t)

–3

–4 –2

–1

–1

0

FIGURE P23.19

t, s

1

2

f (t)

1

FIGURE P23.32

t, s

4
T

4
–T–3T–5T

4
3T

4
5T

44

f (t)

1

FIGURE P23.33
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P23.35 Determine vO(t) in Figure P23.35 if v t tSRC ( )=( ) ( )1 2/ sgn V. 
Deduce vO(t) for (a) vSRC(t)  =  δ(t) V and (b) vSRC(t)  =  
u(t) V. Verify the responses in (a) and (b) using the FT, 
and interpret the results for all three inputs.

 
Ans.

 
2
3

2 3e u tt- ( )/ ; (a)
 
2
3

4
9

2 3d t e u tt( ) - ( )- / ; (b) 
2
3

2 3e u tt- ( )/ .

P23.36 Determine iO(t) and vO(t) in Figure P23.36 if vSRC(t)  = 
5sgn(t) V and interpret the result.

 
Ans.

 
v t t e u tO

t( ) = ( ) - ( )-25
6

25
3

6 25sgn / ,
 
2 6 25e u tt- ( )/  mA, 

t
 
is in ms.

P23.37 Determine iO(t) and vO(t) in Figure P23.37 if vSRC(t)  = 
0.5sgn(t) V.

 
Ans. i t e e u tO

t t( ) = -( ) ( )- -2
3

0 5 2. A

 
v t t e u t e u tO

t t( ) = ( ) - ( ) + ( )- -0 5
4
3

1
3

0 5 2. .sgn V.

P23.38 Determine iO(t) and vO(t) in Figure P23.37 if 
v t eSRC

t( ) = -10  V.

 
Ans. i t e u t e u t e u t eO

t t t t( ) = - ( )+ ( ) - ( ) +- - - -8
9

16
9

8
9

1
9

2 0 5. A

v t e u t e u t e u t et t t t
0

2 0 54
9

20
9

16
9

1
9

( ) .= ( ) - ( ) + ( ) +- - - - V.

P23.39 Determine vO(t) and iO(t) in Figure P23.39 if vSRC(t) is the 
waveform of Figure 23.3 with A = 10 V and τ = 2 ms.

 Ans. v t t e u t tO
t( ) = - +( ) + +( ) + ( )( -- +( )5 1 2 1 21sgn sgn   

4 1 2 11e u t t e u tt t- - -( )( ) - -( ) + -( ))sgn V.

P23.40 Determine vO(t) in Figure P23.40 if v t e u tSRC
t( ) = ( )-2 V .

 Ans. 
4
5

1
2

3
10

2 6e e e u tt t t- - -- -æ
è
ç

ö
ø
÷ ( ) V.

Parseval’s Theorem

Refer to Table of Integrals in Appendix B when necessary.

P23.41 If F j jw w( ) = +( )1 2/ , determine W1W in both the fre-
quency and time domains.

 Ans. 1/4 J.

P23.42 If f t e t u tt( ) = ( ) ( )-2 2sin , determine W1W in both the 
 frequency and time domains.

 Ans. 1/16 J.

P23.43 If f t te u tt( ) = ( )-2 , determine W1W in both the frequency 
and time domains.

 Ans. 1/32 J.

P23.44 If the voltage across a 50 Ω resistor is f t te u tt( ) = ( )-2 V, 
determine the percentage of the total load energy that 
is associated with the frequency band 0–1 rad/s.

 Ans. 81.83%.

P23.45 If the FT of the current in a 4 Ω resistor is 1 1 2/ +( )w , 
determine the total energy dissipated in the resistor.

 Ans. 1 J.

P23.46 If i(t)  =  2sinc(4t), determine (a) the frequency band 
starting at ω = 0 that contains half the energy of i(t) and 
(b) the energy dissipated in a 2 Ω resistor due to i(t) 
applied over all time.

 Ans. (a) 0–2 rad/s; (b) 2π J.

1 HvSRC 2

1

vo

+

–

–
+

FIGURE P23.35

+

–

–
+

iO

1 µF25 k

5 k

vovSRC

FIGURE P23.36

vO

+

–

–
+

2.5

1 FvSRC

1 H

iO

FIGURE P23.37

vO

+

–

–
+

1 k

1 µFvSRC

iO

FIGURE P23.39

+

_
–
+

23 vO

1 H 1H

vSRC

2 H

FIGURE P23.40
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P23.47 If v t eSRC
t( ) = -15  V in Figure P23.47, determine the per-

centage of the 1 Ω energy of vO in the frequency range 
0 2£ £w  rad/s.

 Ans. 98.4%.

P23.48 If v t e u tSRC
t( ) = ( )-20 2 V in Figure P23.48, what percent-

age of the 1 Ω energy of vO is in the frequency range 
0 2£ £w  rad/s if (a) R = 2 Ω and (b) R = 4 Ω.

 Ans. (a) 38.5%; (b) 44.0%.

P23.49 Repeat Problem P23.48 if v t eSRC
t( ) = -20 2 V .

 Ans. (a) 72.5%; (b) 77.2%.

P23.50 A current 2 2sgn At e t( ) -  is applied to a 10 Ω resistor. 
Determine the energy of the signal that is in the fre-
quency band 0–10 Hz.

 Ans. 19.2 J.

P23.51 Use Parseval’s theorem to show that
 d 2 t dt( )

-¥

¥

ò  is 
 infinite and therefore undefined.

vO

+

–

vSRC
–
+

1

1 F 1

FIGURE P23.47

R vO

+

–
–
+

1 F

vSRC

FIGURE P23.48
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Two-Port Circuits

Objective and Overview

Any circuit that is excited by a single, independent 
source applied to one port and having a load connected 
to another port can be considered as a two-port circuit. 
Active, electronic devices and their associated circuits 
are the prime examples of two-port circuits. A two-
port circuit is characterized, in general, by sets of four 
parameters defined in terms of open-circuit or short-
circuit terminations at each port. The analysis based on 
this characterization provides a useful and powerful 
alternative to conventional circuit analysis discussed in 
previous chapters.

To utilize the full power of two-port analysis, matrix 
methods are needed. We will introduce some of these 
methods in the following sections, mainly as a conve-
nient, compact notation that follows certain rules that 
are particularly simple for 2 × 2 matrices.

The chapter begins with presenting the six sets 
of two-port circuit equations, any one of which can 
be used to relate terminal voltages and currents of 
the circuit. Each of these sets of equations involves a 
 corresponding set of parameters that characterize the 
circuit. The different sets of parameters are interpreted 
in terms of terminal conditions of the circuit, and the 
relations between these different sets are derived. Two 
special types of two-port circuits, namely, reciprocal 
and symmetric circuits, are discussed, followed by 
 presenting some useful equivalent circuits based on 
two-port  circuit equations.

The rest of the chapter is concerned with two-port cir-
cuit analysis, starting with the derivation of two-port 
circuit parameters for composite circuits that result 
from combining two-port circuits in one of five possible 
ways: cascading, parallel, series, series– parallel, and 
parallel–series connections. When single circuit ele-
ments are considered as two-port circuits, this approach 
leads to some powerful methods of analyzing many 
types of circuits. The chapter ends by analyzing a ter-
minated two-port circuit in order to derive relations 
that are of particular interest in the analysis of electronic 
amplifier circuits.

24.1  Circuit Description

As its name implies, a two-port circuit has a pair of input 
terminals or input port and a pair of output terminals 
or output port (Figure 24.1), the assigned positive direc-
tions of input and output voltages and currents being as 
indicated. Voltages and currents in two-port circuits are 
considered, in general, to be Laplace transforms, unless 
indicated otherwise. These voltages and currents could 
equally well be dc quantities or phasors in the case of a 
sinusoidal steady state. By convention, the circuit may 
contain passive, linear circuit elements and dependent 
sources, but no independent sources.

In general, two of the four terminal variables, V1, V2, I1, 
and I2, can be specified independently, in which case the 
other two variables are determined by the parameters of 
the given circuit. This can be justified by considering a load 
connected to the output port. Evidently, V2 and I2 will be 
related by the load and will not be independent. Similarly, 
with the load connected, there will be an input imped-
ance at the input port that relates V1 and I1, which means 
that these two variables are not independent. Hence, only 
two of the four terminal variables are, in general, inde-
pendent. The two-port circuit may therefore be described 
in terms of two simultaneous equations. However, since 
four variables are involved, there are six ways of choos-
ing two of these variables as independent, which results 
in six sets of simultaneous equations, listed in Table 24.1. 
In each of these equations, the two independent variables 
on the LHS are related to two dependent variables on the 
RHS by four coefficients or parameters that characterize 
the equation. Thus, one speaks of the z-parameter equa-
tion, the y-parameter equation, etc. The two equations in 

24

+

–
V2

+

–

V1 I1

I1

I2

I2

Two-port
circuit

FIGURE 24.1
Terminal voltages and currents of two-port circuit.
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the same row in Table 24.1 are inversely related, in the 
sense that the independent variables in one set are the 
dependent variables in the other. As discussed in the fol-
lowing text, this means that the matrices of parameters in 
the two cases are inversely related.

It is seen from Table 24.1 that a two-port circuit is speci-
fied, in general, by four nonzero parameters in one of the 
six equations. The z and y parameters, being impedances 
and admittances, respectively, are immittance parameters, 
where immittance refers to either an impedance or admit-
tance. The z- and y-parameter equations express terminal 
voltages (or currents) in terms of terminal currents (or 
voltages). The a and b parameters are transmission param-
eters because the corresponding equations express voltage 
and current at one port in terms of voltage and current at 
the other port. The a and b parameters are also referred 
to as ABCD or abcd parameters, respectively. The h and 
g parameters are hybrid parameters because the corre-
sponding equations express an input voltage (or current) 
and an output current (or voltage) in terms of an input cur-
rent (or voltage) and an output voltage (or current).

Exercise 24.1

Of the six sets of equations in Table 24.1, which sets are 
dual relations?
Ans. z-parameter and y-parameter equations are dual 
relations, as are the h-parameter and g-parameter equa-
tions, provided the corresponding coefficients have 
equal numerical values.

24.2  Parameter Interpretation and Relations

24.2.1  Interpretation of Parameters

The parameters of two-port circuits can be interpreted 
in terms of voltage and current ratios under specified 
open-circuit and short-circuit terminations, which pro-
vide a convenient means of evaluation or measure-
ment of these parameters. If excitation is applied to 
port 1, with port 2 open-circuited, then I2 = 0, and the 
z- parameter equations reduce to

 V z I V z I1 11 1 2 21 1= =and  (24.1)

It follows that z11 and z21 can be defined as

z
V
I I

11
1

1 2 0

=
=

W: Impedance looking into port 1 with
 

port 2 open-circuited

z
V
I I

21
2

1 2 0

=
=

W: Ratio of voltage at port 2 to current at 

port 1 with port 2 open-circuited
Similarly, if excitation is applied to port 2, with port 

1 open-circuited, then I1 = 0, and the z-parameter equa-
tions reduce to

 V z I V z I1 12 2 2 22 2= =and  (24.2)

It follows that z12 and z22 can be defined as follows:

z
V
I I

12
1

2 1 0

=
=

W: Ratio of voltage at port 1 to current at 

port 2 with port 1 open-circuited.

z
V
I I

22
2

2 1 0

=
=

W: Impedance looking into port 2 with
 

port 1 open-circuited.
Whereas z11 and z22 are input impedances at ports 

1  and 2, respectively, z12 and z21 are transfer imped-
ances, being the ratio of voltage at one port to current 
at the other port. The other parameters may be simi-
larly interpreted, as summarized in Table 24.2. Circuit 
parameters are, in general, frequency dependent and 
complex.

Since the same circuit variables are involved in the 
six equations, the parameters in these equations must 
be related. To find the relation between any two sets of 
parameters, we simply express one set of two simul-
taneous equations in the same form as the other set 
and compare coefficients. For example, to express the 

TABLE 24.1

Two-Port Circuit Equations

V1 = z11I1 + z12I2 I1 = y11V1 + y12V2

V2 = z21I1 + z22I2 I2 = y21V1 + y22V2

V1 = a11V2 − a12I2 V2 = b11V1 − b12I1

I1 = a21V2 − a22I2 I2 = b21V1 − b22I1

V1 = h11I1 + h12V2 I1 = g11V1 + g12I2

I2 = h21I1 + h22V2 V2 = g21V1 + g22I2

TABLE 24.2

Interpretation of Circuit Parameters

z
V
I

z
V
II I

11
1

1 0

12
1

2 02 1

= =
= =

W W y
I
V

y
I
VV V

11
1

1 0

12
1

2 02 1

= =
= =

S S

z
V
I

z
V
II I

21
2

1 0

22
2

2 02 1

= =
= =

W W y
I
V

y
I
VV V

21
2

1 0

22
2

2 02 1

= =
= =

S S

a
V
V

a
V
II V

11
1

2 0

12
1

2 02 2

= = -
= =

W b
V
V

b
V
II V

11
2

1 0

12
2

1 01 1

= =-
= =

W

a
I
V

a
V
II V

21
1

2 0

22
1

2 02 2

= = -
= =

S b
I
V

b
I
II V

21
2

1 0

22
2

1 01 1

= = -
= =

S

h
V
I

h
V
IV I

11
1

1 0

12
1

2 02 1

= =
= =

W g
I
V

g
I
II V

11
1

1 0

12
1

2 02 1

= =
= =

S

h
I
I

h
I
VV I

21
2

1 0

22
2

2 02 1

= =
= =

S g
V
V

g
V
II V

21
2

1 0

22
2

2 02 1

= =
= =

W
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z parameters in terms of the a parameters, we eliminate 
V2 between the two equations of the a parameters to 
obtain

 
V

a
a

I
a

a
I1

11

21
1

21
2= + D

 
(24.3)

where Da a a a a= -11 22 12 21. The second a-parameter equa-
tion can be rearranged as

 
V

a
I

a
a

I2
21

1
22

21
2

1= +
 

(24.4)

Comparing Equations 24.3 and 24.4 with the corres-

ponding z-parameter equations gives
 
z

a
a

11
11

21
= ,

 
z

a
a

12
21

= D
,
 

z
a

21
21

1= , and
 
z

a
a

22
22

21
= . Table 24.3 shows the relations 

between the different sets of parameters.
Note that in certain cases, some parameters in a given 

set of the six sets of parameters may be zero, and some 
parameters in other sets of parameters may be infi-
nite, in which case, the corresponding set of two-port 
circuit equations does not exist. For example, the ideal 
transformer may be considered as a two-port circuit in 
which V2 and V1 are related by a turns ratio indepen-
dent of the currents and I1 and I2 are related by a turns 
ratio, independent of the voltages. For the dot markings 
indicated in Figure 24.2, the transformer equations are 
V1 = nV2 and I2 = −nI1. The two-port circuit equations 
are as follows:

a-parameter equations: V nV I n I1 2 1 21= = -( ), /  
with a n a n a a11 22 12 211 0= = = =, / ,

TABLE 24.3

Relations between Sets of Parameters

z
y
y

a
a

b
b

h
h g

11
22 11

21

22

21 22 11

1
= = = = =
D

D
y

z
z

a
a

b
b h

g
g

11
22 22

12

11

12 11 22

1
= = = = =
D

D

z
y
y

a
a b

h
h

g
g

12
12

21 21

12

22

12

11

1
= - = = = = -

D
D

y
z
z

a
a b

h
h

g
g

12
12

21 12

12

11

12

22

1
= - = - = - = - =

D
D

z
y
y a

b
b

h
h

g
g

21
21

21 21

21

22

21

11

1
= - = = = - =

D
D

y
z
z a

b
b

h
h

g
g

21
21

12 12

21

11

21

22

1
= - = - = - = = -

D
D

z
y
y

a
a

b
b h

g
g

22
11 22

21

11

21 22 11

1
= = = = =
D

D y
z
z

a
a

b
b

h
h g

22
11 11

12

22

12 11 22

1
= = = = =
D

D

a
z
z

y
y

b
b

h
h g

11
11

21

22

21

22

21 21

1
= = - = = - =

D
D

b
z
z

y
y

a
a h

g
g

11
22

12

11

12

22

12 12

1
= = - = = = -

D
D

a
z

z y
b
b

h
h

g
g

12
21 21

12 11

21

22

21

1
= = - = = - =
D

D
b

z
z y

a
a

h
h

g
g

12
12 12

12 11

12

22

12

1
= = - = = - = -
D

D

a
z

y
y

b
b

h
h

g
g

21
21 21

21 22

21

11

21

1
= = - = = - =

D
D

b
z

y
y

a
a

h
h

g
g

21
12 12

21 22

12

11

12

1
= = - = = = -

D
D

a
z
z

y
y

b
b h

g
g

22
22

21

11

21

11

21 21

1
= = - = = - =

D
D

b
z
z

y
y

a
a

h
h g

22
11

12

22

12

11

12 12

1
= = - = = = -

D
D

h
z

z y
a
a

b
b

g
g

11
22 11

12

22

12

11

221
= = = = =
D

D
g

z
y

y
a
a

b
b

h
h

11
11 22

21

11

21

22

221
= = = = =

D
D

h
z
z

y
y

a
a b

g
g

12
12

22

12

11 22 11

121
= = - = = = -

D
D

g
z
z

y
y

a
a b

h
h

12
12

11

12

22 11 11

121
= - = = - = - = -

D
D

h
z
z

y
y a

b
b

g
g

21
21

22

21

11 22 11

211
= - = = - = - = -

D
D

g
z
z

y
y a

b
b

h
h

21
21

11

12

22 11 22

211
= - = - = = = -

D
D

h
z

y
y

a
a

b
b

g
g

22
22 11

21

22

21

11

111
= = = = =

D
D

g
z

z y
a
a

b
b

h
h

22
11 22

12

11

12

22

111
= = = = =
D

D

Dz z z z z= -11 22 12 21 Dy y y y y= -11 22 12 21

Da a a a a= -11 22 12 21 Db b b b b= -11 22 12 21

Dh h h h h= -11 22 12 21 Dg g g g g= -11 22 12 21
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b-parameter equations: V n V I nI2 1 2 11= ( ) = -/ ,  
with b n b n b b11 22 12 211 0= = = =/ , ,

h-parameter equations: V nV I nI1 2 2 1= = -,  with 
h h h n h n11 22 12 210= = = = -, ,

g-parameter equations: I n I V n V1 2 2 11 1= -( ) = ( )/ /,  
with g g g n g n11 22 12 210 1 1= = = -( ) = ( ), / , /

The z-parameter and y-parameter equations do not 
exist, as it is not possible to express the transformer volt-
ages in terms of the transformer currents or conversely 
based on the transformer equations alone. Referring to 
Table 24.3, if a12 = 0 = a21, then all the z parameters and 
y parameters are infinite.

Primal Exercise 24.2

Determine z12 and z21 in Figure 24.3.
Ans. z z j12 21 5= = - W.

Primal Exercise 24.3

A two-port circuit is described by the equations 
V I V1 1 245 2= +  and I I V2 1 210= + . Determine the input 
resistance looking into the input port, with the output 
port open-circuited.
Ans. 25 Ω.

24.2.2  Inverse Relations

Any set of equations in Table 24.1, say, the z-parameter 
equations, may be expressed in matrix form as follows:

 

V

V

I

I
1

2

11 12

21 22

1

2

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú

z z

z z  
(24.5)

Applying the rules of matrix multiplication to Equa-
tion 24.5 gives the z-parameter equations. Equation 24.5 
is inverted by multiplying both sides by the inverse of 
the z-parameter matrix and rearranging the equation:
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Comparing this with the y-parameter equations, it is 
seen that
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(24.7)

Similar inverse relations hold between the parameter 
matrices of any two sets of equations in the same row of 
Table 24.1. Thus,
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Note the negative signs in the matrices of a and b 
parameters, which arise because of the negative signs in 
the equations of these parameters.

The inverse of a 2 × 2 parameter matrix is expressed as
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where D is the determinant of the matrix and is equal 
to Δz, Δy, −Δa, −Δb, Δh, and Δg, as defined in Table 
24.3. The relations in Table 24.3 are seen to conform to 
Equation 24.11.
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Figure for Primal Exercise 24.2.
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Exercise 24.4

Derive the expressions for the z parameters in terms of 
the y, a, b, h, and g parameters in Table 24.3.

Example 24.1: Determination of a Parameters

It is required to determine the a parameters of the circuit 
of Figure 24.4 at ω = 1 rad/s.

Solution:

With I V
j

j
I2 2 10

1 5
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/
, which gives
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as before. Since 

V
I

V
I

I
IV V V

1

2 0

1

1 0

1

2 02 2 2= = =

= ´ , it follows that
 

a
V
I V

12
1

1 02

= - =
=  

- +( ) -( ) = +30 10 0 2 6 2j j. .W

Example 24.2: Determination of h Parameters

The following dc measurements were made on a two-
port resistive circuit:

Port 2 open-circuited: V1 = 10 mV, I1 = 50 μA, V2 = 20 V
Port 2 short-circuited: V1 = 40 mV, I1 = 100 μA, I2 = −1 mA
It is required to find the h parameters of the circuit.

Solution:

With port 2 short-circuited,
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be obtained from the given measurements because 
these do not include the case of port 1 open-circuited. 
However, we can obtain the a parameters from the given 
measurements. Thus,
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, as derived earlier. It follows that
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24.2.3  Reciprocal Circuits

Consider the T-circuit of Figure 24.5a. The mesh-current 
equations are

 Z Z I Z I VSRC1 3 1 3 2 1+( ) - ¢ =  (24.12)

 - + +( ) ¢ = -Z I Z Z I VSRC3 1 2 3 2 2 (24.13)

It is noteworthy, as discussed in Section 6.3, that in 
the absence of dependent sources, the coefficient of I2¢  
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FIGURE 24.4
Figure for Example 24.1.
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T-circuit (a) and its z parameters (b).
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in Equation 24.12 and of I1 in Equation 24.13 is simply 
the mutual impedance. Moreover, this mutual imped-
ance, Z3, is the same in the two mesh-current equations, 
because fundamentally the passive circuit elements of 
resistance, capacitance, and inductance are bilateral, 
that is, their values are independent of the direction of 
the current through them.

Next, let us substitute I I2 2= - ¢ , identify VSRC1 with an 
input voltage V1, in accordance with the substitution 
theorem, identify VSRC2 with an input voltage V2, change 
the sign in Equation 24.13, and rearrange both equations 
to give

 V Z Z I Z I1 1 3 1 3 2= +( ) +  (24.14)

 V Z I Z Z I2 3 1 2 3 2= + +( )  (24.15)

Equations 24.14 and 24.15 are the z-parameter equa-
tions of a two-port circuit having z12 = z21 = Z3, z11 = Z1 + Z3 
or Z1 = z11 – z12 and z22 = Z2 + Z3 or Z2 = z22 – z21, as shown 
in Figure 24.5b. We have thus shown that the z-parame-
ter equations are of the form of mesh-current equations, 
where I1 is a current flowing clockwise in an input mesh 
and I2 is a current flowing counterclockwise in an out-
put mesh. z11 and z22 are self-impedances of the meshes, 
whereas z12 and z21 are mutual impedances that are equal 
in the absence of dependent sources. Such a two-port cir-
cuit having z12 = z21 is said to be reciprocal.

Similarly, the y-parameter equations can be shown to 
be of the form of node-voltage equations. Consider, for 
example, the π-circuit of Figure 24.6a. The node-voltage 
equations are

Y Y V Y V I Y V Y Y V ISRC SRC1 2 1 2 2 1 2 1 2 3 2 2+( ) - = - + +( ) =and  
(24.16)

Next, we may identify ISRC1 with an input current I1, in 
accordance with the substitution theorem, identify ISRC2 
with an input current I2, and rearrange both equations 
to give

 I Y Y V Y V1 1 2 1 2 2= +( ) -  (24.17)

 I Y I Y Y VV2 2 2 3 2= - + +( )  (24.18)

Equations 24.17 and 24.18 are the y-parameter equa-
tions of a two-port circuit having y12 = y21 = −Y2, y11 = 
Y1 + Y2, or Y1 = y11 + y12 and y22 = Y2 + Y3 or Y3 = y22 + y21, 
as shown in Figure 24.6b. It is seen that the y-parameter 
equations are of the form of node-voltage equations, 
where y11 and y22 are self-admittances of the nodes, 
whereas y12 and  y21 are mutual admittances that are 
equal in the absence of dependent sources. This again 
defines a reciprocal  circuit in terms of the y parameters 
as a circuit having y12 = y21.

Because of the relations between the various sets of 
two-port parameters, as shown in Table 24.3, the rela-
tions corresponding to z12 = z21 or y12 = y21 can be read-
ily derived for the other sets of parameters. Thus, if 
z12 = z21, it follows from Table 24.3 that Δa/a21 = 1/a21, 
1/b21 = Δb/b21, h12/h22 = −h21/h22, and −g12/g11 = g21/g11. 
These relations give D Da b= =1 , h h12 21= - , and g g12 21= - . 
Parameter relations in reciprocal circuits are summa-
rized in Table 24.4. It follows from these relations that in 
a reciprocal circuit, only three of the four circuit param-
eters are independent.

It should be noted that having no dependent sources 
in a two-port circuit is a sufficient condition for reciproc-
ity but not a necessary one. In other words, a circuit that 
does not have dependent sources is reciprocal. But a cir-
cuit can have dependent sources and still be reciprocal, 
depending on the values of circuit parameters, as illus-
trated by Example 24.3. Hence, we define a reciprocal 
circuit as follows:

Definition: A reciprocal circuit is one whose two-port param-
eters satisfy the reciprocity relations (Table 24.4).

24.2.4  Symmetric Circuits

Definition: A reciprocal circuit is symmetric if terminal volt-
ages and currents remain the same when the two ports are 
interchanged.
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V2y11 + y12

y22 + y21

–y12 = –y21I1 I2

(b)

Y2

Y1 Y3

V1 V2
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FIGURE 24.6
π-circuit (a) and its y-parameters (b).

TABLE 24.4

Parameter Relations in Reciprocal Circuits

z z12 21= y y12 21=

Da a a a a= - =11 22 12 21 1 Db b b b b= - =11 22 12 21 1

h h12 21= - g g12 21= -
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To determine the relations between parameters in such 
a circuit, consider, to begin with, the z-parameter equa-
tions. If V1 is interchanged with V2 in these equations 
and I1 is interchanged with I2, the equations become

 V z I z I V z I z I2 11 2 12 1 1 21 2 22 1= + = +and  (24.19)

With z z12 21= , since the circuit is reciprocal, Equations 
24.19 are identical to the original equations if z11 = z22. 
The same considerations apply to the y parameters so 
that the circuit is symmetric if y11 = y22. In a symmetric 
circuit, therefore, only two of the four circuit parameters 
are independent.

The relations between the other two-port parameters 
in a symmetric circuit may be derived by equating z11 = 
z22 or y11 = y22 in Table 24.3. These relations are summa-
rized in Table 24.5.

Exercise 24.5

(a) Verify the relations for the a, b, h, and g parameters 
in Table 24.5. (b) Show that the a and b parameters of a 
symmetric circuit are the same.

Example 24.3: Symmetric Two-Port Circuit

It is required to determine (a) R and α in Figure 24.7 
so that the two-port circuit is symmetric and (b) the a 
parameters by simulation, with R = 3 Ω and α = 0.5.

Solution:

The procedure is to write Kirchhoff’s voltage law (KVL) 
equations for the three meshes and then eliminate I3 so 

as to have two equations of the form of the z-parameter 
equations.

It follows from the figure that

 Mesh :1 1 2 1 3V V RI RI+ = -a  (24.20)

 Mesh :2 0 1 21 2 3= - +( ) + + +( )R I I R I  (24.21)

 Mesh :3 2 1 2 3V I I I= - + +  (24.22)

Eliminating I3 between the last two equations gives

  
V

R
I

R
R

I2 1 2
1

2
1
2

= -
+

+ +
+  

(24.23)

Eliminating I3 by adding the first two equations, mul-
tiplying the third equation by 2, and subtracting,

 V V I I1 2 1 22+ -( ) = -a  (24.24)

Substituting for V2 from Equation 24.23 in Equation 
24.24 and rearranging,
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(24.25)

Equations 24.23 and 24.25 are of the form of the 
z-parameter equations, from which it follows that 

z
a R
R

z
R R
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z
R
R

11 12 21 22
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1
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+
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+
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, , ,
a a

For a circuit to be symmetric, z z11 22=  and z z12 21= . 
Equating z11 and z22 gives α = 1. With this value of a , any 
value of R makes z z12 21= . If R = 3 Ω and α = 0.5, then 
z11 = 0.7 Ω, z12 = 0.2 Ω, z21 = −0.2 Ω, and z22 = 0.8 Ω. The 
circuit is neither symmetric nor reciprocal.

Simulation: The simulation is with the output port 
open-circuited and then short-circuited. The schematic 
for the former case is entered as in Figure 24.8. Although 
a 1 V source may be applied, it is convenient to use a 7 V 
in this case so as to obtain round figures for the voltages 
and currents. When the simulation is run, PSpice gives 

V2 = –2 V and I1 = 10 A. It follows that a11
7
2

3 5= - = - .  

and a21
10
2

5= - = - S.

Figure 24.9 shows the schematic with the output port 
short-circuited by IPRINT2. It is convenient in this case 
to use a source voltage of 21 V so as to obtain round 

TABLE 24.5

Parameter Relations in Symmetric Circuits

z z11 22= y y11 22=
z z12 21= y y12 21=

a a11 22=
Da a a a a= - =11 22 12 21 1

b b11 22=
Db b b b b= - =11 22 12 21 1

Dh h h h h= - =11 22 12 21 1
h h12 21= -

Dg g g g g= - =11 22 12 21 1
g g12 21= -
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Figure for Example 24.3.
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figures for the voltages and currents. When the simula-
tion is run, PSpice gives I1 = 28 A and I2 = 7 A. It follows 

that
 
a12

21
7

3= - = - W
 
and

 
a22

28
7

4= - = - . It is seen that
 

z11
3 5
5

0 7= -
-

=.
. W,

 
z12
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5

0 2=
-( ) -( ) - -( ) -( )
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.
. ,W

 

z21
1
5

0 2=
-

= - . W
 
and

 
z22

4
5

0 8= -
-

= . W, in agreement with 

the previous results.

Primal Exercise 24.6

Determine Rx in Figure 24.10 so that the two-port circuit 
is symmetric.
Ans. 15 Ω.

Exercise 24.7

Verify that the two-port circuit of Figure 24.7 is symmet-
ric if α = 1 and R = 0 or R = ¥. Express Equations 24.20 
through 24.22 in standard three-mesh form for α = 1 and 
arbitrary R, and note that the matrix of coefficients is not 
symmetrical about the diagonal, although z z12 21= .

24.3  Equivalent Circuits

In the z-parameter, y-parameter, h-parameter, and 
g-parameter equations, the first equation expresses an 
input variable in terms of the other input variable and an 
output variable, whereas the second equation expresses 
an output variable in terms of the other output variable 
and an input variable. These two-port equations may 
therefore be represented by an equivalent circuit with 
appropriate dependent sources on the input and output 
sides, as illustrated in Figure 24.11a through d.

The two-port parameters can be readily interpreted in 
terms of these circuits. For example, in the case of the 
z-parameter circuit, if port 2 is open-circuited, the depen-
dent voltage source z12I2 = 0, so that the input impedance 
is z11, and V2 equals the source voltage z21I1. In general, 
the ‘11’ subscript parameter describes an input imped-
ance or admittance when the dependent source on the 
input side is set to zero, which imposes an open circuit 
or a short circuit at the output port. Similarly, the ‘22’ 
subscript parameter describes an output impedance or 
admittance when the dependent source on the output 
side is set to zero, which imposes an open circuit or a 
short circuit at the input port.

The effect of the input on the output side, that is, the 
forward transmission, is expressed by the dependent 
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Figure for Example 24.3.
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Equivalent circuits for z-parameter equations (a), y-parameter equations (b), h-parameter equations (c), and g-parameter equations (d).



Two-Port Circuits 719

source on the output side and its associated ‘21’ sub-
script parameter. On the other hand, the effect of the 
output on the input side, that is, the reverse transmission, 
is expressed by the dependent source on the input side 
and its associated ‘12’ subscript parameter.

The equivalent circuits of Figure 24.11 are of interest 
in that they represent the four possible types of elec-
tronic amplifiers, as represented by the ‘21’ dependent 
sources. Thus, the circuit of Figure 24.11d is that of a 
voltage amplifier of input voltage V1 and open-circuit 
output voltage g21V1, the voltage gain being g21. The 
circuit of Figure 24.11c is that of a current amplifier of 
input current I1 and short-circuit output current h21I1, 
the current gain being h21. The circuit of Figure 24.11b 
is that of a transconductance amplifier of input volt-
age V1 and short-circuit output current y21V1. Finally, 
the circuit of Figure 24.11a is that of a transresistance 
 amplifier of input current I1 and open-circuit output 
voltage z21I1.

As discussed in the preceding section, a reciprocal, 
two-port circuit having a common terminal between 
input and output may be represented by a T-equivalent 
circuit in terms of the z parameters (Figure 24.5b) or 
by a π-equivalent circuit in terms of the y-parameters 
(Figure 24.6b). If the circuit is nonreciprocal, dependent 
sources can be added to these T- and π-circuits to obtain 
the corresponding equivalent circuits, as illustrated by 
Example 24.4.

Example 24.4: T- and π-Equivalent Circuits 
of z- and y-Parameter Equations

It is required to derive the z-parameter and y-parameter 
equations, respectively, of the circuits shown in Figure 
24.12a and b.

Solution:

Considering the circuit of Figure 24.12a, the KVL equa-
tions are

 Mesh 1 11 12 12 11 12: V I I I I I1 1 1 2 1 2= -( ) + +( ) = +z z z z z  
(24.26)

 

Mesh 2 22 12 12

21 12 21 22

:V I I I

I I I

2 2 1 2

1 1 2

= -( ) + +( )

+ -( ) = +

z z z

z z z z  (24.27)

Equations 24.26 and 24.27 are the z-parameter equa-
tions for a two-port circuit in which z12 and z21 need not 
be equal.

Considering the circuit of Figure 24.12b, the node- 
voltage equations are

 Node 1 11 12 12 11 12: I V V V V V1 1 1 2 1 2= +( ) - -( ) = +y y y y y  
(24.28)

 

Node 2 22 12 12 12

21 12 21 22

: I V V

V V V

2 2 1

1 1 2

= ( ) +

+ -( ) = +

+ -y y y y

y y y y  (24.29)

Equations 24.28 and 24.29 are the y-parameter equa-
tions for a two-port circuit in which y12 and y21 need not 
be equal.

Exercise 24.8

Modify the circuits of Figure 24.28 so that the dependent 
sources appear at the input instead of the output.

24.4  Composite Two-Port Circuits

Concept: An important feature of two-port circuit analysis 
is the derivation of the parameters of a composite two-port 
circuit that is a combination of individual two-port circuits.

The individual two-port circuits may be combined 
in one of the five types of connection: cascade, parallel, 
series, series–parallel, or parallel–series.

24.4.1  Cascade Connection

When two or more circuits are cascaded, the output of 
any circuit other than the last is applied as the input 
of the following circuit, as illustrated in Figure 24.13 
for two cascaded two-port circuits N′ and N″. A com-
posite circuit is formed whose input variables are V1 
and I1 and whose output variables are V2 and I2. It 
is desired to express the parameters of the composite 
circuit in terms of the parameters of the individual 
circuits.
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FIGURE 24.12
Figure for Example 24.4.
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In analyzing the cascade connection, it is convenient to 
work with the a-parameter equations because they have 
the input variables on one side of the equation and the 
output variables on the other. One can therefore write
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Because of the cascade connection,
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or
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Matrix multiplication gives

 

a a a a a a a a a a

a a a
11 11 11 12 21 12 11 12 12 22

21 21 1

= ¢ ¢¢ + ¢ ¢¢ = ¢ ¢¢ + ¢ ¢¢

= ¢ ¢¢11 22 21 22 21 12 22 22+ ¢ ¢¢ = ¢ ¢¢ + ¢ ¢¢a a a a a a a  
(24.33)

This result can be generalized to the cascading of m 
two-port circuits:

 a a a am[ ] = [ ][ ] [ ]1 2 ...  (24.34)

where
[a] is the matrix of a parameters of the composite circuit
[ak] is the matrix of a parameters of the kth circuit, 

k = 1, 2, …, m

Example 24.5: Cascaded Two-Port Circuits

In Figure 24.14, vSRC(t) = 10cost V. It is required to deter-
mine vO with iO = 0, given that circuit ‘N’ is symmetric 
and that it gave the following measurements, with port 
2 open-circuited, V2/V1 = 0.2 and V2/I1 = 5 Ω.

Solution:

The procedure is to determine
 
a11

0

=
=

V
V
src

o IO
 
for the com-

posite circuit from the a parameters of the two circuits.
The first circuit, redrawn in the frequency domain 

Figure 24.15, is symmetric also. With I2 = 0, V1 = (2 + 2jω)I1 

and V2 = (1 + jω)I1. It follows that a
j

21
1

2 0

1
1

¢ = =
+=

I
V I2

w
S

 

and that a
j

j
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2 1
1
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+( )
+

=
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V
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2 I2

w
w

. From symmetry,
 

¢ = ¢ =a a22 11 2 and D ¢ = ¢ ¢ - ¢ ¢ = -
¢
+

=a a a a a
a
s

11 22 12 21
124

1
1, which 

gives a j12 3 1¢ = +( )w W.

For circuit N,
 
¢¢ = = =
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0

1
0 2
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and ¢¢ = =
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z11
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V
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5  Ω. From Table 24.2,
 
¢¢ =

¢¢
¢¢

z
a
a

11
11

21
. Hence, ¢¢ =

¢¢
¢¢
= =a

a
z

21
11

11

5
5

1 S.
 

Since the circuit is symmetric, ¢¢ = ¢¢ =a a22 11 5 and D ¢¢= ¢¢ ¢¢ -a a a11 22   
¢¢ ¢¢ = - ¢¢ ´ =a a a12 21 1225 1 1, which gives ¢¢ =a12 24 W. Note that 

the loading effect of circuit ‘N’ due to its finite input 
impedance is automatically taken care of.

From Equation 24.33, a a a a a11 11 11 12 21 2 5= ¢ ¢¢ + ¢ ¢¢ = ´ +  

3 1 1 13 3+( )´ = +j jw w . 
V
V

o

src IO
a j=

°= =
+

=
Ð0 11

1 1
13 3

1
178 13

. 

It follows that v t tO ( ) = -( )0 75 13. cos � V.

Problem-Solving Tip

• The open-circuit transfer function is readily 
determined by deriving a11.
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Cascade connection of two-port circuits.
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A useful special application of Equation 24.34 is in 
deriving the transfer function of ladder circuits of the 
general form shown in Figure 24.16. The idea is to con-
sider each series impedance and each shunt admittance 
as a two-port circuit, derive the a-parameter matrix of 
each element, and then derive the a-parameter matrix 
of the ladder as the product of the matrices of the indi-
vidual elements. The transfer function of the ladder 
network is then the 1/a11 parameter of the composite 
circuit. Example 24.6 illustrates the procedure.

Example 24.6: Transfer Function of Ladder Circuit

It is required to derive the transfer function of a ladder 
circuit as a cascade of two-port circuits.

Solution:

Consider a series impedance element Z in Figure 24.17a. 
The a parameters follow readily. With port 2 open- 

circuited,
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V
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2 I2  
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. With port
 
2 
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The a-parameter matrix is therefore
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1
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(24.35)

For a shunt admittance element Y  (Figure 24.17b), 

when port 2 is open-circuited, a11 1= =
V
V

1

2 2I =0

, and
 

a Y21
0

= =
=

I
V
1

2 I2

.
 

When port 2 is short-circuited, V1 =
 

V2 = 0 and I1 = −I2. It follows that a12 = 0 and a22 = 1. The 
a-parameter matrix is therefore
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(24.36)

Both two-port circuits of Figure 24.17 are symmetric 
so that a a11 22=  and Da = 1.

When elements Z and Y  are cascaded, with Y  follow-
ing Z, the a-parameter matrix becomes
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(24.37)

according to the rules of matrix multiplication. Note 
that the resulting circuit is reciprocal but not symmetric.

As an example, consider the ladder circuit of 
Figure  24.18. The a-parameter matrix of the cascaded 
combination is
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(24.38)

To evaluate this product, we can multiply together the 
first two matrices, the last two matrices, and finally the 
two product matrices. Alternatively, MATLAB may be 
used. Thus,
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(24.40)
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(24.41)

It follows that
 

V
V

2

1
= =

- +
1 1

3 4 411
2a jw w

Problem-Solving Tip

• Matrix multiplication is greatly facilitated using 
MATLAB.

Primal Exercise 24.9

Determine VO in Figure 24.19a and b by considering 
each circuit to be a cascade of two-port circuits.
Ans. (a) 2 V; (b) 4 V.

24.4.2  Parallel Connection

When two-port circuits are connected in parallel or in 
series at their input or output ports, the two-port cir-
cuit equations no longer apply, in general, to the indi-
vidual circuits. Thus, in the case of the two paralleled 
two-port circuits N′ and N″ in Figure 24.20, the currents 
entering and leaving the input and output ports are 
not, in  general, equal. That is, ¢ ¹ ¢ ¢ ¹ ¢ ¢¢ ¹ ¢¢I I I Ia b a b1 1 2 2, , I Ia b1 1 , 
and ¢¢ ¹ ¢¢I Ia b2 2 . This invalidates the two-port circuit equa-
tions, which are based on the assumption of equal-
ity of the currents entering and leaving the input and 
output ports (Figure 24.1). This situation is illustrated 
in Figure  24.21 by two paralleled π-circuits shown 
in thick lines. The circuit can be readily analyzed in 
the conventional manner by noting that correspond-
ing resistances in the two π-circuits are paralleled 
so that the composite circuit reduces to that shown 
in Figure 24.22, where 2‖1 = 2/3 Ω, 2‖3 = 6/5 Ω and 
1‖4 = 4/5 Ω. The current through the 2/3 Ω across the 
10 V source is 15 A, and the current through the three 

series-connected resistors is 10/(2/3 + 6/5 + 4/5) = 
3.75 A. The currents through the individual resistors 
follow from current division, as shown in Figure 24.21. 
It is seen that 12.5 A enter the input port of N′ but 13 
A leave this port, and 0.25 A leave the output port of 
this circuit, but 0.75 A enter this port. Similarly, 6.25 A 
enter the input port of the lower π-circuit, but 5.75 A 
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FIGURE 24.19
Figure for Primal Exercise 24.9.
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leave this port, and 0.25 A enter the output port of this 
circuit, but 0.75 A leave the port.

The port currents for each individual circuit can be 
made equal by connecting a 1:1 ideal transformer at 
either port of either of the two circuits. The ideal trans-
former forces equality between the currents entering 
and leaving the port at which the transformer is con-
nected. The equality of these currents at the other 
port of the same circuit then follows from Kirchhoff’s 
current law (KCL). In Figure 24.23, for example, a 
1:1 ideal transformer is connected at the input port 
of N′. From  KCL, the currents entering and leaving 
the input or output terminals of the transformer are 
equal. With the same current entering and leaving the 
source, it follows from KCL at the source terminals 
that the same current enters and leaves the input port 
of N″. If either N′ or N″ is surrounded by a closed 
surface, it also follows from KCL that the same cur-
rent enters and leaves the output port of N′ or N″. The 
conditions for applying the two-port equations are 
therefore satisfied.

By definition of a parallel connection of two-port cir-
cuits, (1) the input voltage is the same and the output 
voltage is the same, for all the paralleled circuits, and 
(2) the input and output currents of the composite cir-
cuit are the sums of the input and output currents of 
the individual circuits, respectively. The most appropri-
ate two-port equations for describing the composite cir-
cuit are therefore the y-parameter equations, since the 
dependent variables in these equations are the same 
input and output voltages for all the paralleled circuits. 
In the case of the two-port circuits of Figure 24.23, the 
y-parameter equations are
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(24.42)

with V V V1 1 1= ¢ = ¢¢, V V V2 2 2= ¢ = ¢¢, I I I1 1 1= ¢ + ¢¢, and I I I1 2 2= ¢ + ¢¢. 
Substituting these relations in Equation 24.42, it follows 
that

 

I

I

y y y y

y y y y

V

V
1

2

11 11 12 12

21 21 22 22

1

2
=

¢ + ¢¢ ¢ + ¢¢
¢ + ¢¢ ¢ + ¢¢  

(24.43)

It is seen that the corresponding y parameters of the 
individual circuits simply add to give the y parameters 
of the composite circuit. In general,

 y y y yméë ùû = éë ùû + éë ùû + + éë ùû1 2 �  (24.44)

where
[y] is the matrix of y parameters of the composite circuit
[yk] is the matrix of y parameters of the kth circuit, 

k = 1, 2, …, m

With the 1:1 ideal transformer connected, the com-
posite circuit can be analyzed using Equation 24.44. The 
1:1 ideal transformer does not change any of the two-
port parameters of the circuit to which it is connected. 
It follows from applying the definition of the y param-
eters that these parameters for the two π-circuits of 
Figure 24.21 are (Exercise 24.10) as follows:

 

¢ = ¢ = - ¢ = - ¢ =
¢¢ = ¢¢ = -

y y y y

y y
11 12 21 22

11 12

3 2 1 2 1 2 1
2 3 1
/ , / , / ,
/ ,

S S S S
S // , / , /6 1 6 1 221 22S S S¢¢ = - ¢¢ =y y  

Hence, the y parameters of the composite circuit are

 

y y y y y y

y y y
11 11 11 12 12 12

21 21 21

13 6 2 3
2

= ¢ + ¢¢ = = ¢ + ¢¢ = -
= ¢ + ¢¢ = -

/ /
/

S S
33 3 222 22 22S Sy y y= ¢ + ¢¢ = /  

Note that in all cases, y12 = y21 because of reciproc-
ity. Once the y parameters of the composite circuit are 
known, terminal voltages and currents of the com-
posite circuit can be derived for any given conditions. 
For example, if 10  V are applied at the input port 
(Figure  24.21), the open-circuit output voltage is V2 = 
V1/a11 = V1(−y21/y22) = 10 × 4/9 = 40/9 V.

The use of the ideal transformer precludes, of course, 
dc conditions. However, the two-port equations remain 
valid in this case if the paralleled two-port circuits 
are three-terminal, each having a common terminal 
between input and output, with the common terminals 
of all the paralleled circuits connected together. This is 
illustrated in Figure 24.24, which shows two π-circuits, 
as in Figure 24.21, but with the bottom resistor of each 
circuit replaced by a short circuit so as to make the cir-
cuits three-terminal. Applying the same procedure used 
in connection with Figure 24.21, it is seen that any arbi-
trarily assumed value of I1

¢, including 13 A, satisfies KCL 
at any of the six junctions representing the two common 
terminals that are connected together, that is, I1

¢ is inde-
terminate. The reason for this is that the six junctions 
are in reality a single  node. The  currents between the 
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FIGURE 24.23
Ideal transformer added to a parallel connection of two-port circuits.
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junctions are fictitious currents in assumed wiring con-
nections that are short circuits. These currents do not 
flow through any circuit elements and therefore do not 
introduce any voltage drops in the circuit. It follows 
from applying the definition of the y  parameters that 
these parameters for the two π-circuits of Figure 24.24 are 
(Exercise 24.10) as follows:

 

¢ = ¢ = - ¢ = - ¢ =
¢¢ = ¢¢ =

y y y y

y y
11 12 21 22

11 12

3 2 1 2 1 2 3 2
5 6
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Hence, the y parameters of the composite circuit are

 

y y y y y y

y y y
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SS Sy y y22 22 22 25 12= ¢ + ¢¢ = /  

With 10 V applied at the input port (Figure 24.24), the 
open-circuit output voltage is V2 = V1/a11 = V1(−y21/y22) = 
10 × 2/5 = 4 V.

Primal Exercise 24.10

Derive the y parameters for the individual two-port 
 circuits of Figures 24.21 and 24.24.

Exercise 24.11

Verify by PSpice simulation that if a transformer is 
connected to any of the ports of Figure 24.21 and 10 V 
ac is applied at the input port, the output voltage is 
40/9 = 4.44 V.

Exercise 24.12

Argue that in order that the two-port circuit equations 
remain valid when n two-port circuits are paralleled, 
a 1:1 ideal transformer should be connected at the input 
or output of (n − 1) of the circuits.

Example 24.7: Two-Port Circuits 
Connected in Parallel

An application of the paralleling of two three- terminal 
circuits is the notch filter consisting of two paral-
leled T-circuits, as shown in Figure 24.25. These cir-
cuits are also part of the universal filter discussed in 
Section 15.6. It is required to derive the transfer func-
tion of the filter.

Solution:

Consider one of the T-circuits, with its output short- 
circuited (Figure 24.26). It follows from KVL that

 ¢ = ¢ - ¢V RI RI1 1 2 (24.45)

and, from current division, that
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Eliminating I2
¢  between these two equations and sim-

plifying gives
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(24.47)

Eliminating I1
¢ between these Equations 24.45 and 

24.46 and simplifying gives
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Figure for Example 24.7.

FIGURE 24.24
Three-terminal two-port circuits connected in parallel.
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Since the circuit is symmetric, y y11 22¢ = ¢  and y y12 21¢ = ¢ . 
The other T-circuit of Figure 24.25 may be derived from  
Equations 24.47 and 24.48 by replacing R by 1/sC and sC 
by 1/R, which gives
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y
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(24.49)

It follows that the y parameters of the notch filter 
(Figure 24.25) are
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where w0 1= /CR.

The transfer function is H s
V
V

a
y
yI( ) = = = -=

2

1
0 11

21

222  
(Tables 24.2 and 24.3) as follows:

 
H s
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n n
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2 24
w

w w  
(24.52)

From Table 14.3, this is the transfer function of a band-
stop filter having Q = 0.25.

A useful application of paralleling two-port circuits 
is the derivation of the transfer function of a three- 
terminal circuit that is bridged by an admittance 
between the input and output terminals (Figure 24.27). 
The admittance Y is considered a symmetrical two-
port circuit, in the same manner as the series imped-
ance in Figure  24.17a. If V2 = 0, then I1 = −I2 = YV1 

(Figure 24.28). It follows that the y-parameter matrix of 
the admittance Y is
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(24.53)

The y-parameter matrix of the composite circuit is 
then the sum of the matrix of Equation 24.53 and the 
y-matrix of the two-port circuit N′. Once the y param-
eters of the composite circuit are determined, any of the 
terminal conditions for the circuit can be derived using 
Table 24.3.

Primal Exercise 24.13

Derive the y-parameter matrix of Equation 24.53 from 
the a-parameter matrix of the series element of Figure 
24.17a, using the conversion of a to y parameters of 
Table 24.3.

Example 24.8: Bridged Two-Port Circuits

It is required to determine the transfer function V2/V1 of 
the circuit in Figure 24.29.

Solution:

Consider the T-circuit consisting of the two resistors 
and inductor (Figure 24.30). It is seen that V I I1 1 2

¢ = ¢ - ¢ and 
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FIGURE 24.28
Bridging admittance as a two-port circuit.
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¢ = ¢y y11 22 and ¢ = ¢y y12 21. The y-parameter matrix of the 

capacitor is, from Equation 24.53, 
s s

s s

-
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ù

û
ú . It follows 

that
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The transfer function is
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(24.55)

Primal Exercise 24.14

Assume that in Figure 24.27, circuit ¢N  has the following 
z parameters, z11 = 8 Ω, z12 = 3 Ω, z21 = 5 Ω, and z22 = 2 Ω. 
Determine the y parameters of ¢N  when bridged by a 1 H 
inductor.
Ans. y11 = 2 + 1/jω S, y12 = −(3 + 1/jω) S, y21 = −(5 + 1/jω) S, 
and y22 = 8 +1/jω S.

24.4.3  Series Connection

In a series connection (Figure 24.31), (1) the input cur-
rent is the same, and the output current is the same, for 
all the series-connected circuits, and (2) the input and 
output voltages of the composite circuit are the sums of 
the input and output voltages of the individual circuits. 
A 1:1 ideal transformer is connected at the input port of 
N′ so as to equalize the currents entering and leaving 
each port, which validates the use of the two port equa-
tions, as explained in connection with Figure 24.23.

The z-parameter equations are the most appropriate 
in this case, since the dependent variables are the input 
and output currents, which are equal for the series- 
connected circuits. The z-parameter equations are
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(24.56)

For the series connection, V V V1 1 1= ¢+ ², V V V2 2 2= ¢ + ², 
I I I1 1 1= ¢ = ² , and I I I2 2 2= ¢ = ². Substituting in Equation 24.56, 
or using the z-parameter equations,
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V
z z z z

z z z z
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¢ + ¢¢ ¢ + ¢¢  
(24.57)

The corresponding z parameters of the 
 individual  circuits simply add to give the z parameters 
of the  composite  circuit. In general,

 z z z z[ ] = [ ]+ [ ]+ + [ ]1 2 � m  (24.58)

where
[z] is the matrix of z parameters of the composite 

circuit
[zk] is the matrix of z parameters of the kth circuit, 

k = 1, 2, …, m

The 1:1 ideal transformer need not be used with three-
terminal two-port circuits that have their common 
 terminals connected together. Consider the two T-circuits 
of Figure 24.32. It follows from applying the definition 
of the z parameters that these parameters for the two 
T-circuits of Figure 24.32 are (Exercise 24.15) as follows:
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Figure for Example 24.8.
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To connect these circuits in series with their common 
terminals connected together, it is convenient to con-
nect the circuit of Figure 24.32b “upside down,” as in 
Figure 24.33. This reverses the polarities of the current 
and voltage at both ports, as shown, which changes nei-
ther the two-port equations nor the z  parameters. Hence, 
the z parameters of the composite circuit are

 

z z z z z z

z z z z
11 11 11 12 12 12

21 21 21 22

5 2
2

= ¢ + ¢¢ = = ¢ + ¢¢ =
= ¢ + ¢¢ = = ¢

W W
W

;
; zz z22 22 5+ ¢¢ = W 

Note that according to the values of its z param-
eters, the composite circuit is symmetrical, although 
it is not geometrically symmetrical about a vertical 
midline. Note also that the currents in the ‘wiring rect-
angle’ in the center of Figure 24.33 are indeterminate. 
If this rectangle is enclosed by a closed figure, then 
ISh is the same in the two 1 Ω resistors connected to 
this rectangle. KCL at the upper junction is ¢ + ¢ =I I ISh1 2 . 
Substituting ¢ = ¢¢I I1 1  and ¢ = ¢¢I I2 2 gives ¢¢ + ¢¢ =I I ISh1 2 , which 
is KCL at the lower junction. Hence, given ISh, the cur-
rents in the wiring rectangle cannot be uniquely deter-
mined, since KCL at the two nodes does not give two 
independent equations. As pointed out earlier, this 
indeterminacy is because the currents in the rectangle 
are fictitious currents in assumed wiring connections 
that are short circuits, as explained in connection with 
Figure 24.24.

Suppose that the output terminals of the compos-
ite  circuit of Figure 24.33 are short-circuited, and it is 
desired to determine the short circuit current from the 
z parameters when VSRC = 21 V. With V2 = 0, y21 = I2/V1 
(Table 24.2), with y21 = −z21/Δz, where Δz = z11z22 – z12z21. 
Substituting gives I2 = −V1(z21/Δz) = − (21) × 2/(25 − 4) = 
−2 A so that the short-circuit current is 2 A.

This result can be readily checked by conventional 
analysis of the composite circuit. The two subcircuits 
can be combined as in Figure 24.34. The resistance seen 
by the source is 1 + (2‖3) + 2 = 21/5 Ω. The source current 
is 5 A and divides into 2 and 3 A as shown. The short-
circuit current is seen to be 2 A, as obtained earlier.

A useful application of the series connection of two-
port circuits is the derivation of the transfer function of 
a three-terminal circuit having a coupling impedance as 
shown in Figure 24.35. The impedance Z may itself be 
considered a symmetrical three-terminal circuit, as the 
shunt admittance in Figure 24.17b. If I2 = 0, then V1 = 
V2 = ZI1. The z-parameter matrix is
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é

ë
ê

ù

û
ú
 

(24.59)

The z-parameter matrix of the composite circuit is 
then the sum of the matrix of Equation 24.42 and the 
z-parameter matrix of the two-port circuit N′. Once the z 
parameters of the composite circuit are determined, any 
of the terminal conditions for the circuit can be derived 
using Table 24.3.

Primal Exercise 24.15

Derive the z parameters for the two-port circuits of 
Figure 24.32a and b.
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Series connection of the two-port circuits of Figure 24.32.
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Primal Exercise 24.16

Derive the z-parameter matrix of Equation 24.59 from the 
a-parameter matrix of the shunt element of Figure 24.17b, 
using the conversion of a to z parameters of Table 24.3.

Example 24.9: Series Connection of Two-Port Circuits

It is required to derive the z parameters of the circuit of 
Figure 24.36 using Equation 24.58.

Solution:

For the linear transformer having the dot  markings 
shown, the two-port equations are, from KVL 
(Figure 24.37),

 sL I sMI V sMI sL I V1 1 2 1 1 2 2 2+ = + =  (24.60)

It follows that ¢ = ¢ = ¢ =z sL z z sM11 1 12 21,  and ¢ =z sL22 2. 
The z parameters of the composite circuit are then z11 = 
sL1 + 1/sC, z12 = z21 = sM + 1/sC, and z22 = sL2 + 1/sC.

24.4.4  Series–Parallel Connection

In a series–parallel connection, the input ports are con-
nected in series and the output ports are connected 
in parallel, as illustrated in Figure 24.38, where a 1:1 
ideal transformer is connected at the input port of one 
circuit to ensure equality of the current entering or 
leaving any of the ports, as explained previously. The 
h-parameter equations are the most appropriate in this 

case, since the dependent variables are the input cur-
rent and the output voltage, which are equal for the 
series–parallel–connected circuits. The h-parameter 
equations are
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where V V V1 1 1= ¢ + ¢¢, I I I1 1 1= ¢ = ¢¢, V V V2 2 2= ¢ = ¢¢, and I I I2 2 2= ¢ + ¢¢. 
Substituting in Equation 24.59, or using the h-parameter 
equations,
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(24.62)

The corresponding h parameters of the individual 
 circuits simply add to give the h parameters of the 
 composite circuit. In general,

 h h h hm[ ] = [ ]+ [ ]+ + [ ]1 2 �  (24.63)

where
h[ ] is the matrix of h parameters of the composite 

circuit
[hk] is the matrix of h parameters of the kth circuit, 

k = 1, 2, …, m

Suppose next that the three-terminal circuits of 
Figure 24.32 are to be connected in series–parallel, with 
their common terminals joined together. This is shown 
in Figure 24.39, where the circuit of Figure 24.32b is 
drawn “upside down,” as in Figure 24.33. As noted in 
connection with this figure, having the circuit upside 
down does not change the h-parameter equations in 

1/sC

sM

sL1 sL2

FIGURE 24.36
Figure for Example 24.9.
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Ideal transformer added to a series–parallel connection of two-port 
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terms of the current and voltage at the input or output 
port nor does it change the h parameters. It follows from 
applying the definition of the h parameters that these 
parameters for the two T-circuits of Figure 24.32 are 
(Exercise 24.17) as follows:
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The h-parameter equations for the individual circuits 
are still given by Equation 24.61, but the terminal con-
ditions are V V V1 1 1= ¢ + ², I I I1 1 1= ¢ = ², V V V2 2 2= ¢ = - ², and 
I I I2 2 2= ¢ - ². Substituting in Equation 24.61, or using the 
h-parameter equations,
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(24.64)

It follows that
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Note that the currents in the “wiring rectangle” in 
the center of Figure 24.39 are indeterminate. If this rect-
angle is enclosed by a closed figure, then ¢ = ¢¢ +I I ISh Sh 2. 
KCL at the upper node is ¢ + ¢ = ¢I I ISh1 2 . Substituting ¢ = ¢¢I I1 1, 
¢ = + ¢¢I I I2 2 2, and ¢ = ¢¢ +I I ISh Sh 2 gives ¢¢ + ¢¢ = ¢¢I I ISh1 2 , which is 

KCL at the lower junction. Hence, KCL at the two 
junctions does not give two independent equations. 
As in the preceding cases, the currents in the wir-
ing rectangle are not independent and for the same 
reasons.

Suppose that it is desired to determine the open- circuit 
voltage of the composite circuit from the h parameters, 
with VSRC = 21 V. If I2 = 0, V2 = V1/a11 (Table 24.2), or 
V2 = V1(−h21/Δh), where Δh = h11h22 − h12h21 =  7/2. 
Substituting, gives V2 = 21/−21= −1 V.

This result can be checked by conventional analysis 
of the composite circuit. Figure 24.39 can be redrawn 
as a bridge circuit (Figure 24.40). Rac = 3‖2 = 1.2 Ω, Vac = 
21(1.2/(3 + 1.2)) = 6 V; V2 = 6(1/3 − 1/2) = −1 V, as 
obtained earlier.

Primal Exercise 24.17

Derive the h parameters of the two-port circuits of 
Figures 24.39 and 24.40.

24.4.5  Parallel–Series Connection

In a parallel–series connection the input ports are con-
nected in parallel and the output ports are connected 
in series, as illustrated in Figure 24.41, where a 1:1 
ideal transformer is connected at the input port of 
one circuit to ensure equality of the current entering 
or leaving any of the ports, as explained previously. 
The g-parameter equations are the most appropri-
ate in this case, since the dependent variables are the 
input voltage and the output current, which are equal 
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Circuit of Figure 24.39 redrawn as a bridge circuit.
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for the parallel- and series-connected circuits. The 
g- parameter equations are
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(24.65)

where V V V1 1 1= ¢ = ¢¢, I I I1 1 1= ¢ + ¢¢, V V V2 2 2= ¢ + ¢¢, and I I I2 2 2= ¢ = ¢¢.
Substituting in Equation 24.65,
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(24.66)

The corresponding g parameters of the individual 
circuits simply add to give the g parameters of the 
 composite circuit. In general,

 g g g gméë ùû = éë ùû + éë ùû + + éë ùû1 2 �  (24.67)

where
[g] is the matrix of g parameters of the composite 

circuit
[gk] is the matrix of g parameters of the kth circuit, 

k = 1, 2, …, m

Suppose next that the three-terminal circuits of 
Figure 24.32 are to be connected in parallel–series, with 
their common terminals joined together. This is shown 
in Figure 24.42, where the circuit of Figure 24.32b is 
drawn “upside down,” as in Figure 24.39. As noted in 
connection with this figure, having the circuit upside 
down does not change the g-parameter equations in 
terms of the current and voltage at the input or out-
put port nor does it change the g parameters. It follows 
from applying the definition of the g parameters that 

these parameters for the two T-circuits of Figure 24.42 
are (Exercise 24.18) as follows:

 

¢ = ¢ = - ¢ = ¢ =
¢¢ = ¢¢ = -

g g g g

g g
11 12 21 22

11 12

1 2 1 2 1 2 5 2
1 3 1
/ , / , / , /
/ , /

S
S

W
33 1 3 5 321 22, / , /¢¢ = =¢¢g g W 

The g-parameter equations for the individual circuits 
are still given by Equation 24.65, but the terminal con-
ditions are V V V1 1 1= ¢ = - ¢¢, I I I1 1 1= ¢ - ¢¢, V V V2 2 2= ¢ + ¢¢, and 
I I I2 2 2= ¢ = ¢¢. Substituting in Equation 24.65,
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It follows that
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Note that the currents in the “wiring rectangle” in the 
center of Figure 24.42 are indeterminate. If this rectangle 
is enclosed by a closed figure, then ¢ = ¢¢ +I I ISh Sh 1. KCL at 
the upper node is ¢ + ¢ = ¢I I ISh1 2 . Substituting ¢ = + ¢¢I I I1 1 1, 
¢ = ¢¢I I2 2, and ¢ = ¢¢ +I I ISh Sh 1 gives ¢¢ + ¢¢ = ¢¢I I ISh1 2 , which is KCL 

at the lower junction. Hence, KCL at the two junctions 
does not give two independent equations. As in the pre-
ceding cases, the currents in the wiring rectangle are not 
independent and for the same reasons.

Suppose that it is desired to determine the short- circuit 
current of the composite circuit from the g parameters, 
with VSRC = 25 V. If V2 = 0, I2 = V1y21 (Table 24.2), or I2 = 
V1(−g21/g22). Substituting gives I2 = 25(−25) = −1 A so 
that the short-circuit current is 1 A.

This result can be checked by conventional analysis 
of the composite circuit. Figure 24.42 can be redrawn 
as a bridge circuit (Figure 24.43). I2 is determined using 
Thevenin’s equivalent circuit (TEC). On open-circuit, 
VTh = Vdc − Vbc = 25(1/3 − 1/2) = −25/6 V. With the 25 V 
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Parallel–series connection of the two-port circuits of Figure 24.32.
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replaced by a short circuit, RTh = 2 + 1‖1 + 1‖2 + 1 = 25/6. 
It follows  that I2 = (−25/6)/(25/6) = −1 A, so that the 
short-circuit current is 1 A as obtained previously.

Primal Exercise 24.18

Derive the g parameters of the two-port circuits of 
Figures 24.43 and 24.44.

24.5  Analysis of Terminated Two-Port 
Circuits

A terminated two-port circuit has a source of impedance 
Zsrc connected to one port, say port 1, and an imped-
ance ZL connected to the other port, as illustrated in 
Figure  24.44. It is required to analyze this circuit and 
derive the following expressions that are generally of 
interest in describing amplifier circuits:

 1. The input impedance Zin = V1/I1, with ZL con-
nected to port 2

 2. The current gain I2/I1

 3. TEC looking into port 2, where ZTh is the output 
impedance looking into this port

 4. The ratio I2/Vsrc

 5. The voltage gain V2/V1

 6. The voltage gain V2/Vsrc

It is straightforward enough to replace the circuit ‘N’ 
in Figure 24.44 by the equivalent z-parameter circuit 
of Figure 24.11a and to derive the expressions men-
tioned earlier from conventional mesh-current analy-
sis (Exercise 24.19). What we will do instead in this 
section is to derive these expressions using two-port 
relations.

One approach is to consider ‘N’ and ZL as two cas-
caded two-port circuits constituting a composite two-
port circuit ¢N  (Figure 24.45). ‘N’ and ¢N  have the same 
V1, I1, and V2 but different port 2 currents. When ¢ =I2 0, 
the same conditions prevail at port 2 of ¢N  as at the out-
put in Figure 24.44.

The a-parameter matrix of ZL is, from Equation 24.36, 
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To find Zin, we note that
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(Table 24.3). Substituting from Equation 24.69 gives
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To find V2/V1, we note that
 
¢ = ¢ =

a
V
V I

11
1

2 02
. Hence,
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To determine I2/I1, we note that ¢ = ¢ =
a

I
V I
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2 02
. But with 

¢ =I2 0, V2 = −I2ZL. Substituting, we obtain
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(24.72)

To derive TEC looking into port 2 in Figure 24.44, we 
transform Vsrc in series with Zsrc to its equivalent current 
source and consider Zsrc cascaded with ‘N’ to be a new 
two-port circuit ¢¢N  (Figure 24.46). ‘N’ and ¢¢N  have the 
same V1, V2, and I2. However, ¢¢ =I V Zsrc src1 / .

The a-parameter matrix of ¢¢N  is given by
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FIGURE 24.44
Terminated two-port circuit.
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FIGURE 24.45
Terminated two-port circuit as a two-port circuit cascaded with load 
impedance.
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Now
 
¢¢ =
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I
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2
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and
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I2 = 0. Substituting,
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To find ZTh, we note that Z z
V
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a
a
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(Table 24.3). Hence,
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Finally, to derive I2/Vsrc and V2/Vsrc, we make use 
of the fact that the source sees an input impedance Zin 
at the input of the two-port circuit ‘N’ in Figure 24.44. 

This gives
 

I
V Z Zsrc src in

1 1=
+

. Substituting for I2/I1 from 

Equation 24.72 and for Zin from Equation 24.70,

 

I
V Z Z a Z a
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src g in L

src L L

2

21 22

21 22 11 12

1

1
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(24.76)

From Figure 24.46,
 
V
V Z Zsrc src in

1 1
1

=
+ /

. Substituting 

for V2/V1 from Equation 24.71 and for Zin from 
Equation 24.70,
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21 22 11
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(24.77)

Alternatively, since V2 = −ZLI2, Equation 24.77 follows 
directly from Equation 24.76.

To express items 1–6 earlier in terms of parameters 
other than a parameters, we substitute in the expres-
sions derived earlier for the a parameters in terms of 
any other set of parameters. The resulting expressions 
are listed in Table 24.6.

Exercise 24.19

Derive the expressions for items 1–6 listed at the 
beginning of the section directly in terms of the z 
parameters by using the equivalent circuit of Figure 
24.11a for N in Figure 24.44 and solving the two 
mesh-current equations. Verify your results against 
Table 24.6.

Example 24.10: Analysis of Terminated 
Two-Port Circuit

In the circuit of Figure 24.47, ‘N’ has the following h 

parameters:
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j
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1 w
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h
j

22
1

1
=

+ w
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It is required to find VO if v tSRC = 10cos V.

Solution:

From Table 24.6, 
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Substituting
 
w = 1 rad/s,
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FIGURE 24.46
Terminated two-port circuit as a two-port circuit cascaded with source 
impedance.
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TABLE 24.6

Circuit Relations of Terminated Two-Port Circuits

Quantity Expression

z Parameters y Parameters
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Learning Checklist: What Should 
Be Learned from This Chapter

• A two-port circuit may be specified in terms of 
one of six sets of two simultaneous equations, each 
of which involves four parameters. In general, 
these parameters are nonzero and independent.

• The matrices of the z and y parameters are 
inversely related, as are the matrices of the a 
and b parameters and the matrices of the h and 
g parameters.

• The parameters of the two-port circuit equa-
tions can be interpreted in terms of voltage 
and current ratios under specified open-circuit 
and short-circuit terminations, and any one set 
of parameters can be expressed in terms of the 
other sets of parameters.

• In a reciprocal two-port circuit, z12 = z21 and 
y12  = y21, with corresponding relations for the 
other sets of parameters.

 1. A reciprocal circuit is specified in general by 
three independent, nonzero parameters.

 2. A circuit that does not have dependent 
sources is reciprocal. But a circuit can have 
dependent sources and still be reciprocal.

• A reciprocal circuit is symmetric if terminal 
voltages and currents remain the same when 
the two ports are interchanged.

 1. In a symmetric circuit and in addition to the 
reciprocity relations, z12 = z22 and y11 = y22, 
with corresponding relations for the other 
sets of parameters.

 2. A symmetric circuit is specified in general 
by two independent, nonzero parameters.

• The z-parameter, y-parameter, h-parameter, and 
g-parameter equations may be represented in 
terms of equivalent circuits in which forward and 
reverse transmissions are described by depen-
dent sources on the output and input sides.

• Two-port circuits may be connected in cascade, 
in parallel, in series, in series–parallel, and in 
parallel–series. The matrix of parameters of the 
two-port composite circuit is a simple combina-
tion of the matrices of parameters of the indi-
vidual circuits.

• Except in the cascade connection, the two-port 
circuit equations are no longer valid, in general, 
in the case of the four other composite connec-
tions, because of inequality of currents entering 
and leaving input or output ports. Equality of 
these currents can be forced by connecting a 1:1 

ideal transformer at the input or output port of 
either of the two circuits.

• The two-port circuits remain valid in the case 
of the connections other than the cascade, if the 
two-port circuits are three-terminal, with their 
common terminals  connected together.

• A two-port circuit that is terminated by source 
and load impedances can be analyzed by con-
sidering the two-port circuit proper to be cas-
caded with the load impedance, when looking 
into port 1, and to be cascaded with the source 
impedance when looking into port 2.

Problem-Solving Tips

 1. The open-circuit transfer function is readily 
determined by deriving a11.

 2. Matrix multiplication is greatly facilitated using 
MATLAB.

Problems

Verify solutions by PSpice simulation.

Two-Port Circuit Parameters and Equations

P24.1 Determine the z parameters of the two-port circuit of 
Figure P24.1.

 Ans. z11 = z22 = 6 Ω, z12 = z21 = 2 Ω.

P24.2 Determine h22 for the circuit in Figure P24.2.

 Ans. 30 mS.
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P24.3 Derive the z parameters of the linear transformer of 
Figure P24.3. Which set of two-port equations does not 
exist when the coupling is perfect?

 Ans. z11 = sL1, z12 = z21 = sM, z22 = sL2, y-parameter 
equations.

P24.4 (a) Determine the z parameters and y parameters of 
the circuit in Figure P24.4 from the definition of these 
parameters. (b) Compare the y-parameter equations 
with the node-voltage equations. (c) Verify that the z 
and y matrices are the inverse of one another.

 Ans. (a) z11 1 51= / W, z12 1 51= / W, z21 99 51= - / W, 
z22 1 17= / W, y11 = 1.5 S, y12 = −0.5 S, y21 = 49.5 S, and 
y22 = 0.5 S.

P24.5 (a) Determine the h parameters and g parameters of 
the circuit in Figure P24.4 from the definition of these 
parameters. (b) Verify that the h- and g-parameter 
matrices are the inverse of one another.

 Ans. (a) h11 = 2/3 Ω, h12 = 1/3, h21 = 33, h22 = 17 S, 
g11 = 51 S, g12 = −1, g21 = −99, g22 = 2 Ω.

P24.6 (a) Determine the a parameters and b parameters of 
the circuit in Figure P24.4 from the definition of these 
parameters. (b) Verify that the a- and b-parameter 
matrices are the inverse of one another.

 Ans. (a) a11 = −1/99, a12 = −2/99 Ω, a21 = −17/33 S, 
a22 = −1/33, b11 = 3, b12 = 2 Ω, b21 = 52 S, b22 = 1.

P24.7 (a) Determine the z parameters and y parameters of the 
circuit shown in Figure P24.7 from the direct definition 
of these parameters. (b) Verify that the z and y matrices 
are the inverse of one another.

 Ans. (a) z11 = 1 Ω, z12 = 1 Ω, z21 = −0.5 Ω, z22 = 0.5 Ω, 
y11 = 0.5 S, y12 = −1 S, y21 = 0.5 S, y22 = 1 S.

P24.8 (a) Determine the h parameters and g parameters of 
the circuit in Figure P24.7 from the definition of these 
parameters. (b) Verify that the h- and g-parameter 
matrices are the inverse of one another.

 Ans. (a) h11 = 2 Ω, h12 = 2, h21 = 1, h22 = 2 S, g11 = 1 S, 
g12 = −1, g21 = −0.5, g22 = 1 Ω.

P24.9 (a) Determine the a parameters and b parameters of 
the circuit in Figure P24.7 from the definition of these 
parameters. (b) Verify that the a- and b-parameter 
matrices are the inverse of one another.

 Ans. (a) a11 = −2, a12 = −2 Ω, a21 = −2 S, a22 = −1, b11 = 0.5, 
b12 = 1 Ω, b21 = 1 S, b22 = 1.

P24.10 Determine the h parameters of circuit in Figure P24.10, 
assuming ω = 1 rad/s.

 Ans. h11 = 2(3 – j)/5 Ω, h12 = (2 + j)/5, h21 = –j, h22 = (1 + j) S.

P24.11 (a) Determine the z parameters and y parameters 
of the circuit shown in Figure P24.11 from the direct 
definition of these parameters, assuming ω = 1 rad/s. 
(b) Verify that the z- and y-parameter matrices are the 
inverse of one another.

 Ans. (a) z11 = j Ω, z12 = j2 Ω, z21 = j2 Ω, z22 = 0; (b) y11 = 0, 
y12 = −j/2 S, y21 = −j/2 S, y22 = −j/4 S.

P24.12 (a) Determine the h parameters and g parameters of 
the circuit in Figure P24.11 from the definition of these 
parameters. (b) Verify that the h- and g-parameter 
matrices are the inverse of one another.

 Ans. (a) h11 = ∞, h12 = ∞, h21 = ∞, h22 = ∞, g11 = j S, 
g12 = 2, g21 = −2, g22 = j4 Ω.

P24.13 (a) Determine the a parameters and b parameters of 
the circuit in Figure P24.11 from the definition of these 
parameters. (b) Verify that the a- and b-parameter 
matrices are the inverse of one another.

 Ans. (a) a11 = −1/2, a12 = −j2 Ω, a21 = −j/2 S, a22 = 0; 
(b) b11 = 0, b12 = −j2 Ω, b21 = −j/2 S, b22 = −1/2.

P24.14 (a) Determine the z parameters and y parameters 
of the circuit shown in Figure P24.14 from the direct 
definition of these parameters, assuming ω = 1 rad/s. 
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(b) Verify that the z- and y-parameter matrices are the 
inverse of one another.

 Ans. (a) z11 = (−2 + j3)/(1 + j6) Ω, z12 = z21 = j2/(1 + j6) Ω, 
z22 = j6/(1 + j6) Ω; (b) y11 = −j3 S, y12 = y21 = j2 S, and 
y22 = (1 – j3/2) S.

P24.15 (a) Determine the h parameters and g parameters of 
the circuit in Figure P24.14 from the definition of these 
parameters. (b) Verify that the h- and g-parameter 
matrices are the inverse of one another.

 Ans. (a) h11 = jω/3 Ω, h12 = 2/3, h21 = −2/3, h22 = (1 – j/6ω) S,  
g11 = (1 + j6ω)/(−2ω2 + j3ω) S, g12 = −4/(3 + j2ω),  
g21 = 4/(3 + j2ω), g22 = j2ω/(3 + j2ω) Ω.

P24.16 (a) Determine the a parameters and b parameters of 
the circuit in Figure P24.14 from the definition of these 
parameters. (b) Verify that the a- and b-parameter 
matrices are the inverse of one another.

 Ans. (a) a11 = (3 + j2)/4, a12 = j/2 Ω, a21 = (1 + j6)/j4 S, 
a22 = 3/2. b11 = 3/2, b12 = j/2 Ω, b21 = (1 + j6)/j4 S, 
b22 = (3 + j2)/4.

P24.17 Determine the z parameters of the circuit in Figure P24.17. 
Verify by considering the circuit as a series connection of 
two three-terminal circuits across the dotted line.

 Ans. z11= 2(s + 1/s) Ω = z22; z21= (s + 1/s) = z12 Ω.

P24.18 Determine the y parameters of the circuit in Figure 
P24.18. Verify by considering the circuit as a series 
 connection of two three-terminal circuits.

 Ans. y11 = 1 S = y22, y12 = 1/(1 + s) S = y21.

P24.19  Determine the z parameters of the circuit in Figure P24.19. 
Verify by considering the circuit as a cascade connection 
of two three-terminal circuits at the dotted line.
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P24.20 Determine the z parameters of the circuit in Figure 
P24.20. Verify by considering it as a cascade of three-
terminal circuits.
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P24.21 Determine the y parameters of the circuit in Figure 
P24.21. Verify by considering the circuit as a parallel 
connection of two three-terminal circuits.
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P24.22 Determine the z parameters of the circuit in Figure 
P24.22.

 Ans. z11 = 2 + j10 Ω, z12 = 1 – j Ω = z21, z22 = 2(1 + j) Ω.

P24.23 V2 = 5 V when the output terminals in Figure P24.23 are 
open-circuited, and Io = 1 A when these terminals are 
short-circuited. In both cases, Ii = 1A. Determine y22.

 Ans. y22 = 0.2 S.
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P24.24 The two two-port circuits shown in Figure P24.24 are 
identical and have z11 = z22 = 2 Ω, and z12 = z21 = 1 Ω. If 
Vo = ρIsrc + αVsrc, determine ρ and α.

 Ans. ρ = 1/4 Ω, ρ = 1/4.

P24.25 The b parameters of the two-port circuit N in Figure 
P24.25 are b11 = 1, b12 = 4s Ω, b21 = 1/s S, and b22 = 6. 
Determine vO(t).

 Ans. vO(t) = sint V

P24.26 A two-port circuit is described by its g parameters 
as g11 = (1 − j) S, g12 = (−1 − j), g21 = (1 + j), and g22 = 
(1 + j) Ω. Determine the complex power delivered by 
the source, assuming the output is short-circuited and 
VSRC = 2∠45° V rms is applied to the input terminals.

 Ans. 8 W.

P24.27 Determine the open-circuit voltage at the output port 
in Problem P24.26.

 Ans. 2 2 90Ð � V.

P24.28 (a) Determine the short-circuit current, from terminal 
2 to terminal 2', in Problem P24.26 from the definitions 
of the two-port parameters; (b) verify the value of this 
current from the output impedance and the open- 
circuit voltage of P24.27.

 Ans. (a) 2∠45° A; (b) output impedance = (1 + j) Ω.

P24.29 (a) Reflect the circuit on the primary (source) side to 
the secondary (load) side in Figure P24.29 and deter-
mine the z parameters of the two-port circuit between 
the source and the load; (b) determine ZL for maximum 
power transfer to ZL and calculate this power.

 Ans. (a) z12 = z21 = −j9 Ω, and z11 = z22 = 9(1 − j) Ω; 
(b) ZLm = 13.5 + j4.5 Ω, 2.08 W.

Reciprocal and Symmetric Circuits

P24.30 Determine z11/z22 for the circuit in Figure P24.30.

 Ans. 1.

P24.31 Determine K so that the circuit in Figure P24.31 is 
symmetric.

 Ans. K = 0.

P24.32 Determine K so that the circuit in Figure P24.32 is 
reciprocal.

 Ans. K = 1.
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P24.33 A symmetric two-port circuit has an open-circuit input 
impedance of (1 − j) Ω, and an open-circuit transfer 
impedance, that is V2/I1, of 1 Ω. Determine the load cur-
rent if a load impedance of j Ω is connected to one port 
and a 10∠0° V source is connected to the other port.

 Ans. j10 A.

P24.34 Given that the two-port circuit of Figure P24.34 is sym-
metric, with y11 = 2/s S and y12 = 1/s S, determine the 
input admittance I1/V1 when a load of 3/s S is con-
nected at the output.

 Ans. 9/5.

P24.35 The two-port circuit in Figure P24.35 is described in 
the s-domain by the equations I1 = 2sV1 − sV2 and I2 = 
−sV1 + 2sV2. (a) Show that the two-port circuit is sym-
metric and (b) determine the transfer function H(s) = 
Vo/Vsrc.

 
Ans.

 
H s

V
V ssrc

( ) = =
+

o 1
5 1

.

P24.36 Determine the z parameters of the lattice circuit in 
Figure P24.36, assuming ω = 100 rad/s.

 
Ans. z z j11 22

5
2

1= = +( ) W and
 
z z j12 21

5
2

1= = - +( ) W.

P24.37 (a) Redraw the circuit of Figure P24.36 as a bridge. 
Note that the symmetry of the circuit is more clearly 
shown in the lattice configuration than in the bridge 
configuration; (b) derive the a and b parameters of 
the circuit; (c) derive the a parameters of two iden-
tical, cascaded circuits; (d) if 1∠0° V is applied at 
the input of the composite circuit, determine the 
input current and the output voltage with the output 
open-circuited.

 Ans. (b) The a-parameter matrix and the b-parameter 

matrix is - -( )
- +( ) -

é

ë
ê
ê

ù

û
ú
ú

j j

j j

5 1
1 5/

; (c) the a-parameter matrix

 

of the composite circuit is 
- - +( )

- +( ) -

é

ë
ê
ê

ù

û
ú
ú

3 10 1
2 1 5 3

j

j /
; 

(d) - Ð
1
3

0°V;
 
2 2
15

45Ð- °A.

P24.38 A symmetric circuit N having b11 = 1/2 and b12 = 2 Ω is 
cascaded with the circuit of Figure P24.36. Determine 
V2/V1, where V1 is the input to circuit N and V2 is the 
open-circuit output of the circuit of Figure P24.36.

 
Ans.

 

V
V

2

1

10
97

4 9= - +( )j .

1 µH 1 µH

1 µF1 µF
10
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P24.39 Consider the filter circuit shown in Figure P24.39 as 
three elements in cascade, (a) determine the a param-
eters of each of these elements and the a parameters 
of the given filter and (b) derive the transfer function 
Isc/V1, where Isc is the short-circuit current that flows 
from terminal 2 to terminal 2′.

 

Ans. (a)

 

a a a
s

a
s s

s s

1 3 2
1 0 5
0 1

1 0
4 1

2 1 1
4 2 1

[ ] = [ ] = é
ë
ê

ù

û
ú [ ] = é

ë
ê

ù

û
ú

[ ] = + +
+

é

.
, ,

ëë
ê

ù

û
ú ( )

+
; .b

1
1s

P24.40 Determine the z parameters of the circuit in Figure 
P24.40, assuming ω = 103 rad/s.

 Ans. z z
j

z z
j

11 22 12 22
11 3

13

2 3

13
= =

+
= =

-( )
k kW W; .

P24.41 A symmetric circuit ‘N’ having z11 = (1 + j) kΩ and 
z12 = (1 − j) kΩ is paralleled with the circuit of Figure 
P24.40. Determine  Zin with the output terminals open 
circuited, Zout = ZTh, and V2/V1.

 
Ans.

 
Z j Z jin out= + = +

46
65

21
130

90
137

42
137

k kW W, ,
  

V
V

2

1
0 46 41 8= Ð- °. . .

P24.42 A two-port resistive, symmetric circuit connected 
between a source and an 8 Ω load gave the measure-
ments indicated in Figure P24.42. Determine the a 
parameters of the circuit.

 Ans. a11 = a22 = 2, a12 3=  Ω, and a21 = 1 S.

P24.43 Derive the delta–star transformation by determining 
the z parameters of a two-port circuit consisting of 
three impedances connected as a π-circuit, as in Figure 
P24.43. Deduce the values of the T-equivalent circuit 
from Figure 24.12a, assuming a reciprocal circuit.

P24.44 Derive the star–delta transformation by determining 
the y parameters of a two-port circuit consisting of 
three impedances connected as a T-circuit, as in Figure 
P24.44. Deduce the values of the delta equivalent cir-
cuit from Figure 24.12b, assuming a reciprocal circuit.

Two-Port Circuit Analysis

P24.45 Derive TEC seen by the load in Figure P24.45 and 
determine the steady-state load voltage, assuming 

v t tSRC ( ) = 10 1000cos V .

 Ans. v t ZTh Th= +( ) = Ð °°9 97 1000 4 29 605 0 83 8. cos . , . . ,V W   
v t t2 1 6 1000 70 4( ) = - °( ). cos . V.

P24.46 A two-port circuit has the following g parameters: 
g j11 1= - S, g j12 2 2= - + , g j21 = -2 2, and g j22 4 4= + W. 
It is connected at port 2 to a resistive load of 50 Ω 
and at port 1 to a source having an open-circuit volt-
age v t tSRC ( ) = 20cos  V and zero source resistance. 
Determine the real power delivered by the source to 
the two-port circuit and to the load.

 Ans. 197.8 W, 27.3 W.

4 F

+

–
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21

2
0.5 0.5
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0.5 H

1 H 1 H

1 k

FIGURE P24.40 

N

10 A

–
+

+

–

8 VVsrc
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P24.47 Determine the load impedance in the preceding 
 problem for maximum power transfer to the load and 
calculate this power.

 Ans. 4 – j4 Ω, 100 W.

P24.48 An amplifier has the following y parameters: y11 = 
1 mS, y12 = –2 μS, y21 = 100 mS, and y22 = 50 μS. The 
amplifier is connected to a source of 10 mV rms open-
circuit voltage and 10 kΩ source impedance. Determine 
the load resistance for maximum power transfer to the 
load and calculate this power.

 Ans. 8.9 μW.

P24.49 A two-stage amplifier is shown in Figure P24.49. The 
y parameters of the two stages are as follows:

 Stage 1: y11 = 1 mS, y12 = –2 μS, y21 = 500 mS, y22 = 0.1 μS.
 Stage 2: y11 = 5 mS, y12 = –1 μS, y21 = 100 mS, y22 = 0.4 μS.

 Determine the input impedances Zin1 and Zin2 and the 
overall voltage gain VL/VSRC.

 Ans. Zin1 = 0.841 kΩ, Zin2 = 0.196 kΩ, VL/VSRC = 8446.

P24.50 Determine RL in Figure P24.49 for maximum power 
transfer.

 Ans. 3 kΩ.

P24.51 If the two-port circuit N in Figure P24.51 is described 

by its y parameters, show that
 
V
V

2

1

= -
+
y

y sC
21

22
. If the 

circuit is described by its h parameters, show that 
V
I
2

1

= -
+
h

h sC
21

22

. Obtain the input impedance by divid-

ing the latter expression by the former and express the 
result in terms of (a) the y parameters and (b) the h 
parameters. Verify by comparing with Table 24.6.

P24.52 If the two-port circuit N in Figure P24.52 is described 

by its g parameters, show that 
V
V

2

1

=
+
sL

g sL
g

22
21. If 

the circuit is described by its z parameters, show 

that 
V
I
2

1

=
+
sL

z sL
z

22
21. Obtain the input impedance 

by dividing the latter expression by the former and 
express the result in terms of (a) the g parameters 
and (b) the z parameters. Verify by comparing with 
Table 24.6.

P24.53 Determine Zin, ZTh, and the steady-state value of v2 in 
Figure P24.53, assuming vSRC(t) = 20cos1000t V.

 Ans. Zin = 14.38 – j0.0156 Ω, Zout = 260 Ω, v2(t) = 
12.9cos(1000t + 0.24°) V.

P24.54 Derive TEC seen by the load at terminals 2 and 3 in 
Figure P24.54 using the b parameters of the three- 
terminal circuit between the voltage source and the load, 
and determine v2, assuming v t tSRC ( ) = 20 1000cos V.

 Ans. VTh = 0, ZTh = 20 – j10 Ω, V2 = 0.

P24.55 Derive TEC seen by the load at terminals 2 and 3 in 
Figure P24.55 using the g parameters of the three- 
terminal circuit between the current source and the 
load, assuming vSRC = 10cos1000t V. Determine v2.

 Ans. VTh = −10.181 + j0.533 V, ZTh = 1.043 − j0.0546 Ω, 
v2(t) = 9.23cos(1000t + 177.3°) V.

P24.56 Determine VO/VSRC in the circuit of Figure P24.56, 
where s = jω and ω = 1 rad/s.

 Ans. VO/VSRC = 0.0068 − j0.0653.

P24.57 Determine the 3 dB frequency of the response VO/VSRC 
in the circuit of Figure P24.57.

 Ans. 911 krad/s
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P24.58 Determine the 3 dB frequency of the response VO/VSRC 
in the circuit of Figure P24.58.

 Ans. 2 krad/s

P24.59 Two three-terminal circuits are connected in series–
parallel to a load of 5 Ω and to a voltage source hav-
ing a source resistance 2 Ω and an open-circuit voltage 
VSRC. The h parameters of the two circuits are

 Circuit 1: h h j h h j11 12 21 222 2 2= = - +( ) = - =W, , , S
 Circuit 2: h h j h j h j11 12 21 224 1 2= = - = +( ) =W, , , S

 Determine the input impedance of the combination, 
the output impedance, and the voltage gain VO/VSRC, 
where VO is the load voltage.

 Ans. Zin = 5.204 + j1.947 Ω, Zout = −0.3529 − j0.5882 Ω, 
VO/VSRC = −0.480 − j0.445.

P24.60 Two three-terminal circuits connected in  parallel–
series as in Figure 24.42, to a load of 5 Ω and to a 
current source having a source resistance 2 Ω and a 
short-circuit current ISRC. The g parameters of the two 
circuits are

 Circuit 1: g g j g j g11 12 21 221 2 2= = = =S ,, , W
 Circuit 2: g j g j g j g j11 12 21 222 2= = - +( ) = =S ,, , W

 Determine the input impedance of the combination, 
the output impedance, and the gain VO/VSRC, where 
VO is the load voltage.

 Ans. Zin = 0.390 − j0.459 Ω, Zout = 2.615 + j2.923 Ω, 
VO/VSRC = 0.131 + j0.146.

P24.61 Perform the analysis of Section 24.5 using h param-
eters. Consider Zsrc to add to h11 and YL to add to h22.

P24.62 Perform the analysis of Section 24.5 using y parameters. 
Consider YL to add to h22 and transform the voltage 
source of impedance Zsrc to an equivalent current source.

P24.63 Perform the analysis of Section 24.5 using g param-
eters. Consider ZL to add to g22 and transform the 
 voltage source of impedance Zsrc to an equivalent 
 current source.

Probing Further

P24.64 Show that the input and output impedances of a 
 terminated circuit (Figure 24.44) may be expressed as 

follows:
 

IM
IM

IM
IM

in
L

out
src

= -
+

= -
+

l l l
l

l l l
l11

12 21

22
22

12 21

11
, ,

 
where IMin, IMout, IML, and IMsrc are, respectively, 
the input, output, load, and source immittances 
(i.e., impedances or admittances), and the ¢l s may be z, 
y, h, or g parameters. The units of l11 and l22 just after 
the equality sign determine whether the expression is 
an impedance or admittance, and the units of l11 and 
l22 in the denominators determine whether a load or 
source impedance or admittance is to be used.

P24.65 Consider the circuit shown in Figure P24.65. When 
the input impedance equals the source resistance and 
the output impedance equals the load resistance, the 
circuit is said to be image-terminated. Note that under 
these conditions, maximum power is transferred to 
the load. The expressions for Zin and ZTh (Table 24.6) 

show that in an image-terminated circuit, 
R
R

z
z

S

L
= 11

22
.
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Substituting back in the expressions for Zin and ZTh 
shows that R z y a a a aS = =11 11 11 12 21 22/ /  and that 

R z y a a a aL = =22 22 12 22 11 21/ / .

P24.66 Consider an image-terminated circuit (Figure 
P24.65). The image transmission constant is defined 

as
 
g a b= + =

¢
j

1
2

ln
V I
V I

1 1

2 2

, where ¢ = -I I2 2 is the cur-

rent flowing out of port 2. Show that if the circuit 

is reciprocal,
 

tanh ,g = = =
1 1

11 11 22 22

12 21

11 22z y z y
a a
a a

sinhg = a a12 21 , and coshg = a a11 22 . Note that 

a =
1
2

ln
P
P
i

L
, where Pi is the power delivered to the two-

port circuit and PL is the power delivered to the load. 

Also
 
b = Ð( ) -Ð ¢( )éë ùû

1
2

V I V I1 1 2 2 .

P24.67 Show that if n image-terminated circuits are cascaded, 
the overall γ is the sum of the individual γ’s, and that if 
the image-terminated circuit is reciprocal, γ is the same 
if the input and output are interchanged.

P24.68 Show that if an image-terminated circuit is symmet-

ric,
 
R

a
a

RS L= =12

21
,
 
g a b= + = =

¢
j ln ln

V
V

I
I

1

2S

1

2S  
so that 

a = =
¢

ln ln
V
V

I
I

1

2S

1

2S  
and b = Ð -ÐV V1 2S, where the s 

subscript refers to the output of a symmetric circuit. 
A nonsymmetric circuit N can be made symmet-
ric by inserting a transformer of turns ratio R RL S/  
between the output and load, as shown in Figure 
P24.68. Deduce that even in a nonsymmetric circuit N, 
b = Ð -Ð =Ð -Ð ¢V V I I1 2 1 2.
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Objective and Overview

Modern electric power systems are gigantic networks 
that connect numerous power stations to a multitude 
of load centers dispersed over a wide geographical area 
that may span several neighboring countries. These 
networks incorporate sophisticated communications 
and control systems that are used to optimize the per-
formance of the network. Three-phase systems are 
almost universally used for the generation, transmis-
sion, and distribution of electrical energy because of the 
many advantages they offer compared to single-phase 
 systems. Practical three-phase systems are nominally 
balanced under normal operating conditions, that is, 
their voltages and currents possess a certain symmetry.

The chapter presents the fundamentals of balanced 
three-phase systems, starting with the two basic con-
nections of these systems, namely, Y and Δ, and their 
characteristic features. This is followed by explaining 
the basic approach in analyzing balanced three-phase 
 systems by transforming the Δ connection to Y and 
deriving an equivalent single-phase system. Because 
three-phase systems are primarily power systems, 
power  relations in these systems are then discussed, 
including  instantaneous and complex power, power 
measurement, and power  factor correction. The chapter 
ends with  highlighting the  advantages of three-phase 
systems and considering the overall structure of power 
systems.

25.1  Three-Phase Variables

Consider the set ya, yb, and yc representing either voltages 
or currents that vary sinusoidally with time as follows:

 y t Y ta m( ) = +( )cos w q  (25.1)

 y t Y tb m( ) = + - °( )cos w q 120  (25.2)

 y t Y tmc ( ) = + + °( )cos w q 120  (25.3)

ya, yb, and yc are described as balanced three-phase vari-
ables, because of two distinguishing characteristics: they 
all have the same amplitude Ym, and their phase angles 

differ by 120°, or 1/3 of the full angle of 360°. By extension, 
the set ya, yb, …, yn represents balanced n-phase variables 
if all these variables have the same amplitude and their 
phase angles differ by 360°/n. If either condition is not 
satisfied, the variables are no longer balanced. Systems 
having n > 2 are described as polyphase systems.

Three-phase systems are by far the most important 
polyphase systems in practice. The basic three-phase 
system consists of a three-phase generator, represented 
by three sources, each having a source impedance, con-
nected to a three-phase load. The generator and load 
may be connected in Y or Δ, which gives rise to four 
possibilities, illustrated in Figure 25.1a to d. The source 
voltages are three phase, in accordance with Equations 
25.1 to 25.3, and the impedances of the three sources are 
assumed to be equal.

The common node of the Y connection is the neutral. 
Each connection between the generator and the load 
(aA, bB, or cC) in Figure 25.1a to d is a line. In power 
systems, the lines are often referred to as feeders. A line 
has a certain impedance, which in particular cases may 
be neglected. The line impedances are denoted by ZaA, 
ZbB, and ZcC in Figure 25.1a to d. The current that flows 
in a given line is a line current. The voltage between any 
two lines, whether at the generator end or the load end, 
is a line voltage.

The generator or load branches that are connected in 
Y or Δ are the phases. In Figure 25.1a to d, each phase of 
the generator consists of an ideal voltage source in series 
with a source impedance. In the simplest cases, the 
source impedances can be neglected. The phases of the 
load are the impedances ZA, ZB, and ZC. These may be 
single-phase loads such as lamps or heaters, connected 
in Y or Δ, or they may be an inherently three-phase load, 
such as a three-phase motor. A phase voltage and a 
phase current are associated with each phase.

A three-phase system is balanced if all of the following 
conditions are satisfied:

 1. The generator voltages are balanced, in accor-
dance with Equations 25.1 to 25.3:

 v t V tga gm v( ) = +( )cos w q  (25.4)

 v t V tgb gm v( ) = + - °( )cos w q 120  (25.5)

 v t V tgc gm v( ) = + + °( )cos w q 120  (25.6)

25
Balanced Three-Phase Systems
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 2. Phase impedances are equal, both for the gen-
erator and the load:

 Z Z Z Z Z Za b c A B C= = = =and  (25.7)

 3. Line impedances are equal:

 Z Z ZaA bB cC= =  (25.8)

Under these conditions, each of the sets of phase volt-
ages, phase currents, line voltages, and line currents is a 
balanced set.

The three-phase systems illustrated in Figure 25.1a 
to d are three-wire systems because three lines con-
nect the generator to the load. With both the generator 
and load connected in Y, the two neutral points may 
be connected together, resulting in a four-wire system 
(Figure 25.2).

25.1.1  Sum of Balanced Variables

An important characteristic of balanced voltages or 
 currents is the following:

Concept: The sum of a set of balanced voltages or currents 
is zero.

Although this is true of any number of phases, we will 
illustrate it for the three-phase case. Thus, if ya, yb, and yc 
are a balanced set given by Equations 25.1 to 25.3, their 
sum is zero:

 y y ya b c+ + = 0 (25.9)

Equation 25.9 can be proven in a number of ways. As 
phasors (Figure 25.3a), Ya = Ð °Ym 0 , Yb = Ð- °Ym 120 , and 
Yc = Ð °Ym 120  can be added by laying them end to end. 
Because their magnitudes are equal and their phase 
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FIGURE 25.1
Δ and Y connections of three-phase systems. (a) Y-connected three-phase generator and Δ-connected load, (b) Δ-connected three-phase genera-
tor and Y-connected load, (c) Δ-connected three-phase generator and load, and (d) Y-connected three-phase generator and load.
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angles differ by 120°, they form an equilateral triangle 
(Figure 25.3b). Since this is a closed figure,

 Y Y Ya b c+ + = 0 (25.10)

Alternatively, we may add any two phasors and show 
that the sum is the negative of the third phasor. For 
example, if we add Yb and Yc in Figure 25.3c using the 
parallelogram construction, the resultant is −Ya.

In the time domain, adding yb and yc in Equations 25.2 
and 25.3 gives Ymcos(ωt  +  θ – 120°)  +  Ymcos(ωt  +  θ  + 
120°) = 2Ymcos(ωt + θ) × cos120° = −Ymcos(ωt + θ) = −ya. 

Figure 25.4 illustrates the time variation of ya, yb, and 
yc. At any instant of time, such as t1 or t2, the sum of ya, 
yb, and yc is zero. At t2, for example, if ya represents cur-
rent flowing toward a load, then the total current flow-
ing away from the load, (yb + yc), is equal and opposite. 
A useful way of looking at this is to consider that at any 
instant, such as t2, two line conductors are acting as the 
return line of the third conductor or, alternatively, one 
conductor is acting as the return line for the other two.

25.1.2  Phase Sequence

In Equations 25.1 through 25.3, yb lags ya by 120° and 
yc lags yb by 120°, since cos(ωt + θ + 120°) = cos(ωt + θ – 
240°), or yc leads ya by 120°. The phase sequence is ‘abc’ 
and is a positive phase sequence. If the phase angles of 
yb and yc are interchanged,

 y t Y tb m( ) = + + °( )cos w q 120  (25.11)

 y t Y tc m( ) = + - °( )cos w q 120  (25.12)

then yc lags ya by 120° and yb leads ya by 120°. The phase 
sequence is now ‘acb’ and is a negative phase sequence.

The phasors in Figure 25.3a have a positive phase 
sequence. If we move around the origin in the clockwise 
direction, the order in which the phasors are encoun-
tered is the phase sequence, which is ‘abc’ for a positive 
sequence.

In a negative phase sequence, phasors Yb and Yc are 
interchanged, but the same interpretations apply. The 
phase sequence is now the order in which the phases are 
encountered in going clockwise around the origin, so 
that the phase sequence is ‘acbacb’, or ‘cba’, the reverse 
of ‘abc’.

In practice, the phase sequence is reversed by inter-
changing any two line connections to a three-phase 
load. Assuming a positive phase sequence ‘abc’ in 
Figure 25.5a, the load, whose terminals are ‘A’, ‘B’, and 
‘C’, sees the same phase sequence ‘abc’. In Figure 25.5b, 
the same load connected to the same supply sees a 
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negative phase sequence ‘acb’. If the load is a lighting 
or heating load, changing the phase sequence is gener-
ally of no consequence. However, if the load incorpo-
rates a three-phase motor, reversing the phase sequence 
reverses the direction of rotation of the motor. Although 
this provides a convenient way for reversing the direc-
tion of rotation of an ac motor, it may have disastrous 
mechanical consequences on loads already connected 
to the motor, such as compressors or machine tools. 
Moreover, it is common practice in medium and large 
three-phase power systems to have two or more three-
phase generators connected in parallel, in which case 
they must have the same phase sequence.

Unless explicitly stated otherwise, a positive phase 
sequence is assumed in the rest of the chapter.

Primal Exercise 25.1

Given a set of balanced six-phase voltages of 10 V ampli-
tude, in which one of these voltages, say that of phase 1, 
has a phase angle of 10°. Express the phase voltages in 
the time domain, with respect to phase 1, assuming the 
phase sequence is (a) positive and (b) negative.

Ans. (a) v t t1 10 10( )= + °( )cos w V, v t t2 10 50( )= - °( )cos w V, 
v t t3 10 110( ) = - °( )cos w V, v t t4 10 170( ) = - °( )cos w V, 
v t t5 10 130( )= + °( )cos w V, and v t t6 10 70( ) = + °( )cos w V;
(b) v t t1 10 10( ) = + °( )cos w V, v t t2 10 70( ) = + °( )cos w V, 
v t t3 10 130( ) = + °( )cos w V, v t t4 10 170( ) = - °( )cos w V, 
v t t5 10 110( ) = - °( )cos w V, and v t t6 10 50( ) = - °( )cos w V.

Primal Exercise 25.2

According to the definition of a polyphase system, 
a balanced two-phase system would be defined as 
y t Y ta m( ) = +( )cos w q  and y t Y tb m( ) = + - °( )cos w q 180 . 
However, a two-phase system is conventionally defined 

as y t Y ta m( ) = +( )cos w q  and y t Y tb m( ) = + ± °( )cos .w q 90  
Assume that in the two-phase system shown in Figure 
25.6, v t ta ( ) = 10cosw V and v t tb ( ) = - °( )10 90cos w V. 
Determine (a) ia(t); (b) ib(t); (c) vab(t); and (d) ia(t) + ib(t).

Ans. (a) i t ta ( ) = - °( )10 90cos w A; (b) i t tb ( ) = 10cosw A; 

(c) v t tab ( ) = + °( )10 2 45cos w V; (d) i t i ta b( ) + ( ) = 

10 2 45cos wt - °( ) A.

25.2  The Balanced Y Connection

25.2.1  Voltage Relations

Figure 25.7 shows a basic, four-wire Y–Y configuration 
for a balanced three-phase system, where Vga = Ð °Vg 0 , 
Vgb = Ð- °Vg 120 , and Vgc = Ð °Vg 120  and the phase 
impedances ZY are all equal.

It follows from KVL that the phase load voltages are 
equal to the corresponding source voltages:

 V V V V V Vga A gb B gc C= = =, ,  (25.13)
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The line voltages at the load and generator are of 
course equal, since the line impedances are assumed to 
be zero. From KVL,

 V V V V V V V V Vab ga gb bc gb gc ca gc ga= - = - = -, ,  
(25.14)

Figure 25.8a shows the phasors of the three phase 
voltages, of phase sequence abc, and the three line volt-
ages derived from Equations 25.14. The line voltages 
are shown as position phasors drawn from the origin in 
Figure 25.8b.

Triangle ‘anb’ is isosceles having the two sides ‘na’ and 
‘nb’ equal to Vg and acute angles of 30°. It follows that 
Vab = Ð °3 30Vg ; Vbc lags Vab by 120°, so that its phase 
angle is −90°; Vca lags Vab by 120°, which makes its phase 
angle −210°, or +150° (Figure 25.8b). Thus,

 V V Vab bc ca= Ð ° = Ð- ° = Ð °3 30 3 90 3 150V V Vg g g, ,  
(25.15)

Summary: In a balanced Y connection, the line voltages are 
balanced three-phase voltages whose magnitude is 3  times 
that of the phase voltage and whose phase angle leads by 30° 
the phase voltage designated by the first subscript of the line 
voltage, where the assigned positive polarity of the line voltage 
is a voltage drop from the node designated by the first sub-
script to the node designated by the second subscript.

Thus, Vab, for example, is 3Vg and leads the phase 
 voltage VA, or Vga, by 30°.

25.2.2  Current Relations

It follows from KCL in Figure 25.7 that the phase cur-
rents are the same as the line currents. Moreover, each 

of the phase currents is equal to the corresponding 
phase voltage of the generator or the load divided by 
ZY = |ZY|∠θ:

 
I I I

V
a aA A

A= = = =
Ð °
Ð

= Ð-
Z

V
Z

V
Z

g g

Y Y Y

0
q

q
 

(25.16)
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(25.17)
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(25.18)

It follows from Equations 25.16 to 25.18 that the line 
currents IaA, IbB, and IcC form a balanced three-phase set, 
which means that their sum is zero:

 I I IaA bB cC+ + = 0 (25.19)

However, if the generator is enclosed by a surface S, 
it follows from KCL, as discussed in connection with 
Figure 2.19, that IaA + IbB + IcC + InN = 0. Substituting in 
Equation 25.19 gives InN = 0. In other words, the current 
in the neutral conductor is zero, so that this conductor 
can be removed without affecting the voltages or cur-
rents in the rest of the system. Moreover, if the neutral 
node ‘n’ on the generator side is grounded, neutral node 
‘N’ on the load side will also be at zero voltage.

Summary: In a balanced Y–Y connection, the line currents are 
balanced three-phase currents that are equal to the phase cur-
rents. The neutral conductor does not carry any current. It may 
be removed, leaving the two neutral nodes at the same voltage.

In practice, the neutral conductor carries some current 
due to any imbalance in the load, or due to a third-
harmonic current  (see Problem P25.14).

25.2.3  Power Relations

Let the rms value of the phase voltage at the load in 
Figure 25.7 be denoted by Vϕrms and the rms value of the 
phase current by Iϕrms in the direction of a voltage drop 
Vϕrms. The real power per phase is P V If = ´f frms rmscos .q  
The total real power in the three phases of the load is 
PT = 3Pϕ. If Vlrms and Ilrms are the rms values of the line 
voltage and the line current, respectively, then
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I V IT = ´ = =3 3

3
3f frms rms

lrms
lrms lrms lrmscos cos cosq q q

 
(25.20)

where the substitutions Ilrms  =  Iϕrms and V Vlrms rms= 3 f  
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The reactive power per phase is Q V If f f= ´rms rmssinq . 
The total reactive power in the three phases of the load 
is QT = 3Qϕ, which may be written as

 Q V I
V

I V IT = ´ = =3 3
3

3f frms rms
lrms

lrms lrms lrmssin sin sinq q q  
(25.21)

The complex power is given by

 ST = + = ÐP jQ V IT T 3 lrms lrms q  (25.22)

The power factor angle of the balanced three-phase 
load is tan /- =1Q PT T q , the same as the phase angle of 
the load impedance. It follows that the power factor of 
the balanced three-phase load is the cosine of the phase 
angle of the load impedance.

Example 25.1: Phase Voltages and 
Currents in a Y-Connected Generator

A balanced three-phase load absorbs 72 kW at 0.8 p.f. lag-
ging and is connected to a balanced, Y-connected, three-
phase generator, the rms value of the line current being 
100 A, the line impedances being negligible. Determine 
the phase voltages and phase currents of the generator.

Solution:

From Equation 25.20, 72 000 3 100 0 8, .= ´ ´ ´Vlrms . This 
gives Vl Vrms = 900 3/ . The magnitude of the generator 

phase voltage is V Vfrms lrms= =1
3

300 V.

Since no information is given regarding phase angles, 
we can consider the phase voltage Vga to have a zero 
phase angle. Then,

 V V Vga gb gc= Ð ° = Ð- ° = Ð °300 0 300 120 300 120V V V, ,  

all being rms values.
From Equations 25.15, the line voltages are

 
V V Vab bc ca= Ð ° = Ð- ° = Ð °900

3
30

900
3

90
900

3
150V V V, ,

 

all being rms values.
The phase currents of the generator are the same as the 

corresponding line currents, whose magnitude is 100 A. 
To determine the phase angles, we note that the gener-
ator must deliver the same power as that absorbed by 
the load, that is, 72 kW at 0.8 p.f., or 24 kW per phase at 
0.8 p.f. Consider phase ‘a’ of the generator; the power 
relation is 24,000  =  300  ×  100  ×  cos θ, so cos θ  =  0.8, or 
θ = 36.9°. It follows, since the power factor is lagging, that

 

I I
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q q

q
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, ,

 

Alternatively, we may assume that the load is Y con-
nected, in which case the load phase voltages are the 
same as the generator phase voltages, the load phase 
currents are equal to the generator phase currents 
( Figure  25.7), and the load phase currents lag the cor-
responding phase voltages by θ. The relations derived 
earlier for the generator phase currents then follow.

Problem-Solving Tips

• When determining voltages or currents in a 
 balanced, three-phase system, it is only necessary 
to evaluate the voltage or current for one phase 
or line. The remaining three-phase voltages and 
currents then follow from the fact that balanced 
three-phase voltages and currents have the same 
magnitude but with 120° phase difference between 
successive phases.

• In a Y connection, if the line voltages are known 
the phase voltages readily follow, since the phase 
voltage designated by the first subscript of the line 
voltage lags the line voltage by 30° and has 1 3/  of 
its magnitude.

Primal Exercise 25.3

Assume that Van = Ð °240 0 V for the generator in 
Example 25.1 and that the load is Y connected and of 
impedance 3  +  j4 Ω per phase. Determine (a) the line 
voltages and (b) the line currents, assuming a positive 
phase sequence.

Ans. (a) Vab = Ð °416 30 V, Vbc = Ð- °416 90 V, Vca = 
416 150Ð °V; (b) IaA = Ð- °48 53 1. A, IbB = Ð- °48 173 1. A, 
IcC = Ð °48 66 9. A.

Primal Exercise 25.4

Assume that Van = Ð °400 0 V rms in Primal Exercise 
25.3 and that the complex power absorbed by the load 
is 4 + j3 kVA. Determine (a) the power factor of the load, 
(b)  IaA , and (c) the phase impedance of a Y-connected 
load.
Ans. (a) 0.8; (b) 4.17 A rms; (c) 96 36 9Ð °. W.

Exercise 25.5

Determine the line voltages in Figure 25.7, assuming 
Vga = Vg∠0° and a negative phase sequence.

Ans. Vab = Ð- °3 30Vg , Vca= Ð- °3 150Vg , Vbc = Ð °3 90Vg .
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Exercise 25.6

Repeat Exercise 25.3 assuming a negative phase sequence.
Ans. (a) Vab = Ð- °416 30 V, Vca = Ð- °416 150 V, Vbc = 
416 90Ð ° V; (b) IaA = Ð- °48 53 1. A, IcC = Ð- °48 173 1. A, 
IbB = Ð °48 66 9. A.

25.3  The Balanced Δ Connection

25.3.1  Voltage Relations

Consider a balanced Δ-connected load, where IA = Ð °Im 0 , 
IB = Ð- °Im 120 , and IC = Ð °Im 120  (Figure 25.9), and the 
phase angle of IA is considered to be zero for conve-
nience. The phase voltages of the load are the same as 
the corresponding line voltages at the generator and at 
the load:

 V V V V V VAB ab BC bc CA ca= = =, ,  (25.23)

25.3.2  Current Relations

Given the phase currents, the line currents may be 
obtained from KCL at nodes ‘A’, ‘B’, and ‘C’:

 I I I I I I I I IaA A C bB B A cC C B= - = - = -, ,  (25.24)

Figure 25.10a shows the phasors of the three-phase 
currents, of phase sequence ‘abc’, and the phasors of the 
three line currents satisfying Equations 25.24. Following 
an argument similar to that used in connection with 
Figure 25.8, it is seen that

 I I IaA bB cC= Ð- ° = Ð- ° = Ð °3 30 3 150 3 90I I Im m m, ,  
(25.25)

Summary: In a balanced Δ connection, the line voltages are 
equal to the phase voltages. The line currents are balanced 

three-phase currents that have 3  times the magnitude of the 
phase currents. The line current lags by 30° the phase cur-
rent designated by either subscript of the line current, where 
the assigned positive direction of line current is from the node 
denoted by the first subscript toward the node designated by 
the second subscript.

25.3.3  Power Relations

Consider the load in Figure 25.9. If Z ZD = ÐD q , the 
phase currents are related to the corresponding phase 
voltages as follows, assuming the voltage in phase ‘A’ 
to be zero:
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Let the rms value of the phase voltage be Vϕrms and the 
rms value of the phase current be Iϕrms. The real power 
per phase is Pϕ = Vϕrms × Iϕrmscosθ. The total real power 
in the three phases of the load is PT = 3Pϕ, which may be 
written as
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3
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(25.29) 

where Vlrms  =  Vϕrms and I Ilrms rms= 3 f . Comparing 
Equations 25.20 and 25.29, the expression for the total 
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real power is the same in both cases. Following  the 
same argument as in the case of the Y connection, the 
total reactive power and complex power are given by 
Equations 25.21 and 25.22, respectively. The power fac-
tor of the load is again the same as that of the phase 
impedance.

Summary: For both balanced Y and Δ connections:

 

Real power 3 rms line voltage rms line current

p f of load ph

= ´( )´( )

´ . . aase( )  

 

Reactive power 3 rms line voltage

rms line current reactive

= ´( )

´ ( )´ ffactor of load phase( ) 

 

Apparent power 3 rms line voltage

rms line current

= ´( )

´( )  

Example 25.2: Phase Currents in a Δ-Connected Load

Assume that the load in Example 25.1 is Δ connected 
(Figure 25.9). Determine the load phase currents.

Solution:

The phase currents have a magnitude of 100 3/ A rms. 
According to Equations 25.25, the line currents lag the 
corresponding phase currents by 30°, or the phase cur-
rents lead the corresponding line currents by 30°. Hence, 
using the same phase angles of the line currents as in 
Example 25.1:
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all being rms values.

Problem-Solving Tip

• In a Δ connection, if the line currents are known, 
the phase currents readily follow, since the phase 
current designated by the first subscript of the line 
current leads the line current by 30° and has 1 3/  
of its magnitude.

Primal Exercise 25.7

Assume that IaA = Ð °17 3 0. A in Figure 25.9 and that the 
load is Δ connected, the impedance per phase being 
3 +  j4 Ω. Determine (a) the phase currents and (b) the 
line voltages, assuming a positive phase sequence.

Ans. (a) IA = Ð °10 30 A, IB = Ð- °10 90 A, IC = Ð °10 150 A;
(b) VAB = Ð °50 83 1. V, VBC = Ð- °50 36 9. V, VCA = 50 
Ð- °156 9. V.

Primal Exercise 25.8

Assume that in Figure 25.9, the load absorbs 9  kW at 
a lagging power factor of 0.8. If VAB = Ð °100 60 V rms, 
determine (a) IaA and (b) the complex power delivered by 
the source assuming the line impedance is 0.1 + j0.5 Ω.

Ans. (a) 65 0 6 9. .Ð- ° A rms; (b) 10.3 + j13.1 kVA.

Exercise 25.9

Determine the line currents in Figure 25.9, assuming a 
negative phase sequence.

Ans. IaA = Ð °3 30Im , IcC = Ð- °3 90Im , IbB = Ð °3 150Im .

Exercise 25.10

Repeat Exercise 25.7 assuming a negative phase 
sequence.

Ans. (a) IA = Ð- °10 30 A, IC = Ð- °10 150 A, IB = Ð °10 90 A.

25.4  Analysis of Balanced 
Three-Phase Systems

Three-phase systems, balanced or unbalanced, may be 
analyzed using the general methods discussed in pre-
vious chapters. The mesh-current method is advan-
tageous since a three-wire Y–Y system has only two 
meshes, a Δ–Δ system four meshes. However, it is gen-
erally  simpler to analyze balanced, three-phase systems 
by reducing them to a single-phase equivalent circuit 
based on a Y–Y representation.

25.4.1  Y–Y System

A balanced Y–Y system is shown in Figure 25.11a. 
Since  nodes ‘n’ and ‘N’ are at the same voltage, 
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as  explained in connection with Figure 25.7, KVL 
around loop ‘naAN’ gives

 Z Z Zg l+ +( ) =Y I VaA ga  (25.30)

Equation 25.30 also applies to the circuit shown in 
Figure 25.11b, which is the single-phase equivalent cir-
cuit for phase ‘a’. Once IaA is determined from Equation 
25.30, the phase voltages Van and VAN are readily 
obtained as

 V V I V Ian ga aA AN aA= - =Z Zg , Y  (25.31)

Since all phase variables in a balanced three-phase 
system are balanced sets, then once IaA, Van, and VAN are 
determined, the corresponding variables for the other 
two phases immediately follow; they have the same 
magnitude but are phase shifted by 120°. The line volt-
ages are obtained as discussed in Section 25.2.

Example 25.3: Analysis of Balanced Y–Y System

It is required to analyze the balanced Y–Y system 
shown in Figure 25.11a given that Vga = Ð °120 0 V, 
Vgb = Ð- °120 120 V, Vgc = Ð °120 120 V, all rms values, 
Zg = 1 Ω, Zl = j2 Ω, and the load phase impedance con-
sists of a resistance of 10 Ω in parallel with a capacitive 
reactance of −j10 Ω.

Solution:

The single-phase equivalent circuit is shown in 
Figure 25.12. The load impedance ZY is the parallel com-
bination of 10 Ω and −j10 Ω:
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A rms. It follows 
that

 IaA = + = Ð °16 8 17 9 26 6j . . A rms 

 IbB = Ð °- °( ) = Ð- °17 9 26 6 120 17 9 93 4. . . . A rms 

 IcC = Ð - °- °( ) = Ð °17 9 93 4 120 17 9 146 6. . . . A rms 
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 Vca = Ð - °- °( ) = Ð °180 7 94 4 120 180 7 145 6. . . . V rms 
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 VBN = Ð - °- °( ) = Ð- °126 5 18 4 120 126 5 138 4. . . . V rms 

 VCN = Ð - °- °( ) = Ð °126 5 138 4 120 126 5 101 6. . . . V rms 

 V VAB AN= = Ð °°3 219 1 11 630e j . . V rms 

 VBC = Ð °- °( ) = Ð- °219 1 11 6 120 219 1 108 4. . . . V rms 

 VCA = Ð - °- °( ) = Ð °219 1 108 4 120 219 1 131 6. . . . V rms 

Problem-Solving Tip

• The equivalent single-phase equivalent circuit 
provides a convenient means of analyzing Y–Y-
connected, balanced, three-phase systems.

25.4.2  Δ–Δ System

When the generator, load, or both are Δ connected, the 
procedure is to transform the system to a Y–Y system, 
which is analyzed as discussed previously. Any desired 
phase current of the Δ-connected load can then be 
derived.

A balanced Δ–Δ system is shown in Figure 25.13a. 
The Δ-connected load may be readily transformed to 
an equivalent Y simply by substituting Z ZY = D/3. To 
t ransform the Δ-connected generator to its equivalent Y, 
we have to derive its TEC, which can be done from equiv-
alence between every two of the three terminals ‘abc’ 
under two sets of conditions: (1) the same open-circuit 
line voltages (Figure 25.13b) and (2) the same equiva-
lent impedance with the ideal voltage sources set to 
zero (Figure 25.13c). The latter condition is the usual Y 
equivalent of Δ-connected impedances, which is a set 

of impedances Z Zg gY = /3. To satisfy the first condition, 
we have to determine IΔ, the current that circulates in the 
Δ under open-circuit conditions. From Figure 25.13b,

 
I V V Vga gb gcDD = + +( )1

3Zg  
(25.32)

The numerator is the sum of balanced three-phase 
voltages, which is zero. Hence, IΔ = 0. It follows that the 
line voltages under open-circuit conditions are equal to 
the phase voltages:

 V V V V V Vaboc ga bcoc gb caoc gc= = =, ,  (25.33)

From Equations 25.15, the corresponding Y generator 
phase voltages are 1 3/  times the magnitude and lag the 
line voltages by 30°. Thus,

 
V

V
V

V
V

V
gaY

ga
gbY

gb
gcY

gc= = =- - -

3 3 3
30 30 30e e ej j j� � �

, ,
 

(25.34)

The equivalent Y connection will then have in each 
phase the corresponding voltage source in series with 
ZgY, as illustrated in Figure 25.14. Clearly, this Y connec-
tion satisfies the required conditions: under open cir-
cuit, the line voltages Vab, Vbc, and Vca are the same as in 
Figure 25.13b; if the sources are set to zero in both cases, 
the resulting Y and Δ are equivalent, since Z Zg gY = /3. 
The system of Figure 25.14 can now be analyzed as was 
done for the system of Figure 25.11a. Once the line cur-
rents are found, the phase currents can be determined, 
as illustrated by the following example.
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FIGURE 25.13
Thevenin’s equivalent circuit of Δ–Δ connection. (a) Δ-connected three-phase generator and load, (b) the Δ-connected three-phase generator 
under open-circuit conditions, and (c) the Δ-connected three-phase generator with the ideal voltage source elements set to zero.
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Example 25.4: Analysis of Balanced Δ–Δ System

It is required to analyze the balanced Δ–Δ system 
shown in Figure 25.13a, where VgaDD = Ð °190 120 V, 
VgbDD = Ð °190 0 V, VgcDD = Ð- °190 120 V, all rms values, 
ZgΔ  =  1.5  +  j1.5 Ω, Zl  =  0.5  +  j0.5, and the load phase 
impedance ZΔ consists of a 12 Ω resistance in parallel 
with a capacitive reactance of −12 Ω.

Solution:

Considering the load first, the phase impedance is 

Z
j

j
jD =

-( )
-

= = Ð- °
12 12
12 12

6 6 6 2 45– W. The equivalent Y 

has a phase impedance of Z jY = = Ð- °2 2 2 2 45– W.

As for the generator, the equivalent Y has a phase 
impedance ZgY = 0.5 + j0.5 Ω. The ideal voltage sources 
are (Equation 25.34)

 
VgaY = Ð °- °( ) = Ð °190

3
120 30 110 90 V rms

 

 
VgbY = Ð °- °( ) = Ð- °190

3
0 30 110 30 V rms

 

 
VgcY = Ð - °- °( ) = Ð- °190

3
120 30 110 150 V rms

 

This resulting Y-Y system is shown in Figure 25.15a. 
The relationships between the voltage sources in the 
given Δ and the equivalent Y are shown in Figure 
25.15b. Note the correspondence between the phasors 
in Figure 25.15b and the way the Δ and Y are drawn in 
Figures 25.13a and 25.15a.

The equivalent single-phase diagram for phase 
‘a’ is shown in Figure 25.15c. The total impedance 
is (0.5 + 0.5 + 2) +  j(0.5 + 0.5 – 2) =  (3 – j) Ω. The line 
currents are

 
IaA =

Ð °
-

= Ð °
Ð- °

= Ð °110 90
3

110 90
10 18 4

34 8 108 4
j .

. . A rms
 

 IbB = Ð °- °( ) = Ð- °34 8 108 4 120 34 8 11 6. . . . A rms 

 IcC = Ð - °- °( ) = Ð- °34 8 11 6 120 34 8 131 6. . . . A rms 

From Equations 25.25, the phase currents of the load are
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I
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aA= Ð °+ °( ) = Ð °
3

108 4 30 20 1 138 4. . . A rms
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bBI= Ð - °+ °( ) = Ð °
3

11 6 30 20 1 18 4. . . A rms
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3
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FIGURE 25.14
Y–Y connection equivalent to Δ–Δ connection.
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With the assignment of positive directions of phase 
currents in the generator and load as in Figure 25.13a, 
the corresponding phase currents are equivalent, since 
for the load I I IaA A C= - , for example, whereas for the 
generator I I IaA a c= - . It follows that I Ia A= , I Ib B= , and 
I Ic C= .

The line voltages at the load are

 VAB = = Ð- °´ Ð °= Ð °ZDIA 6 2 45 20 1 138 4 170 4 93 4. . . . Vrms 

 VBC = Ð °- °( ) = Ð- °170 5 93 4 120 170 4 26 6. . . . V rms 

 VCA = Ð - °- °( ) = Ð- °170 5 26 6 120 170 4 146 6. . . . V rms 

From Figure 25.15c, the phase voltage is Van = -( )´2 5 1 5. .j  
IaA = Ð- °´ Ð ° = Ð °2 92 31 34 8 108 4 101 4 77 4. . . . . V rms, con-
sidering the voltage drop from node ‘a’ to node ‘N’ through 
node ‘A’. It follows from Equations 25.15 that

 V Vab an= = Ð °
°

3 175 7 107 430e j . . V rms 

 Vbc = Ð °- °( ) = Ð- °176 107 4 120 175 7 12 6. . . V rms 

 Vca = Ð - °- °( ) = Ð- °176 12 6 120 175 7 132 6. . . V rms 

Problem-Solving Tip

• The single-phase equivalent circuit provides a 
 convenient means of analyzing Δ–Δ-connected, 
balanced, three-phase systems.

Primal Exercise 25.11

Consider the balanced Δ–Δ system of Figure 25.16. (a) 
Determine the load phase currents IAB, IBC, and ICA from 
the corresponding line voltages and the load impedance 
per phase; (b) determine the line currents IaA, IbB, and IcC 
from the phase currents and by using the single-phase 
equivalent circuit.

Ans. (a) IAB = Ð- °100 22 6. A, IBC = Ð- °100 142 6. A, ICA = 
100 97 4Ð °. A; (b) IaA = Ð- °100 3 52 6. A, IbB = Ð100 3  
- °172 6. A, IcC = Ð °100 3 67 4. A.

Primal Exercise 25.12

Determine IaA in Figure 25.16 if each line has an imped-
ance of (2 + j2) Ω.

Ans. 163.3∠−53.96° A.

Example 25.5: Analysis of Balanced Y–Δ System

It is required to determine (a) IaA, (b) ICA, and (c) VAB 
in  the balanced three-phase system of Figure 25.17, 
assuming the frequency is 50 Hz.

Solution:
Z j j jY = + ´( ) = + ´ = +10 0 12 3 10 100 0 04 10 12 57w p. / . . W . 
The single-phase equivalent circuit is shown in 
Figure 25.18. It follows that
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FIGURE 25.16
Figure for Primal Exercise 25.11.
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 (b) I I I IAB aA CA AB= Ð °= Ð- ° = Ð °1
3

30 3 457 18 8 120. . ;A
 

= Ð °3 457 101 2. . A.

 (c) ZΔ = 3(10 + j12.57) Ω = 48.18∠51.49° Ω; 
VAB = IABZΔ = 166.6∠32.69° V.

Simulation: The schematic is shown in Figure 25.19. 
Two IPRINT printers are used to indicate the line cur-
rent IaA and the phase current ICA. A VPRINT printer is 
used to indicate the voltage VAB. After the simulation 
is run, the following values are read from the output 
file: IaA = Ð- °5 988 48 8. . A, ICA = Ð °3 457 101 2. . A, and 
VAB = Ð °166 6 32 69. . V.

Exercise 25.13

Determine the reading of the ideal voltmeter in Figure 
25.20 if the line voltage is 220 V.
Ans. 190.5 V.

25.5  Power in Balanced Three-Phase Systems

25.5.1  Instantaneous Power

Consider, for the sake of argument, a balanced, 
Y-connected load (Figure 25.21). If the instantaneous 
phase voltages are denoted by v V tA = 2 frmscosw , vB =  

2 120V tf -rmscos w °( ), and v V tC = + °( )2 120frmscos ,w  
the instantaneous phase, or line, currents lag the cor-
responding phase voltages by the phase angle θ of ZY, 

assuming the load is inductive. The instantaneous 
power in each of the three phases is

 

p t V I t t

V I t

A ( ) = -( )
= -( ) +é

2

2

f f

f f

rms rms

rms rms

cos cos

cos cos

w w q

w q qëë ùû (25.35)

 

p t V I t t

V I

B ( ) = - °( ) - ° -( )
=

2 120 120

2

f f

f f

rms rms

rms rms

cos cos

cos

w w q

ww q qt -( ) + °éë ùû +{ }120 cos  (25.36)

 

p t V I t t

V I

C ( ) = + °( ) + °( )
=

2 120 120

2

f f

f f

-rms rms

rms rms

cos cos

cos

w w q

ww q qt – cos( ) - °éë ùû +{ }120  (25.37)

In each phase, the instantaneous power has a steady 
component and an alternating component, just as in 
the single-phase case. The difference, however, is that 
the alternating components in the three phases form a 
 balanced set. So when pA, pB, and pC are added to obtain 
the total power pT delivered through the lines, the 
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alternating components sum to zero, whereas the steady 
components add to give

 P V I V IT = =3 3f frms rms lrms lrmscos cosq q  (25.38)

where
Ilrms = Iϕrms is the rms value of the line current
Vlrms is the rms of the line voltage

The total instantaneous power is thus equal to the 
expression for the real power derived earlier for the Y 
and Δ connections.

Concept: The total instantaneous power delivered to the 
 balanced three-phase load is steady with respect to time; it is 
not pulsating as in the single-phase case.

It is important to be clear about power relations in a 
three-phase system. Referring to Figure 25.21, the power 
relations per phase are exactly those for the single-phase 
case  considered in Section 17.1. Thus, Equation 17.14, with 
θv = 0 and θi = −θ, gives for the real power in terms of rms 
values per phase: VϕrmsIϕrmscosθ [1 + cos2(ωt − θ)]. Equation 
17.17 gives for the reactive power −VϕrmsIϕrmssinθ sin2(ωt − θ). 
Both the real power per phase and the reactive power per 
phase have time-varying alternating components. Adding 
these two components gives the instantaneous power per 
phase pA (Equation 25.35), also having an alternating com-
ponent that is present in phase ‘A’ and in the correspond-
ing line. However, the alternating components of the three 
phases form a balanced set and cancel out for the three-
phase load as a whole, leaving a steady component equal to 
the real power.

An important practical consequence of the steadiness 
of instantaneous power is that, because the electrical 
power input to a three-phase motor is steady, the output 
torque is ideally steady at constant speed. In contrast, 
the output torque of a single-phase motor inherently has 
a pulsating component that produces vibrations.

25.5.2  Complex Power

By analogy with the single-phase case, the alternating 
components of Equations 25.35 to 25.37 may be inter-
preted in terms of complex power in each phase. A power 
triangle may be constructed, as in the single-phase case, 
where the apparent power per phase |Sϕ|  =  VϕIϕ is 
the hypotenuse of a right triangle whose sides are the 
real power per phase, Pϕ  =  VϕIϕcosθ, and the reactive 
power per phase, Qϕ = VϕIϕsinθ (Figure 25.22). The load 

impedance angle θ is the angle between the hypotenuse 
and the side representing Pϕ. Each of the total real, reac-
tive, and complex power supplied to the load is three 
times the corresponding quantity in each phase and is 
the same as that derived in Section 25.3.

As in the single-phase case, complex power can be 
very useful in solving three-phase problems, because of 
its conservation and the addition of real, reactive, and 
complex power branch by branch. This is illustrated by 
Example 25.6, which also demonstrates power factor 
correction in a three-phase system.

Example 25.6: Power Factor Correction 
Using Complex Power

A balanced three-phase system is shown in Figure 25.23a, 
where the load absorbs 50  kW at 0.8 p.f. lagging. A 
capacitor bank of three capacitors C is connected across 
the load terminals so that the p.f. at terminals ‘abc’ is 
unity. Given that the magnitude of the line current, with 
the capacitors connected, is 100 A rms, it is required to 
determine C assuming the frequency to be 50 Hz.

Solution:

From the complex power triangle for the load (Figure 
25.23b), the reactive power of the load is QL = 50 × 
0.6/0.8 = 37.5 kVAR. The total reactive power in the line 
impedances is Ql = 3 × (100)2 × 0.1 = 3 kVAR. If the reac-
tive power of the capacitors is QC, then 37.5 + 3 + QC = 0, 
since the total reactive power at terminals ‘abc’ is zero. 
This gives QC = −40.5 kVAR.

In order to calculate C, we have to determine the 
line voltages at terminals ‘ABC’. This can be done 
from the complex power. The total reactive power 
at ABC is QLC = 37.5 − 40.5 = −3 kVAR. Since the total 
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real power at terminals ‘ABC’ is 50  kW, the mag-
nitude of the complex power at terminals ‘ABC’ is 
SLC = ( ) + ( ) =50 3 50 12 2 . kVA. Let the line voltage at 
terminals ‘ABC’ be VLC rms. Then, from Equation 25.22, 
50 1 10 3 1003. ´ = ´ ´VLC , which gives VLC = 289 V rms.

The reactive power per phase of the capacitor 
bank is 40.5 × 103/3 = 13.5 × 103 VAR. This is equal to 
(VLC)2 × ωC, where ω = 2π × 50 = 100π rad/s. It follows 
that C = 0.514 × 10−3 ≡ 514 μF.

25.5.3 Two-Wattmeter Method of Power Measurement

In principle, the power in a three-phase system can be 
measured by using three wattmeters to measure the 
real power in each phase and adding the three readings. 
However, in a three-wire system only two wattmeters 
need to be used. This is because, as mentioned in connec-
tion with Figure 25.4, one of the lines may be considered 
as the return path for the currents in the two other lines. If, 
for the sake of argument, we consider lines ‘aA’ and ‘cC’ to 
be ‘input’ lines and line ‘bB’ to be the common return line, 
the two wattmeters may be connected as shown in Figure 
25.24. The current coils are connected in accordance with 
the assigned positive directions of iaA and icC, whereas the 
voltage coils are connected in accordance with the polari-
ties of the line voltages vAB and vCB. The wattmeters are 
assumed ideal, so that the voltage drop across each cur-
rent coil is zero and the current through each voltage coil 
is zero. The sum of the readings of the two wattmeters 
gives the total real power consumed by the load, irrespec-
tive of whether the load is balanced or unbalanced.

If the load is balanced, the readings of the two wattme-
ters can be readily related to the line voltages, the line 
currents, and the phase angle of the load. Assume, for 
the sake of argument, that the load is Y connected. The 
phasor diagram of Figure 25.8a relates the phase and 
line voltages. This is reproduced in Figure 25.25, with 
only the currents IaA and IcC and the voltages VAB and  
VCB indicated. The currents are shown lagging the cor-
responding phase voltages by θ.

The reading of each wattmeter equals the product of 
the rms magnitude of the current through the current 

coil, the rms magnitude of the voltage across the voltage 
coil, and the cosine of the phase angle between the cur-
rent and the voltage. From the phasor diagram of Figure 
25.25, the phase angle between VAB and IaA is 30° + θ, 
whereas the phase angle between VCB and IcC is 30° − θ . 
The readings of the two wattmeters are therefore

 W V I W V I1 230 30= °+( ) = ° -( )l l l lrms rms rms rmsandcos cosq q  
(25.39)

The sum of the two readings is

 W W V I1 2 3+ = l lrms rmscosq  (25.40)

which is the same as the total real power PT (Equation 
25.38).

cos(30° + θ) and cos(30° − θ) are plotted in Figure 25.26 
for −90° ≤ θ ≤ 90°, where positive θ denotes a lagging 
p.f. whereas negative θ denotes a leading p.f. When 
θ = 0, W1 = W2. If |θ| > 60°, the reading of one of the 
wattmeters is negative, which means in practice that 
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the connections of either the current coil or the voltage 
coil of that wattmeter are reversed and its reading sub-
tracted from that of the other wattmeter. If |θ| = 90°, 
the sum of the readings of the two wattmeters is zero.

The difference between the readings of the two watt-
meters is

 
W W V I

QT
2 1

3
– sin= =lrms lrms q

 
(25.41)

Dividing Equation 25.41 by Equation 25.40 gives

 
tanq = -

+
3 2 1

2 1

W W
W W  

(25.42)

The power factor is determined from the identity 
sin2 θ + cos2 θ = 1. Dividing both sides by cos2 θ and rear-
ranging, the power factor is determined as

 
p f. .

tan
=

+

1

1 2q  
(25.43)

Note that W2, whose reading is proportional to 
cos(30° − θ), is the wattmeter having its voltage coil con-
nected to read a reverse line voltage, that is, VCB instead 
of VBC in Figure 25.24. This is true irrespective of which 
line is the common, or ‘return’, line.

Example 25.7: Two-Wattmeter Method 
of Measuring Power

In a balanced three-phase system, a load absorbs 30 kW 
at p.f. 0.75 lagging. If two wattmeters are connected to 
measure the real power in the load, as in Figure 25.24, 
determine the reading of each wattmeter.

Solution:

cos θ = 0.75, so θ = 41.4°, and cos(30°  +  θ)  =  0.32. The 
real power consumed by the load is 30  kW; hence, 
30 3= ( )V Ilrms lrms cosq , where Vlrms and Ilrms are 
expressed in appropriate units to give the power in kW. 
From Equations 25.39, W V I1 30= ( ) ° +( )l lrms rms cos q .

Dividing these two equations gives W1
30

3
=  

cos
cos

.
30

7 5
° +( )

=
q

q
kW, so W2 = 22.5 kW.

Problem-Solving Tip

• When determining the readings of wattmeters con-
nected to three-phase systems, phasor diagrams of 
voltages and currents are very helpful.

Primal Exercise 25.14

The windings of a 10 kW three-phase motor are Δ con-
nected to a balanced, three-phase supply of 380 V rms 
line voltage. If the line current is 19 A rms, determine 
the p.f. of the motor.
Ans. 0.8.

Primal Exercise 25.15

The load shown in Figure 25.27 is connected to a bal-
anced, three-phase supply of 100  V rms line voltage. 
Determine the complex power absorbed by the load.

Ans. 2 24 26 6. .Ð- ° kVA.

Primal Exercise 25.16

The apparent power in a balanced Y-connected load is 
30 kVA at a line current of 50 A rms, and the real power 
is 15  kW. Calculate (a) the phase voltage and (b) the 
impedance per phase.
Ans. (a) 200 V rms; (b) 2 + j3.46 Ω.

Primal Exercise 25.17

A Δ-connected load is supplied from a balanced three-
phase supply of 450 V rms line voltage. If the load absorbs 
100 kVA at 0.65 p.f. lagging, what is the phase impedance?
Ans. 6 1 49 5. .Ð ° W.

25.6  Advantages of Three-Phase Systems

An important advantage of three-phase systems is in 
power transmission. Two main “figures of merit” may 
be used in comparing a three-phase system with a 
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FIGURE 25.27
Figure for Primal Exercise 25.15.
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single-phase system that transmits the same power: the 
mass of line conductor used and the I 2R loss in these con-
ductors. The mass of conductor represents an installation 
cost of the system; the lighter the line conductors, whether 
in the form of underground cables or overhead transmis-
sion lines, the lower is their cost, and, in the case of over-
head transmission lines, the lighter and less expensive are 
the transmission towers required. The I 2R loss represents 
wasted power and is an operating cost of the system.

Consider a single-phase system supplying three loads 
ZS (Figure 25.28a) and a three-phase system supply-
ing three loads ZY connected in Y (Figure 25.28b). It is 
assumed that (1) the magnitude of the load voltage is 
VL in both cases, which means that the magnitude of 
the line voltage in the Y connection is 3VL; (2) ZS = 3ZY, 
which implies that ZS and ZY have the same phase angle 
and  |ZS|  =  3|ZY| (because V Z I Z IL l S l= =Y /3, this 
means that the magnitude of the line current is the same 
in both cases); and (3) the line conductors in both sys-
tems are of the same length, type, and material, which 
in practice is either copper or aluminum. Because Il is 
the same, this implies that the line conductors have the 
same current-carrying capacity and hence the same 
cross-sectional area, resistance, mass, and I 2R loss.

The power transmitted in the single phase is PS  = 
VLIlcos θ, and the power transmitted per line conduc-
tor is P P V IS c S L l/ / cos /= = ( )2 2q . The power transmitted 
in the Y connection is PY  =  3VLIlcos θ, and the power 
transmitted per line conductor is P V I Pc L l S cY/ /cos= =q 2 . 
The Y connection transmits twice as much power per line 
conductor, or per unit mass of line conductor, as the 
 single-phase connection. The reason for this is easy to see 
from Figure 25.28. A separate return conductor is required 
in a single-phase system but not in a balanced three-phase 
 system, since in the latter case, each line conductor also 
acts as the return for the other two conductors. If each 
line conductor in the Y connection had its own return 
conductor, the power transmitted per line conductor 
will be 3 6V IL lcos /q , which is the same as in single phase.

Since each line conductor in Figure 25.28 has the 
same I 2R loss, the power transmitted per kilowatt of I 2R 
loss varies between the two cases in the same manner 
as the power transmitted per line conductor. In other 
words, the three-phase system transmits twice as much 
power per kilowatt of I2R loss as the single-phase sys-
tem. Moreover, the total line voltage drop in the single-
phase case has a magnitude of 2|Zl|Il, where |Zl| is 
the magnitude of the line impedance. In the three-phase 
case, the line-to-line voltage drop is the line impedance 
multiplied by the phasor difference of any two line cur-
rents. The magnitude of this difference is 3Il, so that 
the magnitude of the line-to-line voltage drop in the 
three-phase case is 3 Z Il l, which is less than that in 
the single-phase case. The three-phase system of Figure 
25.28b is therefore more advantageous than the single-
phase system of Figure 25.28a for transmitting power in 
all of the respects considered.

Other advantages of three-phase systems may be 
listed:

 1. As mentioned earlier, the total instantaneous 
power is steady with respect to time, which 
means that the output torque of a three-
phase motor is steady and does not produce 
vibrations.

 2. It can be shown that the magnetic field in a 
three-phase motor is rotating, so that a three-
phase motor is inherently self-starting. On the 
other hand, the magnetic field in a single phase 
is pulsating rather than rotating, so that some 
additional means have to be provided for start-
ing the motor.

 3. Three-phase transformers, motors, and genera-
tors have smaller frame sizes than their single-
phase counterpart of the same power rating 
because of the elimination of a separate return 
path for the magnetic flux.

Figure 25.29 illustrates a section through a three-
phase transformer. The core has three limbs, one for 
each of the three-phase fluxes Φa, Φb, and Φc. Two sets 
of windings are shown around each limb, a primary 
winding, such as ‘ap’, and a secondary winding, such 
as ‘as’; similarly for phases ‘b’ and ‘c’. Since the phase 
voltages form a balanced set, the three fluxes Φa, Φb, and 
Φc also form a balanced set. This means that their sum 
at any instant is zero, so no separate return path is needed 
for each of these fluxes. This is in contrast to three separate 
single-phase transformers that are connected in a three-
phase system. In each transformer a return path must 
be provided for each flux. Consequently the three-phase 
transformer will have a smaller core than three separate 
single-phase transformers of the same voltage and total 
power rating.
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FIGURE 25.28
Comparison between (a) single-phase and (b) three-phase systems.
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25.7  Power Generation, Transmission, 
and Distribution

A power system may be divided into the following func-
tional parts:

 1. Power generation: Electric power is generated 
in power stations from hydroelectric power, 
or from burning fossil fuels, such as oil, natu-
ral gas, or coal, or from atomic energy. Electric 
power is being increasingly generated from 
solar energy and from wind power.

 2. Power transmission: Since power stations are 
usually located a considerable distance from the 
load centers they serve, and in order to inter-
connect distant parts of the system, or different 
power systems, electric power is transmitted 
over long distances by means of overhead, 
high-voltage transmission lines.

 3. Medium-voltage distribution: The high voltages 
are then stepped down to one or more medium 
voltages for distribution in the vicinity of load 
centers and within them.

 4. Low-voltage distribution: The lowest medium 
 voltage is eventually stepped down to a low 
voltage for utilization by commercial and 
domestic users.

In power generation, it is advantageous to have the 
highest practicable generator voltage, since this reduces 
the current for a given power rating, and hence the 
cross-sectional area of the conductors in the genera-
tor windings. However, too high a generator voltage 
requires heavy, and costly, insulation. As a compromise, 
three-phase voltages are usually generated at few tens 
of kilovolts. Power is generated at 50  Hz throughout 
most of the world but at 60 Hz in the United States.

For transmitting power over long distances, it is also 
advantageous to use the highest practicable voltages, 
because this reduces the current for a given transmitted 
power and hence the I 2R loss. Transmission voltages may 
be hundreds of thousands of volts or even a million volts. 
It is interesting to note that dc has some distinct advan-
tages over ac for long-distance, high-voltage transmission 
(see Problem P25.61).

Medium-power distribution is normally at few tens 
of kilovolts or less, using underground cables, rather 
than the lower-cost overhead lines, in built-up areas. 
Low-voltage distribution is at standard voltages that 
differ between countries. In most countries, the low-
voltage distribution transformer is a three-phase trans-
former having a Y-connected secondary, the phase 
voltage being 220–240  V rms, the line voltage being 
380–415 V rms. The neutral point is grounded, and a 
ground wire connected to the neutral point is provided 
to consumers in some countries (Figure 25.30), in addi-
tion to the neutral line. Single-phase consumer loads 
are connected between line and neutral, and a three-
phase supply is provided for  relatively large loads.

In the United States, the low-voltage distribution 
transformer is usually a single-phase transformer that 
steps down the line voltage to a three-wire single-phase 
system  (Figure 25.31). The midpoint of the secondary 
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FIGURE 25.29
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winding is a grounded neutral point to which a  neutral 
line is connected. The outer lines are at voltages of 
110–120  V rms with respect to the neutral, and their 
phases are such that the voltage between lines is twice 
the line-to-neutral voltage, that is, 220–240  V. Higher 
voltage is used to supply relatively large loads, such 
as  heaters and air-conditioning units, whereas small 
loads, such  as  lamps, are connected between one line 
and neutral.

Learning Checklist: What Should 
Be Learned from This Chapter

• The sum of a set of balanced variables is zero.
• In a balanced Y–Y connection, the neutral 

 current is zero.
• In a balanced Y connection, the line currents 

are equal to the phase currents. The line volt-
ages are balanced three-phase voltages that 
have 3  times the magnitude of the phase 
voltages and are of the same phase sequence. 
For a positive phase sequence, the line voltage 
leads by 30° the phase voltage designated by 
the first transcript of the line voltage, whereas 
for a negative phase sequence, the phase angle 
is 30° lag.

• In a balanced Δ connection, the line voltages are 
equal to the phase voltages. The line currents 
are balanced three-phase currents that have 3  
times the magnitude of the phase currents and 
are of the same phase sequence. For a positive 
phase sequence, the line current lags by 30° the 
phase current designated by the subscripts of 
the line current. For a negative phase sequence, 
the phase angle is 30° lead.

• For both balanced Y and Δ connections:

 

Real power line voltage

line current p f of load p

= ´( )

´( )´

3 rms

rms . . hhase( ). 

 

Reactive power line voltage

line current Reactive

= ´( )

´( )´

3 rms

rms ffactor

of load phase

(

).  

 

Apparent power line voltage

line current

= ´( )

´( )

3 rms

rms .  

• The total instantaneous power delivered to the 
balanced three-phase load is steady with respect 
to time; it is not pulsating as in the single-phase 
case.

• Three-phase real power can be measured using 
two wattmeters.

Problem-Solving Tips

 1. When determining voltages or currents in a bal-
anced, three-phase system, it is only necessary 
to evaluate the voltage or current for one phase 
or line. The remaining three-phase voltages and 
currents then follow from the fact that balanced 
three-phase voltages and currents have the 
same magnitude but with 120° phase difference 
between successive phases.

 2. In a Y connection, if the line voltages are known, 
the phase voltages readily follow, since the 
phase voltage designated by the first subscript 
of the line voltage lags the line voltage by 30° 
and has 1 3/  of its magnitude.

 3. In a Δ connection, if the line currents are known, 
the phase currents readily follow, since the 
phase current designated by the first subscript 
of the line current leads the line current by 30° 
and has 1 3/  of its magnitude.

 4. The single-phase equivalent circuit provides a 
convenient means of analyzing balanced, three-
phase systems, whether the generators and 
loads are Y or Δ connected.

 5. When determining the readings of wattmeters 
connected to three-phase systems, phasor dia-
grams of voltages and currents are very helpful.

Problems

In the following problems, all voltages and currents are 
rms, and the phase sequence is positive, unless otherwise 
indicated.

Verify solutions by PSpice simulation.

Basic Y and Δ Connections

P25.1 The phase voltage of a Y-connected load supplied 
from a balanced three-phase system is vAN(t) = 
220cos(ωt + 32°) V. Determine the line voltages, assum-
ing a positive phase sequence.

 Ans. vab(t) = 381cos(ωt + 62°) V, vbc(t) = 381cos(ωt − 58°) V, 
vca(t) = 381cos(ωt − 178°) V.
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P25.2 If in the preceding problem, the phase impedance is 
40∠20°, determine the line currents.

 Ans. iaA = 5.5cos(ωt + 12°) A, ibB = 26sin(ωt – 108°) A, 
icC = 26sin(ωt + 132°) A.

P25.3 The phase current of a Δ-connected load supplied from a 
balanced three-phase system is iAB(t) = 15sin(ωt + 50°) A. 
Determine the line currents.

 Ans. iaA = 26sin(ωt + 20°) A, ibB = 26sin(ωt – 100°) A, 
icC = 26sin(ωt + 140°) A.

P25.4 If in the preceding problem, the phase impedance is 
10∠–20°, determine the line voltages.

 Ans. vab(t) = 150cos(ωt + 30°) V, vbc(t) = 150cos(ωt – 90°) V, 
vca(t) = 150cos(ωt + 150°) V.

P25.5 A balanced Y-connected load of 6 20Ð ° W per phase 
is connected in parallel with a balanced Δ-connected 
load of 3 40Ð ° W per phase. Determine the impedance 
per phase of the equivalent Δ-connected load.

 Ans. 2.59∠37.2° Ω.

P25.6 A balanced three-phase system of line voltage 
240  V supplies a parallel combination of a balanced 
Y-connected load and a balanced Δ-connected load, 
having phase impedances of 8 +  j8 Ω and 12 – j24 Ω, 
respectively. Determine the line current.

 Ans. 16 43 11 6. .Ð- ° A.

P25.7 A three-phase Δ-connected generator has an open-
circuit line voltage of 380  V and a phase impedance 
of 0.1  +  j0.5 Ω. The generator supplies a balanced 
Y-connected resistive load of 50 Ω per phase. Determine 
the load phase voltage.

 Ans. 379.7∠−0.19°V.

P25.8 Given a three-phase, four-wire system, the load in 
phase ‘A’ is a 360 W lamp, the current in phase ‘B’ is 
4  A at a lagging p.f. of 0.966, and the impedance in 
phase ‘C’ is 60 30Ð- ° W. The supply is balanced and 
has a line voltage Vab = Ð °190 0 V. Determine InN .

 Ans. 2.22∠29.4° A.

P25.9 A balanced Δ-connected load having RΔ  =  5 Ω in 
parallel with XΔ = −j5 Ω is supplied from a balanced 
three-phase supply of negative phase sequence. If 
VAB = Ð °120 0 V, determine IaA and IAB.

 Ans. IAB = 33.9∠45° A, IaA = 58.8∠75°A.

P25.10 The impedances of a Δ-connected load are ZAB = 
52 30Ð- ° W, ZBC = Ð °52 45 W, and ZCA = Ð °104 0 W. The 
load is supplied from a balanced three-phase supply 
of negative phase sequence. If VAB = Ð °208 0 V, deter-
mine the magnitudes and phase angles of the three line 
currents.

 Ans. IaA  =  5.82∠39.9° A, IbB  =  3.06∠142.5° A, 
IcC = 5.95∠−110° A.

P25.11 Given a three-phase generator having an open-circuit 
phase voltage of 400 V and a rated current of 50 A, 
determine the maximum magnitude of impedance 
per phase if the line voltage is not to drop by more 
than 2% when each phase is carrying its rated current, 
assuming that the generator phases are connected in 

(a) Y or (b) Δ. If the generator phases are connected 
in  Δ, and there is a slight imbalance such that the 
open-circuit voltage of one of the phases is 395  V, 
what would be the magnitude of the circulating cur-
rent in the windings with no load connected to the 
generator?

 Ans. (a) or (b) 0.16 Ω; 10.42 A.

P25.12 Coils in the lines and phases of a balanced three-
phase systems are magnetically coupled as shown 
in Figure P25.12. If the current in line ‘a’ is 10 0Ð ° A, 
determine the current in the phase connected between 
lines ab.

 
Ans.

 

10
3

30Ð ° A.

P25.13 Consider a Y-connected load in a balanced three-phase 
system of positive phase sequence. Let the line voltages 
be denoted by Vab, Vbc, and  Vca and the phase voltages 
be denoted by Vϕa, Vϕb, and Vϕc, the phase angle of Vϕa 
being considered as 0°. Show that Vϕa = (Vab − Vca)/3, 
Vϕb = (Vbc − Vab)/3, and Vϕc = (Vca − Vbc)/3.

P25.14 Consider the four-wire, Y-connected, three-phase 
system of Figure 25.7 with sinusoidal, balanced 
phase voltages. But suppose that the load includes 
ferromagnetic devices, such as fluorescent lamp bal-
lasts, that introduce a third harmonic current mag-
netizing current, so that the current in phase ‘A’, for 
example, is Im1cosωt + Im3cos3ωt. Show that the third 
harmonic currents in the three phases are in phase, 
resulting in a current of 3Im3cos3ωt in the neutral 
conductor.

Analysis of Three-Phase Systems

P25.15 Determine the line currents and the line voltages at the 
load in Figure P25.15.

 Ans. IaA = 44∠53.13° A, IbB = 44∠−66.87° A, 
IcC  = 44∠173.13° A, VAB = 426.0∠19.7° V, VBC  = 
426.0∠−100.3° V, VCA = 426.0∠139.7° V.

P25.16 Determine the line currents and load phase currents in 
Figure P25.16 in two ways: (1) from the single-phase 
equivalent circuit and (2) from the line voltages, with-
out transforming the Δ.

a
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 Ans. IaA = 90∠53.13° A, IbB = 90∠−66.87° A, and IcC = 90∠
−186.87° A; IA = Ð °30 3 83 13. A, IB = Ð- °30 3 36 87. A, 

and IC = Ð- °30 3 156 87. A .

P25.17 Determine the line currents and the line voltages at the 
load in the preceding problem when a line impedance 
of 0.5 + j Ω is added in each line.

 Ans. IaA  =  100.6∠26.57° A, IbB  =  100.6∠−93.43°, 
IcC  =  100.6∠−213.43° A; Vab  =  435.7∠3.43° V, 
Vbc = 435.7∠−116.6° V, and Vca = 435.7∠−236.6° V.

P25.18 Determine the line currents in Figure P25.18 in two 
ways: (1) from the phase currents and (2) from the 
 single-phase equivalent circuit.

 Ans. IaA = Ð °30 3 83 13. A, IbB = Ð °30 3 156 9. A, and 

IcC = Ð- °30 3 36 87. A.

P25.19 A balanced Y-connected load consists in each phase 
of an inductive impedance of 50 45Ð ° W in parallel 
with a 0.1  μF capacitor. The load is supplied from a 
balanced three-phase supply having a line voltage of 
380 V, 50 Hz, through lines of 0.5 + j1.0 Ω impedance. 
Determine the magnitude of the line current.

 Ans. 4.3 A.

P25.20 A balanced Δ-connected load consists in each phase 
of an inductive impedance of 30 +  j45 Ω. The load is 
supplied from a balanced three-phase supply having 
a phase voltage of 220  V through lines of 0.1  +  j0.2 
Ω impedance. Determine the magnitude of the line 
current.

 Ans. 12.06 A.

P25.21 The load of Figure P25.21 is supplied from a bal-
anced three-phase system of 450 V line voltage, 50 Hz. 
Determine the current in the neutral before and after 
phase ‘B’ is open circuited at x.

 Ans. 204.0∠−162.7° A, 176.8∠111.6° A.

P25.22 Three resistors of 6, 10, and 15 Ω are Y connected to 
a balanced three-wire, three-phase supply of 300  V 
line voltage. Determine the magnitude of the voltage 
across each resistor.

 Ans. |V6Ω|  =  6I1  =  130.8  V, |V10Ω|  =  10I2  =  187.3  V, 
|V15Ω| = 15|I2 – I1| = 210 V.

P25.23 The load of Figure P25.23 is connected to a balanced 
three-wire, three-phase system of 400  V line voltage. 
Determine the current in each phase of the load.

 Ans. - +20 3 20j A, - - +( )20 20 2 3j A, IcC = +( )20 3 1  
1+( )j A.

P25.24 Consider that the sources in Problem P25.23 are Y 
 connected. Determine the current in the 10 Ω resistor 
by superposition.

 Ans. - +20 3 20j A.

P25.25 A three-phase generator having an impedance of 
0.9 + j0.9 Ω per phase is Δ connected. The open- circuit 
terminal voltage of the generator is 13.2 kV. The gen-
erator supplies a Δ-connected load of 650  +  j170 Ω 
per phase through a transmission line of impedance 
0.7 + j0.3 Ω per phase. Determine the magnitude of the 
line voltage at the load end.

 Ans. 13.13 kV.
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P25.26 The load of Figure P25.26 is connected to a bal-
anced three-phase supply. If Z jY = +5 10 W and 
VAB = Ð °240 0 V, determine IaA.

 Ans. 26.17∠64.5° A.

P25.27 The sources in Figure P25.27 form a balanced set, with 
Vga = Ð °100 90 V. Determine InN .

 Ans. –j6.1004 = 12.2∠−150° A.

P25.28 In Figure 25.20 (Exercise 25.13), what would be the 
reading of the voltmeter if it had a resistance of 5R?

 Ans. 181.5∠−30° V.

P25.29 Given that in Figure P25.29 IaA = Ð °10 20 A  and 
IbB = Ð- °12 120 A, determine VAB.

 Ans. 75.2∠39.4° V.

P25.30 Given that in Figure P25.30 VAB = Ð °100 20 V and 
VBC = Ð- °120 120 V , determine IC.

 Ans. 1.36∠25.61° A.

P25.31 Determine the single-phase equivalent impedance of 
the circuit of Figure P25.12, assuming a frequency of 
50 Hz.

 Ans. j13 3p/ W.

P25.32 In the balanced three-phase system shown in Figure 
P25.32, the three voltage sources form a balanced set 
Vga = Ð °50 0 V, Vgb = Ð- °50 120 V, and Vgc = Ð °50 120 V, 
the current sources form a balanced set IA = Ð °10 30 A,  
IB = Ð - °10 90 A, and IC = Ð °10 150 A, and Rϕ  =  5 Ω. 
Determine the single-phase equivalent circuit.

 Ans. Vaeq = -( ) -25 2 3 25j V, with respect to n, in 
series with 5 Ω.

P25.33 In the balanced three-phase system shown in Figure 
P25.33, the three independent voltage sources form a 
balanced set Vga = Ð °50 0 V, Vgb = Ð - °50 120 V, and 
Vgc = Ð °50 120 V , the dependent sources form a bal-
anced set with K j= -1 , and Rϕ = 5 Ω. Determine the 
single-phase equivalent circuit.

 Ans. Vga in series with −j5 Ω.
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P25.34 Figure P25.34 shows a simple circuit for indicating the 
phase sequence using two incandescent lamps and a 
capacitor connected in Y. One lamp will glow brighter 
than the other. The phase sequence is then in the order 
of the line connections to the (bright lamp)–(dim 
lamp)–(capacitor), that is, ‘abc’ in Figure P25.34. Show 
this by assuming a 5 μF capacitor and two 60 W, 220 V 
lamps, having a constant resistance. Assume the circuit 
is connected to a three-phase system and analyze the 
circuit as a two-mesh circuit to show that the current in 
one lamp exceeds that in the other lamp, depending on 
the phase sequence.

P25.35 Verify the results of Example 25.1 using mesh-current 
analysis.

P25.36 Verify the results of Example 25.4 by solving the circuit 
of Figure 25.13a as a four-mesh circuit.

Power in Three-Phase Systems

P25.37 A balanced Δ-connected, series-connected inductive 
load draws a line current of 10 A rms and absorbs 3 kW 
of real power at a line voltage of 220 V rms. Determine 
the load impedance per phase.

 Ans. 30 Ω+ j23.49 Ω.

P25.38 A balanced three-phase system of 240 V rms line volt-
age, 50 Hz, supplies a 100 kW balanced load of 0.6 p.f. 
lagging. Determine the capacitance in each phase of a 
Y-connected capacitor bank that will give a power fac-
tor of 0.95 lagging.

 Ans. 5.55 mF.

P25.39 In the circuit of Figure P25.39, the Y-connected load 
and the Δ-connected load are both balanced with 
RY = 4 Ω, XY = j4 Ω, RΔ = 6 Ω, and YΔ = −j8 Ω. Determine 
the real and reactive powers absorbed if the line volt-
age is 190 V rms.

 Ans. S = 11.0 – j4.15 kVA.

P25.40 A three-phase AC generator is rated at 50 MVA, 11 kV 
line voltage. If the generator is operated at its rated 
voltage and current, determine the percentage increase 
in the real power delivered if the power factor is 
increased from 0.7 to 0.95 lagging.

 Ans. 35.7%.

P25.41 Determine the real, reactive, and apparent powers 
absorbed by the load of Figure P25.41 when connected 
to a balanced three-phase supply of 220  V rms line 
voltage.

 Ans. 18.392 kW, 1.936 kVAR, 18.49 kVA.

P25.42 A balanced three-phase supply of 380 V rms line volt-
age, 50  Hz, is connected to two paralleled, balanced 
three-phase inductive loads. One load absorbs 173 kW 
at 0.8 p.f., whereas the other load absorbs 110 kW at 
0.7 p.f. A bank of equal Δ-connected capacitors is to be 
connected in parallel with the loads so as to bring the 
p.f. to unity. Determine the required capacitance per 
phase.

 Ans. 1.78 mF.
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P25.43 The load in Figure P25.43 absorbs 5  kW when con-
nected to a balanced, four-wire, three-phase supply of 
380 V rms line voltage. The power factors of phases ‘B’ 
and ‘C’ are 0.5 lagging and 0.5 leading, respectively, 
and the magnitudes of the currents in phases ‘A’ and 
‘B’ are 5  A and 10  A, respectively. Determine (a) the 
magnitude and phase angle of the current in phase 
‘C’, assuming that the current in phase ‘A’ has a phase 
angle of zero, (b) RC and XC, and (c) the reactive power 
of phases ‘B’ and ‘C’.

 Ans. (a) 25.58∠180° A, (b) 4.29 and −7.43 Ω, (c) 1900 
and −4860 VAR.

P25.44 Each phase of a Y-connected load consists of a resis-
tance of 100 Ω in parallel with a capacitance of 31.8 μF. 
The load is connected to a balanced three-phase sup-
ply of 416  V rms line voltage, 50  Hz. Determine the 
real, reactive, and apparent powers absorbed by the 
load.

 Ans. 1731 W, −1729 VAR, 2446 VA.

P25.45 A balanced bank of capacitors is connected in parallel 
with a balanced three-phase load in order to bring the 
p.f. at the supply end to unity. The apparent  powers 
of the load and capacitor bank are 2 kVA and 500 VA, 
respectively. The load and capacitors are supplied 
from a balanced three-phase supply having a line 
impedance of 2 +  j20 Ω per line, the total real power 
dissipated in the lines being 24 W. Determine the mag-
nitude of the line voltage at the load end.

 Ans. 577 V rms.

P25.46 Given a balanced three-phase system in which the load 
consumes 50 kW at 0.8 p.f. lagging, the line impedance 
being 0.5 + j0.5 Ω. Capacitors are Δ connected so that the 
power factor at the supply terminals is 0.95. If the mag-
nitude of the line current is 120 A, 50 Hz, determine the 
magnitude of the line voltage at the supply terminals.

 Ans. 363 V rms.

P25.47 In the balanced three-phase system shown in Figure 
P25.47, R = 0.5 Ω and ZD  consists of a 50 Ω resistance in 
parallel with an inductive reactance of 50 Ω. Determine 
the total real power consumed by the load. What is the 
p.f. seen at the supply end?

 Ans. 9584 W; p.f. = 0.73.

P25.48 A balanced source supplies 100 kVA at a line voltage 
of 450 V rms and 0.9 p.f. leading to a balanced load, 
the line impedance being 0.1  +  j0.5 Ω. Determine 
(a) the magnitude of the line current, (b) the magnitude 
of the line voltage at the load, and (c) the total apparent 
power at the load.

 Ans. (a) 128.3 A, (b) 491 V rms, (c) 109.1 kVA.

P25.49 Verify that reversing the phase sequence interchanges 
the readings of the two wattmeters in the two-
wattmeter method.

P25.50 Verify Equations 25.35 to 25.37 for a Δ connection.

P25.51 The power input to a three-phase synchronous motor 
is measured by the two-wattmeter method. When the 
p.f. of the motor is unity, each of the two wattmeters 
reads 50 kW. What would be the reading of each watt-
meter if the power factor is changed to 0.866 leading, 
assuming the magnitudes of the line voltage and cur-
rent stay the same?

 Ans. 57.74 and 28.87 kW.

P25.52 A balanced load of 0.75 p.f. lagging is connected to a 
balanced three-phase, three-wire system. The sum of 
the readings of two wattmeters connected in the stan-
dard two-wattmeter connection is 26 kW. What is the 
reading of each wattmeter?

 Ans. 19.62 and 6.38 kW.

P25.53 A balanced three-phase load is connected to a balanced 
three-phase supply of 220 V rms line voltage. A watt-
meter reads 600 W when its current coil is connected in 
line ‘a’ and its voltage coil is connected between lines 
‘a’ and ‘b’, with the positive terminal of the coil con-
nected to line ‘a’. When the voltage coil is connected 
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between lines ‘b’ and ‘c’, with the positive terminal 
of the coil connected to phase ‘b’, and the current coil 
connected in line ‘a’ as before, the wattmeter again 
reads 600 W. What is the load p.f.?

 Ans. 0.87.

P25.54 Two wattmeters W1 and W2 are connected to a bal-
anced three-phase, inductive load of 0.8 p.f., as shown 
in Figure P25.54, the supply being also balanced. If W1 
reads 100 W, what is the reading of W2?

 Ans. 39.6 W.

P25.55 In Figure P25.55, the source voltages V1, V2, and V3 
constitute a balanced set, with V1 300 45= Ð- ° V rms, 
VAB = Ð °381 0 V rms, and Zf = Ð °20 30 W. The current 
coils C1 and C2 and voltage coils P1 and P2 of wattme-
ters W1 and W2 are connected as shown. Determine the 
readings of W1 and W2.

 Ans. 8848 and 5572 W.

P25.56 Two wattmeters W1 and W2 are connected as shown 
in Figure P25.56 to measure the power in a balanced 
Δ-connected load, the line voltage being 380  V rms. 
If each wattmeter reads 1000  W, determine the load 
impedance per phase.

 Ans. −j125.1 Ω.

P25.57 Consider a wattmeter connected as in Figure P25.57. 
Show that the reading of the wattmeter is 1 3/  of the 
reactive power of the load.

Probing Further

P25.58 Consider Figure P25.58, which shows a three-phase 
transformer in which the primary and secondary 
windings are Y connected. The neutral point of the 
secondary is grounded, as is commonly done in three-
phase systems in order to define voltages in power 
systems with respect to the ground reference and to 
provide a path for current flow under fault condi-
tions so as to operate protective devices. If the phase 
voltages are sinusoidal, the magnetic flux in the trans-
former core will be sinusoidal, but the magnetizing 
current in each phase of the primary will have a third 
harmonic component, as explained in Problem P25.14. 
However, since there is no connection to the neutral of 
the primary side, third harmonic currents, which are 
in phase, cannot flow. The phase currents must there-
fore be sinusoidal, which means that the phase volt-
ages are not sinusoidal but contain a third harmonic 
component. The line-to-line voltage is the difference 
of two phase voltages, so that the third harmonics of 
the phase voltages cancel out, and the line voltages are 
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sinusoidal. With the line voltages sinusoidal and the 
three-phase voltages containing third harmonics that 
are in phase, argue that the primary neutral point, np, 
will oscillate at the third harmonic frequency. Such 
oscillations are undesirable. They could be avoided by 
grounding np, but third harmonic currents will flow 
through ground causing undesirable interference. The 
solution is to connect the primary or secondary wind-
ings in Δ, which allows the third harmonic currents 
to flow in the Δ-connected windings. The magnitude 
of this current is limited by the fact that the reactance 
of the transformer windings is multiplied by three at 
the third harmonic frequency. Hence, transformers in 
power systems invariably have either primary or sec-
ondary windings connected in Δ.

P25.59 Given that the primary or secondary windings of 
power transformers are connected in Δ, for reasons 
explained in the preceding problem, the other wind-
ing being connected in Y, argue that it is more advan-
tageous to connect the primary windings in Δ when 
line voltages are to be stepped up, whereas it is more 
advantageous to connect the secondary windings in Δ
when line voltages are to be stepped down.

P25.60 Y–Δ starting of induction motors: A popular type of ac 
motor is the three-phase, squirrel cage induction motor. 
A characteristic of this type of motor is that at starting, 
the motor appears like a transformer having a short-
circuited secondary, which results in a starting current 
of low power factor and magnitude that is five to eight 
times the rated full-load current. This is objectionable 
as it causes an excessive, though momentary, voltage 
drop in the supply lines feeding the motor and other 
loads. A common method of avoiding this large start-
ing current on medium-sized and small-sized motors 
is Y–Δ starting. The motor is designed to run with its 
stator windings connected in Δ. At starting, however, 
the windings are connected in Y. At a preset interval of 
a few tens of a second after starting, the windings are 
connected in Δ for normal running. 

Assuming that the starting current is proportional to 
the phase voltage, show that the starting current with 
the windings connected in Y is 1/3 of the starting cur-
rent with the windings connected in Δ.

P25.61 dc vs. ac high-voltage transmission: Consider a 
Y-connected power transmission system of phase 
voltage Vϕ and line current Il. Compare this to a dc 
power transmission system having the same line 
current Il and line voltages of +VDC and −VDC, with 
the midpoint grounded. To have the same insula-
tion level in both systems, VDC should equal the peak 
phase voltage, that is, V VDC = 2 f. Show that under 
the best conditions, with unity p.f. in the three-
phase system, the power transmitted in the ac case 
is 3 2 2/( ) that in the dc case, which amounts to only 
1.06 times. However, the ac case uses 50% more con-
ductor and has 50% more I2R loss, compared to the dc 
case. In actual fact the conductors have to be of larger 
cross-sectional area in the ac case for the same cur-
rent-carrying capacity, because under ac conditions, 
the current is not uniformly distributed across the 
cross section of the conductor due to the effect of the 
ac magnetic field inside the conductor, the so-called 
skin effect. Moreover, two line insulators per tower are 
required, compared to three for ac, and the dc tow-
ers are smaller since they have to support fewer con-
ductors and insulators. An additional advantage of 
dc transmission is the absence of reactance, whereas 
the reactance of long ac transmission lines introduces 
problems of power system stability. The power sys-
tems connected by the dc line need not have exactly 
the same frequency. On the downside, since electric 
power is more conveniently generated and utilized 
as ac, ac must be converted to dc at high voltages for 
transmission, which is then converted back to ac for 
distribution. This introduces additional complexity 
and cost.
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Appendix A: SI Units, Symbols, and Prefixes

A.1  The International System of Units

The International System of Units, referred to as the SI 
system (its acronym in French) is almost universally 
used for scientific and engineering purposes and is 
adopted throughout this book. It is a system of physical 
units in which the fundamental quantities are the seven 
listed in Table A.1 together with their corresponding 
units and symbols of these units.

In addition, circuit theory uses many units that are 
derived from these fundamental units. Table A.2 lists 

the more common of these derived units together with 
their relations to other quantities and their unit symbols.

In many practical problems, the SI units defined in the 
table are either too large or too small. Standard prefixes 
in powers of 10 are applied in order to bring the numeral 
preceding the power of 10 to a convenient value, gener-
ally between 1 and 10. Table A.3 lists the prefixes associ-
ated with the SI system of units. The prefixes centi, deci, 
deka, and hecto are not used with electrical quantities. 
The remaining prefixes progress in powers of 10 that are 
divisible by 3.
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TABLE A.1

SI System of Units

Fundamental Quantity Unit Symbol

Length meter m
Time second s
Mass kilogram kg
Electric current ampere A
Temperature degree Kelvin oK
Luminous intensity candela cd
Amount of substance mole mol

TABLE A.3 

Power of 10 Prefixes Used with the SI System

Prefix Symbol Power

atto a 10−18

femto f 10−15

pico p 10−12

nano n 10−9

micro μ 10−6

milli m 10−3

centi c 10−2

deci d 10−1

deka da 101

hecto h 102

kilo k 103

mega M 106

giga G 109

tera T 1012

peta P 1015

exa E 1018

TABLE A.2

SI Derived Quantities

Quantity Unit Symbol

Relation to Other Quantities

Expression Symbols

Frequency hertz Hz — s−1

Angular frequency radians per second rad/s 2π × (frequency) s−1

Energy or work joule J Force × distance N m
Power watt W Energy/time J/s or A V
Electric charge coulomb C Current × time A s
Electric potential difference (voltage) volt V Power/current V
Electric resistance ohm Ω Voltage/current V/A
Electric conductance siemens (or mho) S Current/voltage A/V
Electric capacitance farad F Charge/voltage A s/V
Magnetic flux weber Wb Voltage × time V s
Magnetic flux linkage weber-turn Wb-turns (Magnetic flux) × (number of turns) V s
Inductance henry H Flux linkage/current V s/A
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Appendix B: Useful Mathematical Relations

B.1  Trigonometric Relations
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Triangle rules: Let a, b, and c be the lengths of sides of a 
triangle and α, β, and γ be, respectively, the angles oppo-
site these sides. Then,
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B.2  Useful Relations

Integration by parts: u
dv
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dx uv v
du
dx

dxæ
è
ç

ö
ø
÷ = - æ

è
ç

ö
ø
÷ò ò  

L’Hopital’s rule: A function f x x( )/  that is indeter-
minate, that is, 0 0/ , when x  =  0, can be evaluated by 
differentiating the numerator and denominator with 
respect to x any number of times until a finite answer 
is obtained.
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. The series converges as n → ∞ if |r| < 1. In this 

case the sum is a r/(1- ). If r = m, 0 < m < 1, the sum is 
a m/(1- ). If r = −m, 0 < m < 1, the sum is a m/( )1+ .

B.3  Table of Integrals
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Appendix C: PSpice Simulation

C.1  General

SPICE—the acronym for Simulation Program with 
Integrated Circuit Emphasis—was developed by 
the Electronics Research Laboratory, University of 
California, Berkeley, CA, and made available to the 
public in 1975. Since then it underwent many enhance-
ments and became available in a number of forms. 
OrCAD PSpice for Windows is widely used, particu-
larly in education, and is supplied by Cadence Design 
Systems, Inc. The description in this appendix applies 
specifically to OrCAD 16.6 Demo.

OrCAD software can perform many types of analysis: 
dc, ac, transient, Fourier, transfer function, noise, distor-
tion, and operating point analysis. It can be used for the 
simulation of linear and nonlinear circuits, transmission 
lines, semiconductor devices, digital circuits, and mixed 
analog and digital circuits, in addition to printed circuit 
board preparation.

There are three steps in using PSpice for circuit simu-
lation: (1) describing the circuit to be analyzed by draw-
ing it schematically using the Capture program, (2) 
performing the type of analysis desired, and (3) display-
ing, printing, or plotting the results.

Learning tutorials are included with the Capture pro-
gram. After installing the software, invoke the Capture 
CIS program. CIS stands for Component Information 
System and includes all the features of Capture. When 
the OrCAD Capture window is displayed select Help/
Learning OrCAD Capture CIS or Help/Learning PSpice 
and follow the instructions.

This appendix has been especially prepared to provide 
the information required for effective PSpice simulation of 
circuits in introductory courses on circuit analysis. Most 
of the difficulties commonly encountered are addressed. 
Additional details are given in the simulations of the 
solved examples in this book, as may be needed.

C.2  Starting a New Simulation

 1. Run the Capture CIS program. An OrCAD 
Capture CIS—Lite (Start Page) is displayed 
with a Start Page tab.

 2. Select Project/New. The New Project Dialog box 
is displayed. Enter a project name and select the 
‘Analog or Mixed A/D’ method of creating a 
new project. Press the Browse button to specify 

a location of the directory where the simulation 
files will be saved. If you have not created such 
a directory, specify a path and press the Create 
Directory button. A Create Directory dialog 
box is opened. Enter a directory name of your 
choice.

 3. After the OK buttons are pressed, a Create 
PSpice Project dialog box is displayed. Choose 
Create a blank project. Two tabs are created, one 
in the name of the project, and the other labeled 
Page 1. The Parts toolbar appears on the right-
hand side of the screen.

 4. Press the Page 1 tab to display the (SCHEMATIC1: 
PAGE1) window. You are now ready to place 
circuit components on the schematic page. This 
can be done in two ways: either from the Parts 
toolbar or by selecting items from the pull-down 
menu under Place in the menu bar.

 5. To place a part using the toolbar, click on the 
Place Part button having the + sign at the top of 
the  second column, which expands the toolbar 
window. Before parts can be placed, the proper 
libraries must be added. Click on the Add Library 
button, which appears as a dashed rectangle 
under Libraries. The Browse File dialog box 
appears. Select the PSpice directory. Add what-
ever libraries are needed for a particular simula-
tion, such as SOURCE or ANALOG libraries.

 6. To select a dc voltage source, for example, high-
light the SOURCE library in the Place Part dia-
log box. A list of available sources appears under 
Part List. Scroll down the list and select VDC. A 
battery symbol appears in the lower right-hand 
corner of the dialog box. Press the Place Part 
button or double-click on the VDC symbol. The 
battery source symbol appears in the schematic 
window attached to an arrow cursor. Move the 
cursor to locate the source at an appropriate 
location in the window and press the left mouse 
button to anchor it in position. Another source 
can be placed by dragging the cursor and sym-
bol to a new location and pressing the left mouse 
button to anchor it in position, and so on. To end 
the insertion process, either press the Esc key 
or the right mouse button and select End Mode 
from the drop-down menu.

 7. To place resistors, for example, highlight the 
ANALOG library. Scroll down the list, highlight R, 



774 Appendix C: PSpice Simulation

then press the Place Part button or double-click 
on the R symbol. Place the resistor at an appro-
priate location in the window. After anchoring 
this resistance by pressing the left mouse but-
ton, move the arrow cursor to place another 
resistor, and so on. To rotate the resistor through 
90° counterclockwise, select it by pressing the 
left mouse button on the resistor symbol and 
press the R key.

 8. Any element or text can be moved by selecting 
it with the left mouse button, keeping this but-
ton pressed, and either dragging the selection 
to the desired location by moving the cursor or 
using the arrow keys. It is a good idea to save 
the schematic at this stage by selecting File/
Save from the menu bar.

 9. More than one component can be selected 
at the same time by pressing the Ctrl button 
while selecting with the left mouse button. 
Alternatively, the cursor is positioned out-
side one corner of the part of the circuit to be 
selected; the left mouse button is pressed and 
held while the cursor is moved across the parts 
to be selected until the rectangle attached to the 
cursor encloses, or its sides touch, these parts. 
When the left mouse button is released the 
desired parts of the circuit are selected.

 10. To wire components, click on the Place wire but-
ton located as the second button in the first col-
umn of the toolbar. The cursor in the schematic 
window changes to a cross hair. Place the cur-
sor at the terminal of a given component and 
press the left mouse button to anchor it. Move 
the cursor and a wire is traced. You can draw a 
straight connection or you can later change to a 
direction at right angles to the initial direction 
in order to draw a right-angled connection. If 
you have to change direction again, you must 
anchor the cursor before doing so by pressing 
the left mouse button. Keep moving the cursor 
till you reach the terminal of the component to 
which the connection is to be made. Press the 
left mouse button to finish the connection. The 
connection remains selected, as indicated by 
the handles, or filled squares, at both ends of the 
connection. You can deselect the connection by 
pressing the Esc key. Press the right mouse but-
ton and select End Wire to finish inserting wires 
or press the Esc key.

The following may be noted concerning wiring:

• When a wire crosses another wire, no connec-
tion is made between the two wires. If  you 

want to make a connection, pause at the 
intersection, release the left mouse button, 
and continue. A junction is made, as indi-
cated by a small, filled circle. Alternatively, a 
junction can be placed at the intersection by 
using the ‘Place junction’ part from second 
column of the toolbar.

• In order to delete a wire connection, select it 
by placing the cursor on it and pressing the left 
mouse button, and then press the Delete key.

• If a selected wire is dragged, with the left 
mouse button pressed, all other wires con-
nected to the given wire will remain con-
nected and will move. To isolate the given 
wire, press and hold the Alt key while drag-
ging the wire. The same procedure applies to 
moving a group of selected objects.

• To place a wire at an angle other than 0° or 
90°, press and hold the Shift key while draw-
ing the wire at any desired angle.

• A part can be placed in the middle of a wire 
segment without redrawing the wire by plac-
ing the part over the wire such that the two 
pins of the part connect with the wire seg-
ment. Then click over the wire segment that 
overlaps the part, so that the pins of the part 
(filled circles) change to wire handles (filled 
squares). Press the Delete key to delete the 
overlapping wire segment. The same proce-
dure is applied in the case of the common mis-
take of accidentally drawing a wire through a 
circuit element, thereby short-circuiting it.

• It is recommended that parts are connected 
using wires; that is, avoid connecting parts 
by having the pin of one part overlap the pin 
of another part.

 11. To use the Auto-connect-two-points feature in 
OrCAD 16.6 Demo, click on the ‘Auto connect 
two points’ button in the first (leftmost) column 
of  the toolbar. The cursor in the schematic win-
dow changes to an x. Move the cursor to one of the 
terminals, press, and release the left mouse but-
ton. Move the cursor to the other terminal, with 
the wire attached to it, and then click and release 
the left mouse button. A connection is automati-
cally made between the two terminals. To use 
auto connect to wire multiple points, click on the 
‘Auto connect multi points’ button in the second 
(rightmost) column of the toolbar. Move the cur-
sor to one of the terminals, press, and release the 
left mouse button. Repeat at every terminal to be 
connected. Finally, right-click anywhere on the 
schematic page and choose Connect.
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 12. To change the value of a component from the 
default value, double-click on the component 
value in the schematic. A Display Properties 
window appears. Change the value in the Value 
field to the desired value. Scale factors can be 
added, as described later. Press the OK button. 
Once you finished wiring, save the schematic.

 13. Before a simulation can be made, a ground 
 connection must be made and a zero value assigned 
to it. Click on the ground button in the sec-
ond column of the toolbar to display the place 
Ground dialog box. If a ground symbol with a 
0 is not displayed in the RHS window, add the 
SOURCE library, select it, and then select  the 
0 in the middle window on the LHS. When the 
ground symbol with a 0 is displayed, press the 
OK button. The dialog box disappears and a 
ground symbol with a 0 is displayed in the sche-
matic window attached to the cursor. Drag the 
symbol to where you want to place the ground 
and anchor it by pressing the left mouse button. 
To stop inserting ground, press the Esc button.

 14. To simulate the circuit, select PSpice/New 
Simulation Profile or click on the New 
Simulation Profile button in the PSpice tool-
bar. (The toolbars can be identified by selecting 
Tools/Customize, then the Toolbars tab). The 
New Simulation dialog box is displayed. Enter 
a simulation name and then press the Create 
button. The Simulation Settings dialog box is 
displayed having the assigned name. From 
the pull-down menu under Analysis type, select 
the appropriate type of simulation and fill in the 
information required. For simple simulation of 
dc circuits, select Bias Point under Analysis type 
and press the OK button.

 15. To run the simulation, select PSpice/Run from 
the menu bar or click on the Run PSpice button 
(the filled arrow head) in the PSpice toolbar.

 16. After the simulation is completed, a Simulation 
Results page entitled SCHEMATIC1-(simulation 
name)-PSpice A/D Demo is displayed. The 
small window in the lower left corner indicates 
whether or not the simulation has run success-
fully. Press the third button in the bar to the left 
of the upper main window. A text file entitled 
SCHEMATIC1-(simulation name) is displayed 
in the main window. This file contains a PSpice 
circuit description, the netlist, and the simula-
tion results.

 17. To display dc voltages, currents, and power dis-
sipated, return to the schematic page and press 
the V, I, and W buttons, respectively.

 18. Note that some properties of circuit elements, 
such as initial conditions in capacitors and 
inductors, or default values of op amps and 
switches can be changed using the Property 
Editor spreadsheet of the given element. To 
display this spreadsheet, double-click with the 
left mouse button on the element symbol in the 
circuit.

C.3  Opening a Saved Simulation

 1. If the folder containing the simulation is in 
 compressed format (as in zip format or .rar 
extension), decompress it first.

 2. Select File/Open/Project, choose the directory 
in which the simulation is saved, and open 
this directory. A subdirectory and a .opj file is 
displayed.

 3. Double-click on the .opj file to display the 
Project Manager block.

 4. In the Project Manager block, click on Design 
Resources all the way to SCHEMATIC1. Open 
PAGE1 under SCHEMATIC1 to display Page 1 
of the saved project.

 5. To enlarge the circuit, select any part of the cir-
cuit and click on the ‘Zoom in’ button in the 
Capture toolbar.

C.4  Scale Factors

PSpice uses the exponential forms for numbers and 
symbols to scale circuit parameters and variables, as 
indicated in Table C.1.

TABLE C.1

PSpice Numbers and Scale Factors

Value Exponential Form PSpice Symbol

10−15 1E−15 F or f (femto)
10−12 1E−12 P or p (pico)
10−9 1E−9 N or n (nano)
10−6 1E−6 U or u (micro)
10−3 1E−3 M or m (milli)
103 1E3 K or k (kilo)
106 1E6 MEG or meg (mega)
109 1E9 G or g (giga)
1012 1E12 T or t (tera)
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C.5  Simulation Restrictions

• A PSpice simulation cannot be run unless the 
ground symbol is connected to a node and a 
value of zero is assigned to ground. Otherwise, 
floating node errors are indicated.

• Every node must have a dc connection to ground. 
Otherwise, a floating node error is indicated. 
Capacitors and current sources do not provide a 
dc connection to ground; resistors, inductors, and 
voltage sources do. When a node necessarily does 
not have a dc connection to ground, a floating 
node error can be avoided by connecting a very 
large resistor, say, 1 giga-ohm that does not affect 
the simulation results, between this node and 
ground.

• PSpice does not allow a loop of zero dc resistance, 
such as a loop that consists exclusively of volt-
age sources, inductors, or voltage sources and 
inductors. The loop can be broken by inserting 
a very small series resistance, say, 1 nano-ohm 
that does not affect the simulation results.

• When entering the value of a component, do not 
enter any space between the number and the 
scale factor. Fractions must be entered in deci-
mal form, for example, 1.66667 and not 5/3.

• All PSpice entries are case independent. Hence, 
a resistance value of, say, 15 MΩ is entered as 
15meg, and not as 15M. PSpice will interpret a 
15M resistance as 15 milliohms.

• When entering circuit values, the basic unit, 
such as V (for voltage), A (for current), and L (for 
inductance), may be included or omitted. In the 
case of capacitance, omission is mandatory. Thus, 
a capacitance of 1.2 farads is entered simply as 
1.2 and not as 1.2F. PSpice will interpret a 1.2F 
capacitance as 1.2 femtofarads, that is, 1.2 × 10−15 
farads. Resistance is also entered without units. 
A 50 micro-ohm resistance is entered as 50u.

• To avoid strange results when using capacitors 
or inductors in time-domain analysis, always 
specify the initial conditions, even if these are 
zero. The initial conditions are entered in the IC 
column of the Property Editor spreadsheet for 
the circuit element.

C.6  Sign Conventions

• Positive voltage drop across a capacitor is from 
pin 1 of the element to pin 2. These pins can be 
determined from the Property Editor spreadsheet 

by pressing the pins tab along the bottom of 
the spreadsheet. The node designations of 
the pin numbers are indicated. Initial voltage 
across a capacitor can be assigned accordingly. 
Alternatively, the library ANALOG_P contains 
R and C elements with pin numbers.

• Positive current through an inductor flows 
from the marked pin to the unmarked pin. 
Alternatively, the library ANALOG_P contains an 
L element with pin numbers 1 and 2. Initial cur-
rent in an inductor can be assigned accordingly.

• In both voltage sources and current sources, the 
positive direction of current inside the source is 
from the positively marked terminal to the neg-
atively marked terminal.

• To be consistent with the positive directions of 
voltage and current, positive power is power 
absorbed. The power delivered by a source is 
therefore indicated as negative power.

C.7  Rotating Parts

• When a component is placed, it takes a default 
position. For example, a resistor, capacitor, or 
inductor will take a default horizontal position 
with its marked or “1” terminal to the left.

• Components may be rotated by pressing the 
 following keys:
H Flip part horizontally.
R Rotate part 90° counterclockwise.
V Flip part vertically.

C.8  Identifying and Labeling Nodes

• PSpice assigns a 0 node number to ground and 
arbitrary node numbers to the remaining nodes 
in the circuit. These numbers consist of the letter 
N followed by five numerals. The node number 
can be read by moving the cursor to any wire 
connected to the node.

• It is sometimes required to label a node with an 
arbitrary name. This may be necessary to iden-
tify the node in an entry in the simulation pro-
file, or to easily identify it in the output file, or 
to simplify connections in a circuit.

• A node is most conveniently labeled using a 
net alias. To do this, click on the ‘Place net alias’ 
button marked ‘abc’ in the second column of 
the Parts toolbar. A Place Net alias window is 
displayed. Enter a name of your choice under 
Alias. Press  the OK button and a rectangle 
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appears that is attached to the pointer. Place the 
rectangle next to the wire connecting to the node 
to be labeled and press the left mouse button to 
anchor it. The alias name appears. Press Esc to 
stop placing aliases. The node is now labeled 
with the alias name. The alias can be deleted by 
selecting it and pressing the Delete key.

• Note that nodes having the same name are con-
sidered to be connected together, whether in the 
same page or in different pages.

C.9  Working with Pages

• To add a new schematic page to a project, access 
the Project Manager, block, and click on Design 
Resources all the way to SCHEMATIC1. Press 
the right mouse button on SCHEMATIC1 and 
select New Page from the menu that pops up. 
Enter a page name, if desired, and press the OK 
button.

• A circuit can be copy-pasted from one page 
to another. The whole circuit is selected as 
described in item 9 of Section C.2. A copy-paste 
is then performed from one page to another.

• When a circuit is copy-pasted from one page to 
another, part numbers of components are auto-
matically changed to preserve the integrity of 
the circuit in each page. Net aliases, however, 
are not automatically changed, so that PSpice 
would consider nodes on different pages hav-
ing the same net alias to be connected together. 
To prevent this, the net aliases must be changed 
manually in the new page.

• A page can be renamed or edited by double-
clicking on the page name.

• Circuits on different pages can be connected by 
power connectors or off-page connectors.
• To connect a power connector to a node, 

click on the ‘Place power’ button in the sec-
ond column of the Parts toolbar. The Place 
Power window appears. Select the CAPSYM 
library. Scroll down the list and select one of 
the last four entries: VCC_ARROW, VCC_
BAR, VCC_CIRCLE, and VCC_WAVE. Each 
of these refers to a different graphic sym-
bol for the connector. Suppose you choose 
VCC_CIRCLE. Click OK and the connector 
with this name appears attached to the cur-
sor. Move it to the node to be labeled, press 
the left mouse button and press Esc to stop 
placing connectors. The node is now labeled 
with the name VCC_CIRCLE. To change this 

name, double-click on it and enter the name 
of your choice in the Value field of the Display 
properties window. Note that although 
PSpice refers to these connectors as power 
connectors, they can be used with any node.

• To connect an off-page connector to a node, 
click on the ‘Place off-page connector’ but-
ton from the first column of the toolbar. 
The Place Off-Page Connector window 
appears. Select the CAPSYM library. Two 
choices are available: OFFPAGELEFT-L and 
OFFPAGELEFT-R that differ in the direction 
of the double arrow that will be attached 
to the node. Either one may be used. Select 
one of the symbols, drag it to the node to be 
labeled, anchor it, and rename it, as for the 
power connector.

• To clear garbage from the drawing page, select 
View/Zoom and click on Redraw or press the 
F5 key. The screen will be cleared and redrawn.

C.10  Markers

• Voltage and current markers can be added to 
the schematic and used in conjunction with the 
plot window. The markers obviate the need for 
labeling nodes and invoking Trace/Add Trace 
in the Simulation Results page when only rela-
tively simple plots are required.

• Four markers are available identified as Voltage 
Level, Voltage Differential, Current into Pin, 
and Power Dissipation. These markers can be 
applied by pressing the appropriate button in 
the bottom row of the menu.

• Choosing any of these markers results in a 
marker symbol attached to the cursor, which 
can be moved and located at appropriate points 
in the schematic. After locating a marker, press 
the Esc button to stop locating a marker of a 
given type.

• Power dissipation markers are attached to 
the body of a PSpice device, current mark-
ers are attached to pins, and voltage markers 
are attached to pins, wires, or buses. The first 
attachment of a Voltage Differential marker is 
labeled V+, whereas the second is labeled V−. 
The value displayed is that of (V+ − V−).

• Power markers indicate the power absorbed 
by the marked circuit element. Under ac con-
ditions, this is the average power for a resistor, 
the  reactive power for a capacitor or inductor, 
and the complex power for a source.
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• Adding a marker automatically adds a plot to 
the plot window in the SCHEMATIC1 page, the 
color of each plot being that of the correspond-
ing marker.

• Markers can be rotated just like circuit 
components.

C.11  Simulation Profile

• Every simulation must have a simulation profile. 
When a new simulation is started, clicking on 
the New Simulation Profile button in the PSpice 
toolbar opens a New Simulation dialog box. A 
name is entered for the simulation profile in the 
‘Name’ field to allow performing different sim-
ulations on the same circuit. The ‘Inherit From’ 
field allows using entries from another simula-
tion profile, the default entry being ‘none’.

• Clicking on the Create button in the New 
Simulation dialog box opens the Simulation 
Settings window having the name chosen for 
the simulation profile. Four choices of ‘Analysis 
type’ are available:
• Bias Point: Suitable for dc circuit analy-

sis. Under ‘Options’, ‘General Settings’ is 
selected by default. No selections or entries 
are made under ‘Output File Options’ for 
straightforward dc circuit analysis.

• DC Sweep: Used for sweeping the value of a 
current source, a voltage source, or a global 
parameter, as described in the solved examples 
in this book for deriving Thevenin’s equivalent 
circuit, Norton’s equivalent circuit, or maxi-
mum power transfer, all under dc conditions.

• AC Sweep/Noise: Used for steady-state sinu-
soidal conditions, frequency responses, or 
maximum power transfer under ac condi-
tions, as described in the solved examples in 
this book.

• Time Domain (Transient): Used for transient 
analysis and Fourier analysis, as described in 
the solved examples in this book.

• It should be emphasized that since PSpice simu-
lations are performed at a succession of discrete 
values of the variable, or points, along the hori-
zontal axis, then to obtain a smooth curve, a suf-
ficient number of points must be included in the 
simulation. This number is determined by the 
‘Increment’ entry in DC Sweep, the ‘Total Points’ 
or ‘Points/Decade’ entries in AC Sweep/Noise, 
and the ‘Maximum step size’ entry in Time-
Domain (Transient) analysis.

• Too small a value for the number of points 
results in a “jagged” curve that looks like a 
series of straight-line segments and limits 
the accuracy of the reading of the variable on 
the horizontal axis. For example, in a time-
domain analysis having a simulation time of 
1 s and a ‘Maximum step size’ of 1 ms, the 
total number of simulation points is 1/10−3 
or 1000. Successive points are separated by 
1 ms, so it’s not possible to  read values of 
time to an accuracy better than 1 ms.

• On the other hand, too large a value for the 
number of points unnecessarily prolongs 
simulation time and increases the size of 
the simulation file. Generally speaking, it is 
a good idea to aim for about 2,000 to 5,000 
points along the horizontal axis.

C.12  Linear and Ideal Transformers

• To simulate a two-winding linear transformer 
enter part XFRM_LINEAR, which is the last 
entry in the ANALOG library. In the Property 
Editor Spreadsheet of the transformer, enter 
under COUPLING the appropriate value of the 
coupling coefficient k. Enter under L1_VALUE 
the inductance value of the coil on the left, and 
under L2_VALUE the inductance value of the coil 
on the right.

• The default dot markings on the linear trans-
former are at the upper terminal of each coil. 
If the dot markings are to be reversed, either 
the connections to one of the coils should be 
reversed or a negative value entered for the cou-
pling coefficient.

• If the terminals of one coil are open-circuited, 
PSpice will give an error that less than two con-
nections are made to that node. Under these 
conditions connect a very large resistance, say 
1  GΩ, across the coil terminals, or connect a 
voltage printer to the node.

• To simulate a two-winding ideal transformer 
use XFRM_LINEAR, with k = 1 and very large 
values, of the order of megahenries, for the 
inductances of the two coils but with the ratios 
of the inductances equal to the square of the 
turns ratio.

• XFRM_LINEAR does not have a provision for 
initial current values. It is therefore suitable 
for steady-state sinusoidal simulations. For 
time domain analysis, the initial value must be 
enforced in the circuit by switches or current 
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sources. In these cases, and in cases of trans-
formers having two or more windings, the part 
K_Linear in the ANALOG library should be 
used. Each winding is entered as an inductor 
having its marked terminal in the same circuit 
location as the dot marking of the correspond-
ing winding. A K_Linear entry is used to couple 
every two inductors together in accordance 
with the coupling coefficient between the two 
windings involved, using the part numbers of 
the inductors in the circuit.

C.13  Ideal Op Amp

• An ideal op amp is available from the Analog 
library as part OPAMP. The default gain is 106 
and the default power supplies are +15 V and 
−15 V, but these can be changed in the Property 
Editor spreadsheet of the op amp, as may be 
desired.

C.14  Global Parameter

• PSpice allows the variation of a parameter such 
as a resistance value Ro.

• To allow variation of Ro, it has to be declared a 
global parameter, as follows:
• Double-click on the value of Ro. In the 

Display Properties window, enter under 
Value: {R_val}, where R_val is a name arbi-
trarily assigned to Ro, and the curly brackets 
designate a parameter entry.

• From the SPECIAL library, enter the part 
PARAM. The word PARAMETERS: is dis-
played on the schematic.

• Double-click on PARAMETERS: to display 
its Property Editor spreadsheet. Click on 
New Column tab and enter in the Add New 
Column window R_val under Name and 
an arbitrary number, say 5, under value. 
Then  click OK. It is convenient to have the 
Name and Value displayed. They would 
appear as R_val = 5 under PARAMETERS:.

• Select in the Simulation Settings the type of 
analysis required, such as DC Sweep, AC 
Sweep, or Transient analysis. Under Sweep 
variable, choose Global parameter and enter 
R_val under variable name. Under Sweep type, 
choose Linear and enter 1, say, for Start value, a 
convenient value, say, 25 for End value and 0.01 
for Increment.

• Run the simulation. A graph will be displayed 
having the horizontal axis labeled R_val with 
values from 1 to 25. Select Trace/Add trace then 
choose W(R5), assuming the Part reference for 
Ro is R5. A graph of power dissipated vs. R_val 
will be displayed.

C.15  Switches

• PSpice allows the use of (1) a normally open 
switch that is closed at a certain time, the switch 
part name being Sw_tClose (read as switch to 
close), and (2) a normally closed switch that is 
opened at a certain time, the switch part name 
being Sw_tOpen (read as switch to open). Both 
of these parts are in the EVAL library.

• Switch parameters have to be set in the Property 
Editor spreadsheet as follows:
• TCLOSE—for a Sw_tClose, this is the time at 

which the switch closes. You may leave this 
parameter at the default value of zero, unless 
a closing time other than zero is required.

• TOPEN—for a Sw_tOpen, this is the time 
at which the switch opens. You may leave 
this parameter at the default value of zero, 
unless an opening time other than zero is 
required.

• TTRAN—the transition time for switch clo-
sure. Leave this parameter at the default 
value of 1 μs. Since this is usually much 
smaller than the time constant of the cir-
cuit, the closing of the switch is essentially 
instantaneous. In cases of very fast tran-
sients, it may be necessary to enter a smaller 
value.

• RCLOSED—the resistance of the switch 
when closed. Leave this parameter at the 
default value of 0.01 Ω. Since this is usually 
much smaller than the resistance in series 
with the switch, the switch appears as a short 
circuit when closed. In circuits involving 
small or zero resistance, it may be necessary 
to enter a smaller resistance value.

• ROPEN—the resistance of the switch when 
open. Leave this parameter at the default 
value of 1 MΩ. Since this resistance is usually 
much larger than the resistance in series with 
the switch, the switch appears essentially as 
an open circuit. In circuits involving very 
large resistances, it may be necessary to enter 
a larger resistance value.
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C.16  Printers

• In the sinusoidal steady state, printers are used 
to determine voltage and current values. For 
current measurement, a two-terminal IPRINT 
printer is available from the SPECIAL library. 
The printer is connected so that current in the 
assigned positive direction enters the unmarked 
terminal of the printer and leaves at the termi-
nal marked with a minus sign.

• For voltage measurement, two printers are 
available from the SPECIAL library: (1) 
VPRINT1, which has one terminal only, and 
therefore measures voltage with respect to 
ground, and (2) VPRINT2, which has two ter-
minals and measures the voltage drop from 
the unmarked terminal to the terminal marked 
with a minus sign.

• In order to use any of the printers, appropri-
ate entries must be made in the Property Editor 
spreadsheet of the printer. For ac measurements, 
a Y must be entered under ac in the Property 
Editor spreadsheet of each printer. A Y is also 
entered under REAL and IMAG to express com-
plex values in rectangular form, or a Y is entered 
under MAG and PHASE to express complex 
values in polar form.

• The values measured by the printers are read 
from the output file under the respective 
printer.

C.17  Evaluate Measurements

• An alternative to using printers for reading 
values of currents and voltages is to use the 
‘Evaluate Measurement’ feature of PSpice. In the 
SCHEMATIC1-(simulation name)-page, select 
‘Trace/Evaluate Measurement’. Two windows 
are displayed. Under ‘Functions or Macros’ 
in the right-hand window, choose ‘Analog 
Operators and Functions’. To read magnitudes, 
select the voltage or current required from the 
left-hand window labeled ‘Simulation Output 
Variables’. To read phase angles, select P(), and 
then select the variable required. For example, 
to read the voltage of the node labeled ‘a’, V(a) 
and P(V(a)) are selected.

• The values are displayed in a window under the 
graph. This window can be displayed or hidden 
by clicking on the ‘Toggle Measurement Results 
Window’ button in the Probe toolbar.

• Evaluate Measurement can be used for measur-
ing filter parameters, such as Q and 3-dB band-
width. However, the measurements may not 
be reliable in the case of low-Q filters or filters 
having capacitors as the only energy storage 
elements. In these cases, the cursor should be 
used, as described in Section C.25.

C.18  Dependent Sources

Dependent sources are listed in the ANALOG library 
under the following part names:

E: Voltage-controlled voltage source (VCVS)
F: Current-controlled current source (CCCS)
G: Voltage-controlled current source (VCCS)
H: Current-controlled voltage source (CCVS)

Since they are controlled sources, dependent sources 
automatically assume the same time variation as the 
controlling quantity, whether dc, ac, etc.

C.19  Sources for the Sinusoidal Steady State

• For the sinusoidal steady state, a voltage 
source VAC and a current source IAC are avail-
able from the SOURCE library. Each of these 
sources, when entered, has default values of 
0Vdc and 1Vac for VAC or 0Adc and 1Aac for 
IAC. The sources allow simultaneous simula-
tion of dc and sinusoidal steady state. For a 
purely sinusoidal state, the dc value should be 
left at zero.

• The magnitude that is entered for VAC or IAC 
is interpreted by PSpice as an rms value. Since 
the responses are directly proportional to source 
values, the entered source values can be con-
sidered as peak values, in which case all mag-
nitudes of voltages and currents will be peak 
values. However, if power values are required, 
the power value calculated by PSpice is based 
on considering source values to be rms.

• A phase value can be assigned to a source by 
entering the phase angle in degrees in the 
ACPHASE row of the Property Editor spread-
sheet. If only one source is present in the circuit, 
the phase angles of all responses are relative to 
that of the source, which has a default value of 
zero, so no phase angle need be assigned to the 
source. However, if more than one ac source is 
present, with the sources having different phase 
angles, then the appropriate phase angle should 
be entered for each source.
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• When performing the simulation, choose 
AC Sweep/Noise for Analysis type in the 
Simulation Settings. Choose Linear under AC 
Sweep Type and enter the source frequency in 
Hz, not in rad/s, under both Start Frequency 
and End Frequency. Since the start and end fre-
quencies are the same, enter 1 for ‘Total points’.

• Note that in some problems the frequency may 
not be specified but the reactance values may 
be given. To perform the simulation, assume 
any convenient frequency and enter the val-
ues of inductors or capacitors accordingly. 
For example, if the reactance of an inductor is 
given as 10 Ω, and f = 1 Hz is assumed, then 
enter the value of the inductance as 1.59155, 
which is 10/(2π).

C.20  Time-Varying Sinusoidal Sources

• PSpice ISIN and VSIN implement an expo-
nentially decaying sinusoidal current source 
and an exponentially decaying sinusoidal 
voltage, respectively. When placed on the 
Schematic page, some parameters are attached 
to the source, namely, IOFF or VOFF, IAMPL 
or VAMPL, and FREQ. These parameters are 
explained in the following text for ISIN, with 
reference to Figure C.1, the meaning being 
similar for VSIN. In addition, VSIN has an AC 
parameter, which stands for the rms value. 
This parameter can be ignored when VAMPL 
is used.

• IOFF is the offset of the sinusoid from the 0 
level, as indicated in the figure. IOFF = 0 for a 
sinusoidal function of zero average.

• IAMPL is the amplitude of the sinusoid.
• FREQ is the frequency in Hz.

• In addition, the following parameters can be 
entered using the Property Editor spreadsheet 
for the source, if needed:
• PHASE is the phase angle in degrees, assum-

ing a sine function. Thus the default value is 
zero, and PHASE = 90 for a cosine function.

• TD is time of the start of the sinusoid with 
respect to t = 0. TD = 0 for a sinωt function 
and is the default value.

• DF is the damping factor and is the recipro-
cal of the time constant of the exponential 
decay of the amplitude of the sinusoid. DF is 
entered in units of seconds. For a sinusoidal 
function of constant amplitude, DF = 0 and is 
the default value.

C.21  Pulse Sources

• The VPULSE and IPULSE sources in the 
SOURCE library allow the application of an 
 excitation consisting of a single pulse, or any num-
ber of pulses, or a periodic pulse train. The pulse 
may be rectangular, triangular, or trapezoidal in 
shape, depending on the parameter values entered.

• The interpretation of the parameters of VPULSE 
is as follows (Figure C.2):
V1: The lower level of the pulses.
V2: The upper level of the pulses.
TD:  Time delay before the level changes from V1 

to V2.
TR:  Time rise of the pulse; for a rectangular 

pulse, TR should be very small but should 
not be zero as this may produce strange 
spikes in the waveforms.

TF:  Time fall of the pulse; for a rectangular 
pulse, TF should be very small but should 
not be zero as this may produce strange 
spikes in the waveforms.

I

IAMPL

IOFF

TD
t

FIGURE C.1
ISIN source.

V1
t = 0

TD
PW

PER

V2

TR TF

FIGURE C.2
VPULSE source.
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PW:  Duration of the V2 level; for a triangular 
pulse, PW should be very small but should 
not be zero.

PER:  Time between repetition of pulses; to obtain 
a single pulse, PER is made larger than the 
duration of the simulation; similarly to 
obtain a specified number of pulses. For 
the response to a periodic pulse train, the 
simulation is started after a sufficient time is 
allowed for the circuit to reach a steady state.

C.22  Piecewise-Linear Sources

• The VPWL and IPWL, or piecewise-linear, 
sources in the SOURCE library allow the applica-
tion of an excitation having a waveform consist-
ing of straight-line segments between up to eight 
breakpoints. When the excitation level changes 
from one breakpoint to the next, the variation is 
linear.

• As an example, consider a waveform that sud-
denly changes from 0 to 2 V at t = 0, stays at 2 V 
until t = 4 s, and then decreases to 0 at t = 6 s. 
To generate this waveform, enter in the Property 
Editor spreadsheet of the source, the following 
breakpoints and the corresponding voltage levels:

T1 = 0 V1 = 0
T2 = 0 V2 = 2
T3 = 4 V3 = 2
T4 = 6 V4 = 0

• The waveform has a step at t = 0. The volt-
age is maintained at 2 V till t = 4 s and then 
decreases linearly to zero at t = 6 s.

• The piecewise-linear waveform can be applied 
n times in succession, or continuously. In the 
former case, the sources VPWL_RE_N_TIMES 
and IPWL_RE_N_TIMES are used, whereas in 
the latter case the sources VPWL_RE_FOREVER 
and IPWL_RE_FOREVER are used. The use of 
VPWL_RE_FOREVER is described in a solved 
example on responses to periodic inputs.

C.23  Exponential Sources

• The exponential source in PSpice is IEXP or 
VEXP (Figure C.3).

• I1 is the level from which the rising exponential 
begins and toward which the decaying expo-
nential falls.

• I2 is the level which the rising exponential 
approaches.

• TD1 is the time at which the rising exponential 
begins.

• TD2 is the time at which the decaying exponen-
tial begins.

• TC1 and TC2 are the respective time constants.
• To simulate an exponential of the form 

I e t= -10 5 A, choose I1 = 0, I2 = 10, TD1 = 0, 
TC1 = 0, TD2 = 0, and TC2 = 0.2.

C.24  Analog Behavioral Modules

• A number of useful functions are available 
from the Analog Behavioral Modules (ABM) 
PSpice library, which can be used to implement 
a variety of mathematical and other operations.

• Useful functions are the ABS function that gives 
the absolute value of a function, LIMIT that lim-
its the maximum and minimum values of a func-
tion, SUM that adds two functions, MULT that 
multiplies two inputs, CONST that provides a 
constant value that can be used in addition or 
multiplication, and LAPLACE that implements 
an arbitrary transfer function.

• For example, to obtain a full-wave rectified 
waveform, enter VSIN or ISIN followed by 
the ABS block from the ABM PSpice library. 
The output of this block is the absolute value 
of the input. To obtain a half-wave rectified 
 waveform, add a LIMIT block, or a GLIMIT to 
provide some gain.

C.25  Working with Plots

• The zoom feature can be used to enlarge a cer-
tain part of the plot for closer examination of 
details. Select View/Zoom. A menu appears 
that lists  several ways of zooming in or out. 

I1

I2

TD1 TD2

TC1 TC2

FIGURE C.3
IEXP source.
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Suppose Area is chosen. The cursor changes to 
crosshairs. Position the cursor at a corner of the 
area to be enlarged. While pressing and hold-
ing the left mouse button, move the cursor so as 
to enclose the desired area within the rectangle 
attached to the cursor. When the mouse button is 
released the selected area appears enlarged to fit 
the screen. Further zooming of part of the selected 
area can be made. To return to a previous view, 
select View/Zoom/Previous. Zooming can also 
be done using the buttons on the Probe toolbar.

• Text can be placed on the screen by using the 
menus or the Parts toolbar. To use the menus, 
select Plot/Label/Text and enter in the win-
dow that appears the text it is desired to dis-
play. When you click OK, the text string will 
appear attached to the mouse. Drag the text to 
the desired location and press the left mouse 
button to anchor the text. Type CTRL-L to clear 
any undesired text fragments that may appear. 
The text can also be dragged to a new location. 
Alternatively, text can be placed on the screen by 
clicking on the ‘abc’ button in the Probe toolbar.

• The cursor can be displayed by choosing Trace/
Cursor/Display or by clicking once on the 
‘Toggle cursor’ button in the Probe toolbar. Once 
the cursor is displayed, cursor 1 can be moved by 
means of the left and right arrow keys. Pressing 
Shift while using these keys moves cursor 2. 
Clicking again on the ‘Toggle cursor’ button in 
the Probe toolbar hides the cursors.

• When the cursors are enabled, a number of 
 buttons are highlighted in the Cursor tool-
bar that can be used for locating either cursor 
at various parts of the waveform. Clicking on 
the Cursor Max button, for example, moves the 
selected cursor to the maximum of the graph.

• Moving the arrow cursor of the page to a 
particular point on the graph and clicking 
on the Cursor Point button moves the cur-
sor to this point. Clicking on the Mark Label 
button displays the coordinates of the point.

• The x- and y-values at a given cursor position 
are indicated in a cursor window in the bot-
tom RHS of the page.

• When more than one trace is displayed, the fol-
lowing applies:

• Each trace is identified by a small square of 
the same color as the corresponding trace. 
The variable whose variation is displayed by 
the trace appears next to this square. Clicking 
on the variable name highlights it. Pressing 
the Delete key deletes the trace.

• Clicking on the small colored square moves 
cursor 1 from one trace to another, as indi-
cated by a highlighted, dotted-line square 
surrounding the colored square.

• The same numerical vertical scale applies to 
all traces. Thus, to display a current in mA 
simultaneously with a voltage in volts, where 
the numerical values of both traces are compa-
rable, either the current must be multiplied by 
103 or the voltage divided by 103.

• When using a single frequency, a small dash is dis-
played at the specified frequency. If it is attempted 
to read the value on the y-axis using the cursor, a 
“There is no valid trace to exam.” message is dis-
played. The value can be read by selecting Trace/
Evaluate Measurement (Section C.17).

C.26  Search Commands

The search command can be used with the cursor, after 
the cursor is displayed by selecting Trace/Cursor/
Display or clicking on the ‘Toggle cursor’ button in the 
Probe toolbar. The search feature is invoked by select-
ing Trace/Cursor/Search Commands or clicking on the 
Cursor Search button in the Cursor toolbar. A window 
appears for entering the search command and for select-
ing whether the command is to apply to cursor 1 or 2. 
The syntax of the search command is as follows, without 
space separations:

 

search direction start point

consecutive points

[ ] éë ùû

éë ùû

/ _ /

# _ # rrange x ,range y

for repeat condition

_ _

:

éë ùû( )é
ë

ù
û

[ ] éë ùû
 

Square brackets indicate optional arguments. Searches 
are case independent so that uppercase or lowercase 
characters can be used. Abbreviations can also be used 
for the various entries illustrated as follows:

• The command must start with the word ‘search’ 
or the letter ‘s’.

• direction could be forward (the default), entered 
with forward or f, or it could be backward, 
entered with backward or b.

• condition must be entered from one of the fol-
lowing options, each of which can be entered 
using the first two letters only, shown italicized:
• peak, finds the data point with the [# consecutive_

points#] on each side having lower y- values 
than the peak data point. For example, if the 
command is sf#2#pe, the peak searched for 
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is a data point with two neighboring data 
points of lower value.

• max, finds the greatest y-value for all points 
in the specified x-range. If there is more than 
one maximum having the same y-values, 
the nearest one is found. max is not affected 
by [direction], [#consecutive_points#], or 
[repeat:].

• trough, similar to peak, but in the opposite 
sense.

• min, similar to max, but in the opposite sense.

• slope[(posneg)], finds the maximum slope, 
which could be positive, and is specified as 
sl(p), or could be negative, specified as sl(n), 
or could be both, specified as sl(b).

• point, finds the next data point in the given 
direction.

• xvalue<(value)>, finds the first point on the 
curve that has the specified x-value, where 
value can be a number (e.g., 10n or 1E5), a 
percentage (e.g., 50%), a marked point 
(e.g.,  x5), a value relative to max or min 
(e.g., max-2), a value relative to start value 
(e.g., .-3), where a dot denotes the start value, 
or a dB value relative to a max or min (e.g., 
max-3). xvalue is not affected by [direc-
tion], [#consecutive_points#], [(range_x 
[,range_y])], or [repeat:]. For example, sxv(5) 
searches for the point whose x-value is 5.

• level<(value[,posneg])> finds the next 
point at a certain value relative to the given 
level. [,posneg] has the same significance 
as in the slope[(posneg)] command and 
value has the same significance as in the 
xvalue<(value)> command. For example, 
sle(10) searches for the point whose y value 
is 10; sfle(max-3db) searches forward for 
the next point that is 3 dB below the maxi-
mum value of the trace.

• /start_point/ specifies the starting point to begin 
a search, the current point being the default. 
^ and $ denote, respectively, the first and last 
point in the search range.

• (range_x [, range_y]) specifies the range of val-
ues that the search is confined to, the search 
is inclusive of the range values specified. The 
range can be specified as floating-point values, 
as a percent of the full range, as marked points, 
or as an expression of marked points. The 
default range is all points available. The first 
comma separates the limits of the x-range. The 
second comma separates the x-range values 

from the y-range values, and the third comma 
separates the limits of the y-range. For example, 
(1n,200n) specifies an x-range of 1 to 200 nano 
and a full y-range. (1.5,20E−9,0,1m) specifies 
an x-range of 1.5–20 nano and a y-range from 
0 to 1 milli. (,,1,3) specifies a full x-range and a 
y-range from 1 to 3.

• repeat: specifies which occurrence of <condi-
tion> to find. For example, sb2:le(3,p) searches 
backward for the second crossing of the positive 
3 V level, assuming y-values are in volts.

As an example, the command

 

search forward n n for level positive:

or in abbrevi

# # , ,4 1 5 5 3( ) ( )
aated form sf#4#(1n,5n)5:le(3,p)  

searches forward for the fifth occurrence of a 3 V, 
 positive going, y level crossing that has at least four 
consecutive points at or beyond 3 volts, only searching 
within the x-value range of 1–5ns.

C.27  Frequency Responses

• AC sweep is used to plot the frequency response. 
The desired frequency range in Hz is entered in 
the simulation profile as a start frequency and 
an end frequency, usually extending over five 
decades. Use a logarithmic AC sweep type with 
at least 1000 points/decade to obtain a smooth 
curve.

• To obtain the transfer function, use a VAC or an 
IAC source, as appropriate, having a value of 
unity. Although a voltage marker can be used 
at the desired output, the resulting y-scale is lin-
ear and has to be changed to dB. It is usually 
more convenient to name the desired output, 
say vo, and select Trace/Add Trace in the sche-
matic page. Select DB( ) from the list of Analog 
Operators and Functions in the RH window, 
and then select V(vo) from the list in the LH 
window so as to obtain the Trace Expression 
DB(V(vo)). Press the OK button and the plot 
appears in the plot window.

• Measurements can be made using cursor search 
commands, as explained in Section C.26. To 
obtain the maximum of a low-pass, high-pass, 
or bandpass response, press the ‘Toggle  cursor’ 
button in the Probe toolbar, and then press the 
Cursor Max button in the Cursor toolbar. The 
cursor will move to the position of the maxi-
mum and the values can be read in the Probe 
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Cursor window. Press the OK button and the 
value appears in the Measurement Results 
 window under the plot.

• The 3 dB frequency can be read using the com-
mand sle(max-3). In the case of a bandpass 
response, the command can be used with cur-
sor 2 to obtain the lower 3 dB frequency and the 
command used twice with cursor 1 to obtain the 
upper 3 dB frequency. The frequencies and their 
difference, the bandwidth, can be read in the 
Probe Cursor window.

• Alternatively, the Evaluate Measurement fea-
ture can be used to obtain the bandwidth. 
Press the Evaluate Measurement button in the 
Probe toolbar. An Evaluate Measurement win-
dow is opened. To obtain the 3 dB bandwidth 
of a bandpass response, for example, select the 
second entry in the list in the RH window and 
select V(vo) from the list in the LH window so 
as to obtain the Trace Expression Bandwidth_
Bandpass_3dB(V(vo)). Press the OK button to 
display the value in the Measurement Results 
window under the plot window.

• As noted previously, some results of Evaluate 
Measurement may not be reliable in the case of 
low-Q circuits or circuits having capacitors as 
the only energy storage elements.

C.28  Trace Expressions

• A plot can be added to the displayed plotted 
results by entering the appropriate expression 
in the Trace Expression field of the Add Traces 
window of the SCHEMATIC1-(simulation 
name) page.

• For example, to add an asymptote of slope −20 dB/
decade to a low-pass response displayed in dB 
on a logarithmic frequency scale, enter the exp-
ression: −20*log10(Frequency)−20*log10(fc)+A,  
where fc is the 3 dB cutoff frequency in Hz and 
A is the low-frequency gain in dB.

• In entering trace expressions, Analog Operators 
and Functions can be entered from the list in 
the RH window of the Add Traces window. It 
is useful to note that D( ) is the derivative and 
PWR(a,b) is equivalent to ab. Thus, 10,000 can be 
entered as PWR(10,4).

• Frequency and Time appear in the list of 
Simulation Output Variables in the LH window 
of the Add Traces window. It is assumed in the 
trace expressions that the values of these vari-
ables are in Hz and seconds, respectively.

C.29  Fourier Analysis

• PSpice can be used to obtain a printout of the 
amplitude and phase of each frequency compo-
nent of a periodic waveform and to display its 
amplitude spectrum.

• In performing Fourier analysis, when a peri-
odic input is applied to a circuit at t = 0, suffi-
cient time should be allowed for the output to 
reach a steady state. This time can be selected 
by first observing the output starting at t = 0, 
and determining the number of periods it takes 
the output to become very nearly periodic. 
PSpice is then instructed to collect data for one 
period after this initial time. For example, if 
the period is 1/120 s or 25/3 ms, data should 
be collected staring at, say, 300 ms in order 
to perform a Fourier analysis on the output 
voltage.

• It is convenient to assign names to the vari-
ables on which the Fourier analysis is to be 
performed. An input voltage, for example, 
can be labeled as VI, whereas an output volt-
age can be labeled as VO. Labeling can be 
done as described in Section C.8 on using a 
net alias.

• To perform Fourier analysis in the aforemen-
tioned example, select Time-Domain (Transient) 
analysis in the Simulation Settings. Enter 
308.3333m for ‘Run to time’, 300m for ‘Start 
 saving data after’, and 0.1m for ‘Maximum step 
size’.

• Check the box for ‘Skip the initial transient bias 
point calculation’, then click the ‘Output File 
Options’ button to display the Transient Output 
File Options window.

• Check the Perform Fourier Analysis box. For 
Center Frequency, enter the frequency in Hz, 
which is 120 in the aforementioned example. 
Then enter the number of harmonics to be 
included in the Fourier analysis, say 5. Under 
‘Output Variables’ enter V(VI) followed by a 
space then V(VO).

• After the simulation is run, the output file gives for 
VI and VO the dc value and the frequency, mag-
nitude, and phase of each frequency component.

• To display the amplitude spectrum, select 
Trace/Fourier, and then Trace/Add Trace for 
V(VI) and V(VO). Change the scale of the axis by 
selecting Plot/Axis Settings. In the Axis Settings 
window, select User Defined under XAxis Data 
range and enter 0–600 Hz, for example. A plot of 



786 Appendix C: PSpice Simulation

triangles is displayed, the peaks of the triangles 
being at the frequencies of the dc component, 
fundamental, and harmonics.

• PSpice assumes a periodic function of the form 
f t c c n tn n n( ) = + å +( )=

¥
0 1 0sin w f . Hence, a cosω0t 

term will be considered as sin(ω0t + 90°) and 
assigned a phase angle of 90°.

C.30  Graph and Data Copying

• The whole graph window can be copied to 
the clipboard by selecting Window/Copy to 
Clipboard. A window is displayed in which 
various choices concerning colors of traces 
and background can be made. After making 
these choices, pressing the OK button copies 
the graph window to the clipboard. The graph 

window can then be pasted in another program 
such as Word or PowerPoint.

• Data can be copied from a Probe trace to Excel, 
where it can be processed or exported to other pro-
grams such as MATLAB. To copy data in this man-
ner, simply click on the text label identifying the 
trace and located below the window displaying 
the trace. With the text highlighted and selected, 
copy to the clipboard using Edit/Copy, or CTRL C, 
and then paste in Excel. The data are copied in two 
columns: the first column contains the data from 
the independent, x-axis variable, whereas the sec-
ond contains data from the y-axis variable. The 
labels of the two axes appear in the first row, but 
with leading spaces, which can be easily removed. 
The data from more than one trace can be copied at 
the same time by highlighting more than one text 
label, with the CTRL button pressed.
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Appendix D: Complex Numbers and Algebra

D.1  Definitions and Notation

Imaginary numbers arise when taking the square roots 
of negative numbers. Thus, 9 3= ± , since multiplying 
+3 or −3 by itself gives 9. But what about -9? Whereas 

9 is a real number ±( )3 , -9 is said to be an  imaginary 
number. It is evaluated by defining a quantity j as being 

equal to -1. Then j2  =  −1, and - =9 92j . Now we 
have two positive quantities under the square root, so 
the square root becomes ± j3. This is a valid answer, 
because (j3)(j3) = j29 = −9 = (−j3)(−j3).

Defined in this way, imaginary numbers are a  perfectly 
valid set of numbers, just like real numbers, integers, or 
rational numbers. j, the basis of all imaginary numbers, 
is of course itself an imaginary number, and all imagi-
nary numbers are multiplied by j. Imaginary numbers 
can be manipulated according to certain logical and con-
sistent rules.

A complex number x is defined as the sum of a real 
number and an imaginary number:

 x a jb= +  (D.1)

where a is referred to as the real part of x and b as the 
imaginary part. Complex numbers are commonly 
encountered in algebra and trigonometry. For example, 
the equation x2 + x + 1 does not have real roots, but it 
does have complex roots, that is, roots that are com-
plex numbers. The sine and cosine functions may be 
expressed in terms of complex quantities:

 
cos , sinx

e e
x

e e
j

jx jx jx jx

= + = -- -

2 2  
(D.2)

These relations can be readily verified using the infi-
nite series representations of the exponential, sine, and 
cosine functions.

The conjugate of a complex number x, denoted as x*, 
is the number that has the same real part but a negated 
imaginary part. Thus, a + jb and a − jb are conjugates.

Complex quantities play a central role in electric 
circuits. They are the basis for phasor notation. They 
are also encountered in Fourier series, Fourier and 
Laplace transforms, and in the extensive applications 
that derive from the theory of functions of complex 
variables.

D.2  Graphical Representation

A complex number may be represented in rectangular 
form as a point in the complex plane or Argand  diagram. 
This is the familiar two-dimensional, Cartesian coordi-
nate plane except that the vertical axis is denoted as the 
imaginary axis (Figure D.1). A complex number a +  jb 
is represented as a point whose horizontal coordinate 
is a and vertical coordinate is b. Figure D.1 illustrates 
several such examples where the number is real (such 
as 1, 4, −3), imaginary (such as j2, −j4), or complex (such 
as 4 +  j3, 4 − j3, −3 +  j4, −5 − j4). The numbers 4 +  j3 
and 4 − j3 are conjugates. Note that whereas in the real 
plane, a point is represented by a coordinate pair (x, y), 
the point is represented in the complex plane as a com-
plex number, for example, 4 + j3.

The rectangular form of the presentation is very con-
venient for addition or subtraction of complex num-
bers, since the real parts and the imaginary parts can 
be added, or subtracted, separately. It is not the most 
convenient, however, for operations such as multiplica-
tion or division. For such purposes, the polar form is 
preferred. This is similar to the polar coordinates used in 
the real plane, but with one important feature that will 
be discussed shortly.

In polar form, a complex number is represented as a 
line, of length equal to the magnitude of the complex 
number, drawn from the origin at a certain angle with 
respect to the horizontal axis. In the polar form, therefore, 

Real axis

Imaginary axis

0 1 2 3 5–1–2–3–4

1

2

3
4

5

–2
–1

–3

–4

–5

4 + j3

4 – j3

–3 + j4

–5 – j4

4–5

FIGURE D.1
Argand diagram.
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two parameters are specified: a magnitude and a phase 
angle. A complex number p may be represented in polar 
form as p Ð °q , where |p| is the magnitude of the com-
plex number and θ is its phase angle (Figure D.2). The 
positive direction of angles is counterclockwise from 
the real axis, and the nagative direction is clockwise.

The conversion between rectangular and polar forms 
follows readily from Figure D.2. Given the rectangular 
form p = a + jb, it follows that

 
p a b

b
a= + = -2 2 1and q tan

 
(D.3)

It can be readily verified that the complex numbers 
4  +  j3, 4 – j3, −3  +  j4, −5 − j4 in Figure D.1 have the 
 following representations in polar form:

 4 3 5 36 9 4 3 5 36 9+ º Ð ° - º Ð- °j j. .  

 - + º Ð ° - - º Ð- °3 4 5 126 9 5 4 6 4 141 3j j. . .  

Given the polar form p p= Ð °q , the rectangular coor-
dinates are

 a p b p= =cos sinq qand  (D.4)

Figure D.2 also shows the conjugate of p in polar form. 
It has the same magnitude as p and a phase angle that is 
the negative of that of p.

The polar form of a complex number can also be repre-
sented in a very useful form that is not applicable to the 
polar form of real quantities. It follows from Equation 
D.4 that

 p a jb p j= + = +( )cos sinq q  (D.5)

But according to Equation D.2: e jiq q q= +cos sin , 
which is known as Euler’s formula. Hence, a complex 
number X may be represented in polar form as

 p p e j= q
 (D.6)

Note that e jq  is a complex number in polar form 
whose magnitude is unity and whose phase angle is θ. 
Hence, a complex number whose phase angle is θ may 

be represented as in Equation D.6. In particular, j e
j

=
p
2
 

so the polar form of an imaginary number such as j2 
is a line 2 units in length that lies along the imaginary 
axis.

D.3  Addition and Subtraction

Addition and subtraction of complex numbers are easy 
to perform in rectangular form. If p = a + jb and q = c + jd, 
then

 p jq a c j b d± = ±( ) + ±( ) (D.7)

In other words, the real and imaginary parts are 
added, or subtracted, separately. Hence, if the numbers 
are given in polar form, it may be easier to convert them 
first to rectangular form, add or subtract them, and con-
vert again to polar form, if desired. For example, if

 p q= Ð ° = Ð- °10 35 5 135and  

then

 p j q j= + = - -8 19 5 74 3 54 3 54. . . .and  

It follows that

 

p q j

p q j

+ = + = Ð °

- = + = Ð °

4 65 2 2 5 14 25 3

11 73 9 28 14 96 38 3

. . . .

. . . .
and

 

If p = a + jb, then p a jb* = -  and

 p p a p p j b+ = - =* , *2 2  (D.8)

That is, the sum of a complex number and its conju-
gate is a real number equal to twice the real part of the 
number. The difference between a complex number and 
its conjugate is an imaginary number equal to twice the 
imaginary component of the minuend, that is, the num-
ber being subtracted from.

Addition and subtraction in polar form essentially fol-
low the same procedure. To add p and q in Figure D.3, 
the parallelogram construction is followed. Suppose 
p p= Ða  and q q= Ðb , and it is desired to find the sum: 
p q zÐ + Ð = Ða b q . Each complex number is resolved 
into its real and imaginary parts: p p j p= +cos sina a  

Real axis

|p|

|p|

–

Imaginary axis

a

b

a – jb

a + jb

b

p = |p|     °

p* = |p|    –  °

FIGURE D.2
Rectangular and polar coordinates.
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and q q j q= +cos sinb b . The real parts and imaginary 
parts of x and y are added separately to give the real and 
imaginary parts of z, respectively. Thus,

 z p q j p q= + + +( )cos cos sin sina b a b  

The magnitude of z is given by the square root of 
the sum of the squares of the real and imaginary parts 
(Equation D.3):

 

z p q p q

p q p q

= +( ) + +( )
= + + -( )

cos cos sin sin

cos

a b a b

b a

2 2

2 2
2  (D.9)

which is a well-known cosine rule applied to the  triangle 
OAB.

The phase angle θ of z is given by

 
tan

sin sin
cos cos

q
a b
a b

=
+
+

p q

p q  
(D.10)

D.4  Multiplication and Division

Multiplication and division are most easily carried out 
on complex numbers in polar form. If p p= Ða  and 
q q= Ðb , the product z = pq is given by

 z p e q e p q ej j j= ´ = +( )a b a b
 (D.11)

In other words, when two complex numbers are mul-
tiplied together, the product has a magnitude that is 
equal to the products of the magnitudes of the two num-
bers and a phase angle equal to the sum of their phase 
angles. This is illustrated in Figure D.4a.

The quotient z
p
q

=  is given by

 
z

p e

q e

p

q
e

j

j
j= = -( )

a

b
a b

 
(D.12)

Thus, when two complex numbers are divided by 
one another, the quotient has a magnitude that is equal 
to the quotient of the magnitudes of the two numbers 
and a phase angle equal to the difference of their phase 
angles. This is illustrated in Figure D.4b.

For example, for the case p = Ð °10 35  and q = Ð- °5 135 ,

 

pq

p
q

= Ð °´ Ð- ° = Ð- °

= Ð °
Ð- °

= Ð °

10 35 5 135 50 100

10 35
5 135

2 170

and

 

An important special case is multiplication and divi-

sion by j. Since j e
j

=
p
2, multiplication by j is equivalent 

to increasing the phase angle by 90°, that is, rotating 
the line representing the complex number by 90° in the 
counterclockwise direction. Similarly, division by j is 
equivalent to decreasing the phase angle by 90°, that is, 
rotating the line representing the complex number by 
90° in the clockwise direction.

O

A

–|q|sin

|p|sin

|p|cos |q|cos

|q|

|p|

|q||z|

B

Real axis

Imaginary axis

FIGURE D.3
Addition of complex quantities.

(a)

|z| = |p||q|
|p|

|p|

(b)

Imaginary axis

Imaginary axis

Real axisReal axis

|q|
|q|

|z| =
|p|
|q|

+
–

FIGURE D.4
Multiplication (a) and division (b) of complex quantities.
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If p p e j= q , then p p e j* = - q , so that pp* = |p|2. That is, 
multiplying a complex number by its conjugate gives a 
real number equal to the square of the magnitude of the 
complex number.

Multiplication and division may also be performed on 
complex numbers in rectangular form. If p = a + jb and 
q = c + jd, then

 pq a jb c jd ac bd j ad bc= +( ) +( ) = + +( )–  

It follows that

 
pq ac bd ad bc a b c d p q= -( ) + +( ) = +( ) +( ) =2 2 2 2 2 2

 
(D.13)

and that the phase angle θ of pq is given by

 
tan

tan tan
tan tan

tanq a b
a b

a b= +
-

=
+

-
=

+
-

= +( )ad bc
ac bd

d
c

b
a

d
c
b
a

1 1  
(D.14)

The results of Equations D.13 and D.14 are of course in 
agreement with Equation D.11.

The quotient of p and q is given by
 
p
q

a jb
c jd

=
+
+

. In order
 

to express this as the sum of real and imaginary quanti-
ties, the numerator and denominator are multiplied by 
the complex conjugate of the denominator, an operation 
referred to as rationalization. Thus,

 

p
q

a jb
c jd

a jb
c jd

c jd
c jd

ac bd j bc ad
c d

=
+
+

=
+
+

-
-

=
+ + -( )

+2 2
 

Hence,

 

p
q

ac bd bc ad

c d
a b

c d

p

q
=

+( ) + -( )
+

= +

+
=

2 2

2 2

2 2

2 2
 

(D.15)

The phase angle θ of p q/  is given by

 

tan
tan tan

tan tan
tanq a b

a b
a b= -

+
=

-

-
=

-
+

= -( )bc ad
ac bd

b
a

d
c

b
a
d
c

1 1
 

(D.16)

The results of Equations D.15 and D.16 are in agree-
ment with Equation D.12.

D.5  Raising to a Power

A complex number in polar form can be raised to a 
power k, where k is a real number:

 p p e p ek j k k jk= éë ùû =q q

 (D.17)

In general, to raise a complex number to a real power k, 
its magnitude is raised to the power k and its phase angle 
is multiplied by k. For example, if p= Ð °4 30 , p2 16 60= Ð °, 

and
 
p- = Ð- °2 1

16
60 .

However, if k is a positive integer less than unity, 
then this is tantamount to taking the root of a com-
plex number, and care must be taken to include all 
the roots. Suppose, for example, that p = Ð °125 75  and 
k = 1/5. Then the angle 75° will have to be divided by 5. 
However, in polar form the angle θ of a complex number 
is really θ + 2πn, where n is any integer. When θ + 2πn is 
divided by 5, with n = 0, 1, 2, 3, 4, the result is an angle 
between 0° and 360°. This is as it should be, for taking 
the fifth root should give five, nonrepeating roots. The 
five values of n do indeed give these five roots. Each root 
will have a magnitude of 125 55 = . Thus, the five roots 
of p = Ð °125 75  are

p j j1 5
75
5

5 15 5 15 5 15 4 83 1 34= Ð °æ
è
ç

ö
ø
÷ = Ð ° = ° + ° = +cos sin . .

 

p j

j

2 5
75 360

5
5 87 5 87 5 87

0 26 4 99

= Ð °+ °æ
è
ç

ö
ø
÷ = Ð ° = ° + °

= +

cos sin

. .  

p j

j

3 5
75 2 360

5
5 159 5 159 5 159

4 67 1

= Ð °+ ´ °æ
è
ç

ö
ø
÷ = Ð ° = ° + °

= - +

cos sin

. .779  

p j

j

4 5
75 3 360

5
5 231 5 231 5 231

3 15 3

= Ð °+ ´ °æ
è
ç

ö
ø
÷ = Ð ° = ° + °

= - -

cos sin

. .889  

p j

j

5 5
75 4 360

5
5 303 5 303 5 303

2 72 4 1

= Ð °+ ´ °æ
è
ç

ö
ø
÷ = Ð ° = ° + °

= -

cos sin

. . 99  
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The five roots are plotted in Figure D.5. Since they 
have the same magnitude, their ends all lie on the circle 
of diameter 5 units, centered at the origin. Raising any of 
these roots to the fifth power gives p = Ð °125 75 .

D.6  Some Useful Identities

 ± =j2 1∓  (D.18)

 

1
±

=
j

j∓
 

(D.19)

 e j± = -p 1 (D.20)

 e j
j±
= ±

p
2  (D.21)

Given that p a jb p q c jd q= + = Ð = + = Ða band ,

 pp a b p* = + =2 2 2

 (D.22)

 p p j a j p+ = =* cos2 2 a  (D.23)

 p p j b j p- = =* sin2 2 a  (D.24)

 

p
p*

= Ð1 2a
 

(D.25)

 pq p q ac bd j bc ad= Ð +( ) = -( ) + +( )a b  (D.26)

 

p
q

p

q
ac bd j bc ad

c d
= Ð - =

+( ) + -( )
+

a b 2 2
 

(D.27)

5   87°

5   15°

5   303°5   231°

5   159°

Imaginary axis

Real axis

FIGURE D.5
Fifth root of 125∠75°.
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Appendix E: Solution of Linear Simultaneous Equations

E.1  System of Linear 
Simultaneous Equations

A system of n linear simultaneous equations may be 
written in the standard form as follows:

 

a x a x a x a x B

a x a x a x a x B

a

n n

n n

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

3

+ + + + =
+ + + + =

�
�

11 1 32 2 33 3 3 3

1 1 2 2 3 3

x a x a x a x B

a x a x a x a x B

n n

n n n nn n n

+ + + + =

+ + + + =

�

�
�  

(E.1)

where x1, x2, …, xn are the unknowns or variables whose 
values are to be determined in terms of the B’s and the 
aij coefficients. These coefficients, which in general could 
be complex numbers, may be ordered in an n × n array 
as follows:

 

D =

a a a a

a a a a

a a a a

n

n

n n n nn

11 12 13 1

21 22 23 2

1 2 3

 
�
�

� � � � �
�  

(E.2)

where the i and j subscripts in aij denote, respectively, 
the ith row and jth column in the array.

The array (E.2) between two parallel lines is known as 
the determinant of the set of simultaneous equations and 
is denoted by the  symbol Δ. The determinant is a number 
whose value is evaluated according to certain rules.

E.2  Solution for Two Linear 
Simultaneous Equations

Consider the two simultaneous equations:

 

a x a x B

a x a x B
11 1 12 2 1

21 1 22 2 2

+ =
+ =  

(E.3)

By simple elimination of variables these two equa-
tions may be solved to give

 
x

a B a B
a a a a

x
a B a B
a a a a

1
22 1 12 2

11 22 21 12
2

11 2 21 1

11 22 21 12
= -

-
= -

-  
(E.4)

The solutions for x1 and x2 may be written as the ratios 
of two determinants:

 

x

B a

B a
a a

a a

x

a B

a B
a a

a a

1

1 12

2 22

11 12

21 22

2

11 1

21 2

11 12

21 22

= =

 

(E.5)

The method of solving a system of linear simultane-
ous equations by means of determinants is known as 
Cramer’s rule.

The solutions given by Equation E.4 are derived 
according to the following rules:

Step 1: The expression for each variable is the ratio 
of two determinants. The determinant in the 
denominator is always Δ, the determinant of the 
set of equations as defined by Equation (E.2). The 
determinant in the numerator of x1 is obtained 
by replacing the coefficients of the first column 
in Δ, that is, the coefficients of x1 in the equations, 
by the column representing the B’s. Similarly, the 
determinant in the numerator of x2 is obtained by 
replacing the coefficients of the second column 
in Δ, that is, the coefficients of x2 in the equations, 
by the column representing the B’s.

Step 2: Each determinant expands to the expres-
sion given by:

 

B a

B a
B a B a

1 12

2 22
1 22 2 12= -

 

 

a B

a B
a B a B

11 1

21 2
11 2 21 1= -

 

 
D = = -

a a

a a
a a a a

11 12

21 22
11 22 21 12

 
(E.6)

Each product term in the expansion of the deter-
minant is obtained by multiplying each element 
in a given column or a given row by its minor, 
with the appropriate sign. The minor of a given 
element is what remains after deleting the row 
and the column in which the element occurs. 
For example, consider the determinant Δ. The 
minor of a11 is a22, which is what remains after 
deleting the first column and the first row, in 
which a11 occurs. Similarly, the minor of a12 is 
a21, the minor of a21 is a12, and the minor of a22 
is a11. Considering the product terms a11a22 and 
a12a21 in the expression for Δ, it will be noted 
that they are obtained by going through any one 
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column of the determinant, or any one row, and 
multiplying each element by its minor. Thus, 
if we go through the first column, multiplying 
a11 by its minor gives a11a22, and multiplying 
a21 by its minor gives a12a21. Alternatively, we 
may go through the elements of the first row. 
Again, multiplying a11 by its minor gives a11a22, 
and multiplying a12 by its minor gives a12a21. 
Similarly, we could have gone through the ele-
ments of the second column or the second row.

For a 2  ×  2 determinant, the previous procedure 
reduces to the difference of the product of the 
elements in two diagonals: the first diagonal is 
that descending from the top leftmost element, 
whereas the second diagonal is that ascending 
from the bottom leftmost element.

It can be readily verified that the same procedure 
applies for evaluating the terms in the expres-
sions for the first two determinants in Equation 
E.6. It remains to determine the signs of the terms 
in the expansions of the determinants.

The signs of the minors of each element are 
obtained from a checkerboard pattern of alter-
nating plus and minus signs in the determinant 
Δ, starting with a plus sign in the upper left-
hand position. Thus, for the 2 × 2 determinant 
under consideration, the signs are

 

+ -
- +  

(E.7)

In other words, the minors of a11 and a22 have posi-
tive signs, whereas the minors of a12 and a21 have 
negative signs. It can be readily verified that the 
determinant expansions in Equation E.6 con-
form to this sign convention.

The signed minor of a given element is referred to 
as the cofactor of that element.

E.3  Solution for Three Linear 
Simultaneous Equations

The procedure outlined earlier can be extended to a sys-
tem of linear simultaneous equation of any order. We 
will consider first the solution for three linear simul-
taneous equations, because a simplified procedure 
is applicable in this case. Let the three equations be 
expressed as

 

a x a x a x B

a x a x a x B

a x a x a x

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3

+ + =
+ + =
+ + = BB3  

(E.8)

Step 1 of this procedure gives the solution as

 
x

B a a

B a a

B a a
x

a B a

a B a

a B a
x1

1 12 13

2 22 23

3 32 33
2

11 1 13

21 2 23

31 3 33
3= =

D D
==

a a B

a a B

a a B

11 12 1

21 22 2

31 32 3

D  
(E.9)

where

 

D =
a a a

a a a

a a a

11 12 13

21 22 23

31 32 33  

(E.10)

Each of the four determinants may be evaluated 
according to the procedure of Step 2 of the preceding 
section. Δ will be evaluated as an example. The signs of 
the cofactors of the  elements are determined from the 
checkerboard pattern for a 3 × 3 determinant:

 

+ - +
- + -
+ - +  

(E.11)

Taking the cofactors of the first column,

 
D = - +a

a a

a a
a

a a

a a
a

a a

a a11
22 23

32 33
21

12 13

32 33
31

12 13

22 23  
(E.12)

Note that because we have a 3 × 3 determinant, the 
cofactors of the elements are now 2  ×  2 determinants 
which can be evaluated as the difference of the products 
of diagonal elements. This gives

 

D = -( ) - -( )

+ -( )

a a a a a a a a a a

a a a a a

11 22 33 32 23 21 12 33 32 13

31 12 23 22 13  (E.13)

The positive terms and negative terms may each be 
grouped together, so that

 
D = + + - -

-

a a a a a a a a a a a a a a a

a a

11 22 23 21 32 13 31 23 12 31 22 13 32 23 11

33 12aa21

 
(E.14)

This expression may be written by inspection as 
shown in the following diagram:

 

a11a11 a12 a13

a21 a22 a23

a31 a32 a33

a12 a13

a21 a22 a23

a31 a32 a33

–+

 

(E.15)

The positive terms are obtained by proceeding diago-
nally as shown in the diagram on the left. The first term is 
the product of the elements in the main diagonal pointing 
downwards from the upper left-hand corner. The second 
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term is the product of the two elements in the smaller diag-
onal below the main diagonal and the element in the upper 
right-hand corner. The third term is the product of the ele-
ment in the lower left-hand corner and the two elements in 
the smaller diagonal above the main diagonal. The nega-
tive terms are obtained in an analogous manner but pro-
ceeding upwards, as shown in the diagram on the right.

Example E.1

Solve the following simultaneous equations

 

2 4 3 13
3 2 5

3 2 4 8

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ - =
- + = -
+ - =  

(E.16)

Solution:

Proceeding as indicated previously,

 

D =
-

-
-

= -( ) -( ) + ´ -( ) + ´

´ - -( ) -( ) - ´ ´ - -(

2 4 3
1 3 2
3 2 4

2 3 4 1 2 3 3 2

4 3 3 3 2 2 2 4))´ ´ =4 1 23

 
x x x1 2 3

13 4 3
5 3 2

8 2 4

2 13 3
1 5 2
3 8 4

2 4 13
1 3 5
3 2 8

=

-
- -

-
=

-
-

-
=

- -

D D D  
(E.17)

Evaluating these determinants according to the proce-
dure of (E.15),

 

x1
13 3 4 5 2 3 8 2 4 8 3 3 2 2 13 4 4 5

23
=

-( ) -( )+ -( ) -( )+ ´ ´ - -( ) -( )- ´ ´ - -( ) -( )

== =
46
23

2
 

 

x2
2 5 4 1 8 3 3 2 13 3 5 3 8 2 2 4 13 1

23

69
2

=
-( ) -( )+ ´ -( )+ ´ ´ - -( ) -( )- ´ ´ - -( ) ´

=
33

3=
 

 

x3
2 3 8 1 2 13 3 5 4 3 3 13 2 5 2 8 4 1

23

23
23

1

=
-( ) + ´ ´ + -( )´ - -( ) - -( )´ - ´ ´

= =
 

E.4  Evaluation of Determinants 
of Higher Order

The procedure indicated in (E.15) does not apply to 
determinants of order higher than 3. An alternative pro-
cedure, known as pivotal condensation, may be used to 

successively reduce the order of the determinant until 
it is a 3 × 3 or a 2 × 2 determinant and can be evaluated 
by the methods presented earlier.

The method of pivotal condensation may be illus-
trated by the 3 × 3 determinant Δ in Example E.1:

 

D =
-

-
-

=
-

-

-
-

=
-
-

= =

2 4 3
1 3 2
3 2 4

1
2

2 4
1 3

2 3
1 2

2 4
3 2

2 3
3 4

1
2

10 7
8 1

46
2

23

1

 
(E.18)

The procedure is to form a determinant composed of 
a number of 2 × 2 determinants, where the first determi-

nant in the first row is
 

a a

a a
11 12

21 22
, the second determinant in 

the first row is 
a a

a a
11 13

21 23

, and so on. The first determinant 

in the second row is 
a a

a a
11 12

31 32
, the second determinant in 

the second row is
 

a a

a a
11 13

31 33
, and so on. The reduced 2 × 2 

determinant is divided by an11
2- , where n is the order of 

the original determinant to be condensed. The result is 
a determinant of order n − 1. This procedure is further 
illustrated by Example E.2.

Example E.2

Solve the following simultaneous equations

 

2 3 4 9
2 3 5

5 3 10
2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

x x x x

x x x x

x x x x

x x x

+ + + =
+ + + =
+ + + =
+ + ++ =x4 1  

(E.19)

Solution:

According to this procedure,

D = =

2 1 3 4
1 2 1 3
5 1 1 3
2 3 4 1

1
2

2 1
1 2

2 3
1 1

2 4
1 3

2 1
5 1

2 3
5 1

2 4
5 3

2 1
2 3

2 3
2 4

2 4
2 1

2 ==
-

- - -
-

= ´

-
- - - -

-
-

=
-

1
4

3 1 2
3 13 14

4 2 6

1
4

1
3

3 1
3 13

3 2
3 14

3 1
4 2

3 2
4 6

421
12

--
-

=
36

10 26
121

 
(E.20)
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The determinants for x1 to x4 will be evaluated by 
expansion in terms of cofactors of the first column:

 

x1

9 1 3 4
5 2 1 3

10 1 1 3
1 3 4 1

9
2 1 3
1 1 3
3 4 1

5
1 3 4
1 1 3
3 4 1

10
1 3 4
2 1 3
3 4 1

= = +

-

+
D D D DD

D
+

-

=
+ + - - -( ) - + + - - -( )

+

1
1 3 4
2 1 3
1 1 3 9 2 12 9 9 24 1 5 1 16 27 12 12 3

121
10 1++ + - - -( ) - + + - - -( )

= =
32 27 12 12 6 3 8 9 4 3 18

121
121
121

1.
 

 

x2

2 9 3 4
1 5 1 3
5 10 1 3
2 1 4 1

2
5 1 3

10 1 3
1 4 1

9 3 4
10 1 3
1 4 1

5
9 3 4
5 1 3
1 4 1

= = +

-

+
D D D DD

D
+

-

=
+ + - - -( )- + + - - -( )

+

2
9 3 4
5 1 3

10 1 3 2 5 120 3 3 60 10 9 160 9 4 108 30

121
55 9 80 9 4 108 15 2 27 20 90 40 27 45

121
121
121

1
+ + - - -( )- + + - - -( )

= - = - .
 

 

x3

2 1 9 4
1 2 5 3
5 1 10 3
2 3 1 1

2
2 5 3
1 10 3
3 1 1

1 9 4
1 10 3
3 1 1

5
1 9 4
2 5 3
3 1 1

= = +

-

+
D D D DD

D
+

-

=
+ + - - -( ) - + + - - -( )

+

2
1 9 4
2 5 3
1 10 3 2 20 3 45 90 6 5 10 4 81 120 3 9

121
5 5 ++ + - - -( ) - + + - - -( )

= =
8 81 60 3 18 2 15 80 27 20 30 54

121
0

121
0.

 

 

x4

2 1 3 9
1 2 1 5
5 1 1 10
2 3 4 1

2
2 1 5
1 1 10
3 4 1

1 3 9
1 1 10
3 4 1

5

1 3 9
2 1 5
3 4 1

= = +

-

+
D D D DD

D
+

-

=
+ + - - -( ) - + + - - -( )

+

2
1 3 9
2 1 5
1 1 10 2 2 20 30 15 80 1 1 36 90 27 40 3

121
5 11 72 45 27 20 6 2 10 18 15 9 5 60

121
242
121

2
+ + - - -( ) - + + - - -( )

= = .
 

E.5  Use of MATLAB

As the previous example illustrates, solving a system of 
more than three linear simultaneous equations is rather 
tedious. Fortunately, advanced calculators have the 
 feature of solving such equations as does MATLAB.

To see how linear simultaneous equations may be 
solved using MATLAB, we note that Equations E.1 may 
be written in matrix notation as

 AX B=  (E.21)

where
A is an n × n matrix of the aij coefficients
X is a column matrix of the variables x1, x2, …, xn

B is a column matrix of the B’s

To solve for X we premultiply both sides of Equation 
E.21 by A−1, the inverse matrix of A, where A−1A  =  1. 
Equation E.21 becomes

 X A B= -1  (E.22)

The procedure for solving the system of equations 
using MATLAB is as follows:

Step 1: Enter the numerical matrices A and B.
Step 2: Evaluate the product A–1B; an alternative 

command is A\B.
Step 3: Read off the values of the variables as the 

 elements of the resulting column matrix.

This procedure is illustrated in Example E.3 by solv-
ing the simultaneous equation of Example E.2 using 
MATLAB.

Example E.3

Using MATLAB, solve the following simultaneous 
equations:

 

2 3 4 9
2 3 5

5 3 10
2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

x x x x

x x x x

x x x x

x x x

+ + + =
+ + + =
+ + + =
+ + ++ =x4 1  

(E.23)

Solution:

At the MATLAB prompt, enter the matrix of aij coeffi-
cients as follows:

  �A = éë ùû2 1 3 4 1 2 1 3 5 1 1 3 2 3 4 1, , , ; , , , ; , , , ; , , ,  
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Note that a matrix is entered between square brackets. 
Elements in a row are separated by commas, whereas 
rows are separated by semicolons. After an entry is 
made, MATLAB displays the entry for checking pur-
poses. At the next prompt enter the matrix B:

 �B = éë ùû9 5 10 1; ; ;  

Alternatively, B may be entered as

 �B = éë ùû
¢9 5 10 1, , ,  

Here, the elements are separated by commas, so the 
matrix entered, without the apostrophe, is a row matrix. 
The apostrophe transposes the row matrix to a column 
matrix. At the next prompt enter

 �A B\  

MATLAB displays the column matrix X[ ]:

 1.0000
−1.0000
−0.0000
 2.0000

where the elements of this matrix are x1 to x4, respectively.
MATLAB can also be used to handle complex quanti-

ties and to evaluate determinants. If matrix A has been 
entered as indicated earlier, entering det(A) causes 
MATLAB to display 121, the value of the determinant as 
determined earlier.

E.6  Properties of Determinants

The following properties of determinants are stated 
without proof:

Property 1. If all the rows of a determinant are changed 
into columns or if all the columns are changed into rows, 
the determinant does not change.

Example: 

 

2 4 3
1 3 2
3 2 4

2 1 3
4 3 2
3 2 4

23
-

-
-

= -
- -

=

 

Here, the first, second, and third rows of the first 
determinant have become the first, second, and third 
columns of the second determinant, respectively.

Property 2. If any two rows, or any two columns, of a 
determinant are interchanged, the sign of the determi-
nant is changed, without affecting its value.

Example: 

 

2 4 3
1 3 2
3 2 4

23
3 2 4
1 3 2
2 4 3

23
2 3 4
1 2 3
3 4 2

-
-

-
=

-
-

-
= - =

-
-

-
;

 

where the first and third rows of the first determinant 
are interchanged in the second determinant, and the 
second and third columns of the first determinant are 
interchanged in the third determinant.

Property 3. If all the elements in a row (or in a column) 
are multiplied by a constant, the determinant is multi-
plied by the same constant.

 

2 2 2 4 2 3
1 3 2
3 2 4

2
2 4 3
1 3 2
3 2 4

46
´ ´ -( )

-
-

=
-

-
-

=

 

Property 4. A determinant is unaltered if a multiple of 
the elements of a row are added to another row, or if 
a multiple of the elements of a column are added to 
another column.

Example: 

 

2 4 3

1 2 2 3 2 4 2 2 3

3 2 4

2 4 3
5 5 4
3 2 4

23

-

+ ´( ) - + ´( ) + -( )( )
-

=
-
-
-

=

 

Property 5. If the elements in one row are proportional 
to those of another row, or if the elements in one column 
are proportional to those of another column, the deter-
minant is zero.

 

2 4 3
1 2 1 4 1 3
3 2 4

0
-

-( ) -( ) -( ) -( )
-

=

 

As a special case, if any two rows, or any two col-
umns, of a determinant are identical, the determinant 
is zero. The corresponding simultaneous equations are 
not independent.

Property 6. If all the elements of one row (or of one 
 column) can be expressed as sums of two quantities, 
the determinant can be expressed as the sum of two 
determinants in which the other rows (or columns) are 
the same.
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Example: 

 

2 4 3
1 3 2
3 2 4

23
1 1 1 3 5 2

1 3 2
3 2 4

1 1 5
1 3 2
3 2 4

1 3 2
1 3 2
3 2

-
-

-
= =

+ + - +
-

-

=
-

-
-

+ -
-44

37 60 23= - + =

 

Property 7. If all the elements of one row (or of one column) 
are multiplied by the cofactors of the corresponding 

elements of another row (or another column) and the 
results are added, their sum is zero.

Example:

 

2 4 3
1 3 2
3 2 4

2 1
4 3
2 4

4
2 3
3 4

3 1
2 4
3 2

20 4 24 0

-
-

-
= ´ -( )

-
-

+
-
-

- -( )

= + - =  

The elements of the first row have been multiplied 
by the cofactors of the corresponding elements of the 
 second row. Note the signs of the cofactors in accor-
dance with the checkerboard pattern of (E.11).
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A

ac bridges, 223–224
Ampere’s circuital law, 173
Analog behavioral module 

(ABM), 782
Apparent power, 522
Argand diagram, 202, 205, 787

B

Balanced three-phase systems
advantages, 758–760
complex power, 756–757
Δ connection, 749–750
Δ–Δ system, 751–755
feeders, 743
four-wire systems, 744–745
instantaneous power, 755–756
neutral, 743
phase sequence, 745–746
phasors, 744–745
polyphase systems, 743–744
power generation, transmission, and 

distribution, 760–761
Y connection

line current, 743–744, 746–747
line voltages, 743–744, 746–747
phase current, 743–744, 746–747
phase voltage, 743–744, 746–747
power relations, 746–748

Y–Y system, 750–752
three-wire systems, 744
time variation, 745
two-wattmeter method, 757–758

Bandpass filter, 459–460
Bode plots, see Frequency Responses
Bridge balance, 126
Broadband bandpass filter, 455–457
Butterworth filters

bandpass filters, 449–450
bandstop circuits, 450
Bode magnitude plot, 446–447
features, 448
low-frequency asymptote, 450
magnitude expression, 

polynomial, 449
normalized Butterworth 

polynomials, 448–449
scaling, 445–446
second-and third-order high-pass 

filters
second-and third-order low-pass 

filters, 450–451

second-order noninverting high-pass 
filter, 458–459

second order response, 446–448
third-order noninverting high-pass 

filter, 459–460
transfer functions 450–452

C

Capacitive circuits
capacitor voltage, 555–556
KVL and KCL, 555
RC circuit, 554–556
short circuit, 556
single capacitor, 552–554
superposition, 556

Capacitive voltage divider, 188–189
Capacitor

charging
circuit diagram, 301
by current source, 303–305
with initial energy storage, 

302–303
saturating exponential 

response, 302
time variation, 302
v–i relation, 301–302

discharging
characteristic equation, 298
circuit diagram, 297
decaying exponential response, 

298–299
first-order differential 

equation, 298
homogeneous differential 

equation, 298
KCL, 298
KVL, 298
natural response, 300
time constant, 298–299
v–i relation, 297–298, 300

initially uncharged capacitors
parallel connection, 182–183
series connection, 180–181

Laplace transform, 657–658
voltage–current relation

charge, 167–168
dc state, circuit, 171–172
electric field, 167
parallel-plate capacitor, 167–168
sign convention, 168–169
steady capacitor voltage, 169–170
stored energy, 170
trapezoidal voltage, 170–171

Capacitors, initial charges
in parallel

charge redistribution, 577–578
equivalent parallel capacitor, 

577–578
final charges, 577–578
initial energy storage, 578
initially charged capacitor, 578–580
power dissipation, 578

ring connection, 585–586
in series

charged capacitors, 581–583
equivalent series capacitance, 

580–581
steady voltage, 583–585
voltage determination, 580

Characteristic equation, 332, 643, 666
Circuit equivalence

definition, 57
delta–star transformation, 66–67
linear-output sources

current source, 70–71
transformation, 71–75
voltage source, 69–70

parallel connection
ideal current sources, 68–69
ideal voltage sources, 68
resistors, 59–62
voltage and current division, 

62–64
problem-solving approach, 75–76
resistivity, 64–65
series connection

ideal current sources, 68
ideal voltage sources, 67–68
resistors, 57–59
voltage and current division, 

62–64
star–delta transformation, 65–66
time-varying inputs, 57

Circuit simplification techniques
output scaling, 122–124
problem-solving approach, 133–134
superposition, 115–122

Circuit partitioning
by ideal sources, 127–129
source rearrangement, 129–131

Cofactor, 794
Complex numbers

addition and subtraction, 788–789
Argand diagram, 787
conjugate, 787
definition, 787
identities, 791
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multiplication and division, 789–790
polar form, 788
raising to power, 790–791
rectangular and polar 

coordinates, 788
sine and cosine functions, 787

Complex power
application, 525–526
balanced three-phase systems, 

756–757
conservation, 523–525
reactive power, energy storage 

elements, 517
triangle, 521–523

Convergence, defining integrals, 474, 
636, 688

Convolution
derivative, trapezoidal function, 622
folding, vertical axis, 608
impulse function, 618–620
integral

arbitrary input response, 608
circuit analysis, 610
function approximation, series of 

pulses, 608–609
general properties, 624
graphical interpretation, 610–614
impulse responses, 608–609, 

622–623
LTI system, 608
summation, 609
superposition of responses, 610

operational properties
associative property, 615
commutative property, 615
distributive property, 615
inverse integration and 

differentiation, 615–616
of pulse with itself, 624–625
of pulse with two half-sinusoids, 

625–627
ramp and cosine functions, 616
shifting in time, 607–608
staircase functions

approximation, 616
MATLAB’s conv command, 616
piecewise-linear function, 616
rectangular functions, 616–618

step function, 621–622
triangular and biphasic pulses, 627–629

Convolution in time, 698–699
Convolution theorem, 649–651, 665
Cramer’s rule, 793
Current amplifier, 718–719
Current division, 60

D

Delayed function, 620
Dependent sources, 87

Determinants
array, 793
higher order, 795–796
properties, 797–798

Difference amplifier
basic circuit, 386
instrumentation amplifier, 386–388
simulation of response, 391–392
two-stage amplifier, 390–391
virtual short circuit, 388–389

Dirac delta function, see Impulse 
function

Direction of current, 5
Dirichlet’s conditions, 474
Distortionless delay, 695–696
Duality

capacitive voltage divider, 188–189
circuit variables and quantities, 186
definition, 186
examples, 186
loaded linear-output voltage source, 

187–188
Ohm’s law, 185
planar circuit, 191–192

E

Electric circuits
applications, 3
capacitance, 16
circuit diagram, 3
conservation of charge law, 4
conservation of energy law, 4
definition, 3
electric current

definition, 4
hydraulic circuit, 4
rate of flow of charge, 5
through conducting medium, 8–9
unit, 4

energy and power, 11–14
ideal circuit elements, 14–15
inductance, 16
lumped-parameter representation, 

16–17
propagation delay, 17
resistance, 16
steady flow of electric charges, 5–7
time-varying flow of electric 

charges, 7–8
voltage

analogy, 9
definition, 10
electric potential energy, 10
gravitational potential energy, 10
ground symbol, 10
hydraulic analogy, 11
polarity, 11
triangle symbol, 10
unit, 10

Energy signals, 703
Energy spectrum, 703
Equivalent parallel impedance, 213
Exploitation of symmetry, 131–133

F

Faraday’s law, 175
Fast Fourier transform, see Fourier 

transform (FT)
Feeders, 743
Final-value theorem, 644, 647–648, 663
First-order active filters

high-pass filter, 454–455
low-pass filter, 454
op amps, 453

First-order circuits, 297–298, 409–411, 
671–673

Forced response, 643
Forcing function, 643
Forward transmission, 718–719
Fourier analysis

exponential form, 478
Fourier coefficients, 476
frequency spectrum, 478–479
fundamental and third 

harmonic, 475
indexing integer, 476, 478
integral trigonometric relations, 

474–475
PSpice simulation, 785–786
rectangular waveform, 480–482
sawtooth waveform, 476–477, 479–480
translation in time, 482–485
triangular waveform, 489–490
trigonometric identities, 475

Fourier series
Dirichlet’s conditions, 474
even-function symmetry, 485–486
Fourier’s theorem, 474
fundamental frequency, 473
half-wave symmetry, 486–487
odd-function symmetry, 486
periodic function, arbitrary 

waveform, 473
quarter-wave symmetry, 487–489
triangular periodic waveform, 474
wavelength, 473

Fourier series expansion (FSE)
adition/subtraction/multiplication, 

490–493
aperiodic function, 687–688
biphasic pulse, 690
cosine and sine functions, 690
dc signal, 689
differentiation/integration, 493–496
IFT, 690
inverse transformation, 687–688
LT integral, 688
magnitude and phase spectra, 687–688
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nonperiodic function, 497
periodic function, 687–688
periodic waveform, 687
positive and negative frequencies, 

479, 689–690
rate of attenuation of harmonics, 

496–497
rectangular pulse train, 687
shifting horizontal and vertical 

axes, 497
sinusoidal signal, 689

Fourier transform (FT)
duality, 693–694
FSE

aperiodic function, 687–688
biphasic pulse, 690
cosine and sine functions, 690
dc signal, 689
IFT, 690
inverse transformation, 687–688
magnitude and phase spectra, 

687–688
periodic function, 687–688
rectangular pulse train, 687
sinusoidal signal, 689

operational properties
addition/subtraction, 694
convolution in frequency, 

699–700
convolution in time, 698–699
differentiation in time, 696–697
integration in time, 697–698
multiplication, 694
time reversal, 695
time scaling, 694–695
translation in frequency, 698
translation in time, 695–696

Parseval’s theorem, 702–704
phasor method, 700–701
real and imaginary parts, 691
transfer function, 700–702
zero frequency, 691–693
Visualization, 689

Four-wire systems, 744–745
Frequency responses

analysis of filters, 407–408
bode plots

high-pass response, 414–416
logarithmic plot, 411–412
log–log plots, 412
low-pass response, 412–414, 416
magnitude plots, 412

first-order responses
parallel first-order filters, 410–411
RC filter, 409
RL filter, 410

ideal frequency responses, 408–409
parallel circuit

dual frequency responses, 429
dual quantities, 428

GCL circuit, 428, 430–432
impedance, 429

second-order bandpass response
Bode magnitude plot, 418–419
capacitors/inductors, 421
damping factor, 419
impedance diagram, 417–418
RC circuit, 420–421
resonant frequency, 419
RLC circuit, 417–418

second-order bandstop response, 
422–423

second-order high-pass response, 
425–428

second-order low-pass response, 
423–425

FSE, see Fourier series expansion
FT, see Fourier transform
Full-wave rectified waveform, 491–492

G

Galvanometer, 135
Generalized first-order circuits

analysis of, 314–316
circuit elements, 314
energy storage element, 312–313
equivalent resistance and 

capacitance, 310
generalized response, 311–312
jump in voltage, 316–317
repetitive response analysis, 317–318
TEC, 313
time constant, 312
transient response, 319
Y0 and YF determination, 312

Geometric series, 771
Graphical interpretation of convolution

graphical evaluation, 610
impulse response, vertical axis, 610
RL circuit response, rectangular 

voltage pulse, 611–613
RL circuit response, trapezoidal 

voltage pulse, 613–614

H

Half-wave rectified waveform, 491–492
Heaviside step function, 549
High-pass filter, 454–455, 457–458
Hybrid parameters, 712

I

Ideal capacitor, 167
Ideal operational amplifier

almost-ideal op amp, 367–369
definition, 367
differential input, 367
equivalent circuit, 369

feedback, 370–372
input–output characteristics, 

369–370
inverting configuration

adder, 384
current-source-to-voltage-source 

converter, 382–383
finite gain, 379
ideal differentiator, 383
ideal integrator, 383
signal-flow diagram, 382
superposition application, 379
virtual ground, 379–380
vO and iO determination, 380–382

noninverting configuration
discrete-component resistors, 373
finite gain, 373
governing equations, 373
negative feedback, 373–374
noninverting integrator, 384–386
problem-solving approach, 389
signal-flow diagram, 377–378
unity-gain amplifier, 375–377
virtual short circuit, 374
VO and IO determination, 374–375

output voltage, 367
properties, 367
symbol of, 367

Ideal transformers
applications, 274
autotransformer, 278–279
core losses, 281
dot convention, 269–270
eddy-current losses, 284–285
electric circuit analogy

driving voltage, 266–267
flux linkage, 268
of shell-type core, 268

energy stored, 281
equivalent circuit verification, 

282–283
Faraday’s law, 268–269
finite inductance, 281
finite leakage flux, 281–282
finite resistance, 280
frequency domain, 281
frequency range, 283–284
hysteresis loss, 285
inductances ratio, 271
KVL equations, 281
net mmf, 270
phasor relations, 271–272
power input, 269
properties, 268, 271
reflection of circuits

dependent source, 277–278
KCL, 274
procedure, 276
source and impedance, 

275–276
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reflection of impedance, 272–274
small inductors and transformers, 

285–286
three-winding ideal transformer, 

279–280
voltages and currents of, 269–270

IFT, see Inverse Fourier transform
ILT, see Inverse Laplace transform
Immittance parameters, 712
Impulse function, 548–550

convolution with, 618–620
current impulse, 550
delayed impulse, 550
even property, 550
Heaviside step function, 549
sampling, 551
singular, generalized function, 548
step discontinuity, 549
vs. time and unit step function, 

548–549
unit impulse function, 548
voltage impulse, 550

Impulse response, implications, 622–623
Inductive circuits

inductor current, 562–563
KVL and KCL, 562–565
open circuit, 563
RL circuit, 560–562
single inductor, 559–560
superposition, 563

Inductor
charging

circuit diagram, 307
duality, 308
exponential variation, 308
KCL, 307
KVL, 307
time variation, 308
v–i relation, 307–308
by voltage source, 309–310

discharging, 305–307
inductance, 176–178
initially uncharged inductors

parallel connection, 184–185
series connection, 183–184

Laplace transform, 658–661
steady inductor current, 178
stored energy, 179
trapezoidal current, 179–180
voltage–current relation

Ampere’s circuital law, 173
magnetic field lines, 172–173
magnetic flux density, 173
magnetic flux linkage, 174–175

Inductors, initial currents
in parallel

charged inductors, 589–592
current redistribution, 594–596
steady current, 592–594

in series, 587–589

Initial-value theorem, 647–648, 662–663
Instantaneous and real power

balanced three-phase systems, 
755–756

capacitor, 518–519
component of voltage, 520
inductive circuit, 521
inductor, 518
resistor, 517
sinusoidal excitation, 519
time domain, 520
voltage, current, and power vs. 

time, 519
voltage, current phasor diagram, 519

Instrumentation amplifier, 386–388
Inverse Fourier transform (IFT)

convolution, 699–700
FSE, 688, 690
transfer function, 701–702

Inverse Laplace transform (ILT), 
660, 662

characteristic equation, 666
convolution theorem, 665
definition, 665
linear, ordinary, differential 

equations, 643–644
open-circuit transfer function, 665–666
sinusoidal steady state, 668–671
stability, 666–669
zeros and poles, 671

Inverting second-order active 
filters, 460

ISDEPIC, 41–42, 75–76, 102–103, 
133–134, 156–157, 389

J

Joule heating, 24

K

Kirchhoff’s current law (KCL), 32–33, 
35–37, 662, 723, 727, 729

Kirchhoff’s voltage law (KVL), 33–37, 
662, 717

L

Laplace transform (LT)
arbitrary function, 635
circuit analysis, s-domain

capacitor, 657–658
characteristic equation, 666
convolution theorem, 665
definition, 665
first-order circuits, 671–673
inductor, 658–661
KVL and KCL, 662
magnetically coupled coils, 

659, 661

open-circuit transfer function, 
665–666

passive circuit elements, 661–662
resistor, 657
second-order circuits, 673–675
sinusoidal steady state, 668–671
stability, 666–669
switching, 662–665
unit voltage impulse, 662
zeros and poles, 671

convergence, 636
convolution theorem, 649–651
final-value theorem, 644, 647–648
initial-value theorem, 647–648
interval of integration, 636
isolated points, 636–637
linear, ordinary, differential 

equations
characteristic equation, 643
constant coefficients, 642–643
forced response/zero-state 

response, 643
forcing function, 643
ILT, 643–644
natural/zero-input response, 643
partial fraction expansion, 

643–647
operational properties

addition/subtraction, 637
differentiation-in-time property, 

638–639
division, 641–642
integration-in-time property, 

637–638
multiplication, 637, 640–641
time scaling, 637
translation in s-domain, 639
translation in time, 639–640

rational functions, 652
single-sided LT, 636

Lenz’s law, 175, 177–178
Linear, ordinary, differential equations

characteristic equation, 643
constant coefficients, 642–643
forced response/zero-state 

response, 643
forcing function, 643
ILT, 643–644
natural/zero-input response, 643
partial fraction expansion, 643–647

Linear simultaneous equations
determinants, 793, 795–798
MATLAB, 796–797
three simultaneous equations, 

794–795
two simultaneous equations, 793–794

Linear time-invariant (LTI) circuit, 15, 612
Linear transformer

definition, 243
dot marking, 244
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induced voltages, polarities, 
243–244

KVL, 243–244
magnetically coupled coils

in air, 237
circuit analysis, 247–249
dot convention, 238–240
energy stored, 254–255
equivalent inductances, 245–247
Faraday’s law, 237
high-permeability toroidal 

core, 237
induced voltage, 238
input impedance, 249–250
positive polarity, 237–238

mutual inductance
coupling coefficient, 241–242
definition, 240
Faraday’s law, 240

reversed sense of winding, 
244–245

T-equivalent circuit, 250–253
Line current, 743–744, 746–747
Line voltages, 743–744, 746–747
Low-pass filter, 454, 458–459
LT, see Laplace transform

M

Magnetic circuit
analogy, 266
core, permeance, 267
diagrammatic representation, 265
leakage flux, 267
magnetic flux density, 266
magnetomotive force, 266

Maximum power transfer
admittance relations, 533–535
purely resistive circuit, 527–529
source and load impedances, 

530–531
Mesh-current method

circuit, 150
with current source, 153
Δ–Δ system, 751–755
dependent sources, 155–156
features, 152
generalization of, 154
mesh-current equations, 151–152
mutual resistances, 151
nontransformable current 

source, 155
problem-solving approach, 156–157
self-resistances, 151
Y–Y system, 750–752
symmetry of coefficients, 152
voltage drop, 151
voltage rise, 151

Minors, 793–794
Multiple pole of order n, 645

N

Natural response, 643
Node-voltage method

characteristic features, 146
circuit, 145
with current source, 148
dependent sources, 149–150
mutual conductances, 146
node-voltage equation, 147
nontransformable voltage source, 149
problem-solving approach, 156–157
reference node, 149
self-conductances, 146
symmetry of coefficients, 146
voltage drops, 145

Noninverting second-order active 
filters

bandpass filter, 459–460
high-pass filter, 457–458
low-pass filter, 458–459

Norton’s equivalent circuit (NEC) 
derivation

application, 97–98
with PSpice, 96–97
sinusoidal steady state, 217–219

Norton’s theorem
NEC, 96–99
Norton’s current, 96
Norton’s resistance, 96
problem-solving approach, 102–103
statement, 96

Notch filter, 463–464
Null method, 135

O

Ohm’s law, 37
Output scaling, 122–124

P

Parallel circuit
dual frequency responses, 429
dual quantities, 428
GCL circuit, 428, 430–432
impedance, 429

Parallel-connected resistors, 59–62
Parseval’s theorem, 702–704
Partial fraction expansion (PFE), 

643–647, 660, 665–667
Passive sign convention, 12
Periodic signal response

average power, 500–502
circuit responses

frequency domain, 
nth harmonic, 497

LTI circuit, 497
magnitude and phase angle, 498
RC circuit, 498–500

Fourier analysis
exponential form, 478
Fourier coefficients, 476
frequency spectrum, 478–479
fundamental and third 

harmonic, 475
indexing integer, 476
integral trigonometric relations, 

474–475
rectangular waveform, 480–482
sawtooth waveform, 476–477, 

479–480
translation in time, 482–485
triangular waveform, 489–490
trigonometric identities, 475

Fourier series
Dirichlet’s conditions, 474
even-function symmetry, 485–486
Fourier’s theorem, 474
fundamental frequency, 473
half-wave symmetry, 486–487
odd-function symmetry, 486
periodic function, arbitrary 

waveform, 473
quarter-wave symmetry, 487–489
triangular periodic 

waveform, 474
wavelength, 473

FSE
adition/subtraction/

multiplication, 490–493
differentiation/integration, 

493–496
nonperiodic function, 497
rate of attenuation of harmonics, 

496–497
shifting horizontal and vertical 

axes, 497
LTI circuit, 473
rms values, 502–504

Phase current, 743–744, 746–747
Phase sequence, 745–746
Phase voltage, 743–744, 746–747
Piece-wise linear waveforms, 494–496
Pivotal condensation, 795–796
Poles, 644, 666, 671
Polyphase systems, 743–744
Power, 11

complex, 521–525, 756
reactive, 518–520
real, 517, 522–525
measurements, 527

two-wattmeter method, 
757–758 

Power factor correction
capacitance determination, 526–527
current-carrying capacity, 526
power and reactive factor, 526
unity power factor, 526

Product of transfer functions, 453, 666
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PSpice simulation
ABM, 782
Auto-connect-two-points feature, 774
Capture toolbar, 773
dc voltage source, 773
dependent sources, 780
Display Properties window, 775
Evaluate Measurement, 780
exponential source, 782
floating node errors, 776
Fourier analysis, 785–786
frequency response, 784–785
global parameter, 779
graph and data copying, 786
ground symbol, 775
ideal op amp, 779
labeling nodes, 776–777
linear and ideal transformers, 778–779
markers, 777–778
New Project Dialog box, 773
pages, 777
piecewise-linear sources, 782
Place Part icon, 773
Place wire icon, 774
plots, 782–783
printers, 780
Project dialog box, 773
Property Editor spreadsheet, 775
pulse sources, 781–782
resistors, 773–774
rotating components, 776
Run PSpice icon, 775
saved simulation, 775
scale factors, 775
SCHEMATIC1:PAGE1, 773
SCHEMATIC1-(simulation 

name), 775
search command, 783–784
sign conventions, 776
simulation profile, 778
Simulation Settings, 775
sinusoidal steady state, 780–781
Start Page tab, 773
switches, 779
time-varying sinusoidal sources, 781
trace expressions, 785
zero dc resistance, 776

R

Reactive power, 518
Reciprocal circuits, 713, 715–716
Rectangular waveform

amplitude spectrum, 481
amplitude vs. zero average value, 482
Fourier coefficients, rectangular 

pulse train, 480–481
L’Hopital’s rule, 481
phase spectrum, 481
signal analysis, 480–481

Redundant resistors
not carrying current, 126–127
in parallel with voltage source, 124–126
in series with current source, 124–126

Relaxation oscillator, 317
Residue method, 645
Resistive circuits

conduction electrons, 23
current sources, 28–29
dependent sources, 29–31
drift current, 24
drift velocity, 24
essential node, 31
ideal resistor, 24–25
inessential node, 31
ISDEPIC approach, 42–45
Kirchhoff’s current law, 32–33, 35–37
Kirchhoff’s voltage law, 33–37
loop, 31
node, 31
Ohm’s law, 37
one-dimensional collision model, 

23–24
parallel connection, 38–41
path, 31
problem-solving approach, 41–42
quantum mechanics, 23
series connection, 37–38
short circuit and open circuit, 25–26
voltage drop, 32
voltage sources, 26–28

Resistivity, 64–65
Reverse transmission, 719

S

Sawtooth waveform
exponential Fourier coefficients, 

479–480
Fourier coefficients, 476–477
general feature of FSE, 477
zero average, 477

Second-order circuits, 673–675
independent sources, 759
parallel GCL circuit

charging of, 759
critically damped responses, 757
forced responses, 762–763
natural response, 752–754
overdamped responses, 757
underdamped responses, 757

series RLC circuit, 760–762
arbitrary constants, 755
capacitor voltage response, 756, 758
characteristic equation, 744
charging of, 754
critically damped responses, 748, 

756–757
current responses, 756–757
damping factor, 743

forced responses, 763–765
general form, 744
homogeneous differential 

equation, 743–744
with initial energy storage, 760–762
natural responses, 744, 749–750
overdamped responses, 

745–746, 757
resonant frequency, 743
steady-state component, 755
steady-state conditions, 743
step responses simulation, 758
sustained oscillations, 751–752
transient component, 755
underdamped responses, 

746–747, 755–757
v–i relations, 743

transient response, 759
Second-order inverting bandpass 

filter, 460–462
Series-connected resistors, 57–59
Single capacitor

continuous function, 552
current response, 553
linear systems, 552
step discontinuity, 552
unit doublet, 553
v–i relation, 552–553
voltage response, 553

Sinusoidal steady state
admittance, 212–213
frequency domain, 216–217
governing equations, 214–216
impedance, 211–213
Laplace transform, 668–671
mesh-current analysis, 220
node-voltage analysis, 219–220
Norton’s equivalent circuit, 217–219
phasors

complex quantities, 207
definition, 205
notation, 205
phasor diagrams, 220–222
properties, 205–206
v–i relations, 208–211

PSpice simulation, 780–781
reactance, 212
sinusoidal excitation

complex sinusoidal excitation, 
204–205

in trigonometric form, 203–204
sinusoidal function, 201–202
susceptance, 212
voltage divider, 214–215

SI system, 769–770
Source absorption theorem, 101–103
Source rearrangement, 129–131
Staircase functions

approximation, 616
MATLAB’s conv command, 616
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piecewise-linear function, 616
rectangular functions, 616–618

Step and impulse responses
capacitive circuits

current impulse, 555
current step, 555–556
KVL and KCL, 555
RC circuit, 554–555
short circuit, 556
single capacitor, 552–554
voltage step, 553, 556–558

capacitor response to current 
pulse, 547–548

impulse function
current impulse, 550
delayed impulse, 550
Heaviside step function, 549
integration variable, 550
sampling, 551
singular, generalized 

function, 548
step discontinuity, 549
vs. time and unit step 

function, 548–549
unit impulse function, 548

inductive circuits
inductor current, 563
KVL and KCL, 562–565
RL circuit, 560–562
single inductor, 559–560
superposition, 563

inductor response to voltage pulse, 
558–559

RLC circuits, 565–568
Step function, 621–622
Substitution theorem, 99–103
Superposition

advantage, 116
application procedure, 119
definition, 115
with dependent source

circuit, 117
current source, 119–120
voltage source, 120–121

with independent source, 118
power, 121–122
two-essential-node circuit, 115
Zener diode circuit, 116–117

Switched circuits
KCL and KVL, 596
parallel RC circuit, 596–597
parallel RL circuit, 599–600
series RC circuit, 598–599
series RL circuit, 597–598

Symmetric circuits, 713, 716–718

T

Thevenin’s equivalent circuit (TEC) 
derivation, 92, 730–731

application of, 94–95
for bridge circuit, 93–94
generalized first-order circuits, 313
procedure, 89–90
with PSpice, 90–91
RTh, 89
VL–IL relation, 88
VTh, 88–89

Thevenin’s theorem
definition, 87
problem-solving approach, 102–103
TEC, 88–96
Thevenin resistance, 88
Thevenin voltage, 88
voltage divider circuit, 88

Three-wire systems, 744
Transconductance amplifier, 718–719
Transfer function, 665

Frequency domain, 407–408, 701
impulse response, 665, 701
sinusoidal response, 668–671
stability, 666–667

Translation in time
exponential form, 482
Fourier analysis, square wave, 

482–484
Fourier transform, 695–696
Laplace transform, 639–640

new phase angle, 482
periodic function, dc component, 

484–485
Transmission parameters, 712
Transresistance amplifier, 718–719
Trigonometric relations, 771
Two-port circuits

cascade connection, 712, 719–722
description, 711–712
equivalent circuits, 715–716, 718–719
interpretation of parameters, 712–714
inverse relations, 712–715
parallel connection, 722–726
parallel–series connection, 712, 726, 

729–731
reciprocal circuits, 713, 715–716
series connection, 713, 726–728
series–parallel connection, 712, 

726–729
symmetric circuits, 713, 716–718
terminated circuit, 713, 731–733

Two-wattmeter method, 757–758

U

Unit voltage impulse, 662
Universal filter, 462–463

V

Voltage amplifier, 718–719
Voltage division, 59

W

Wheatstone bridge, 126–127, 135

Z

Zener diode circuit, 116–117
Zeroes, 644, 671
Zero-input response, 643
Zero-state response, 643
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